
T. Doulamis et al.: (Eds.): GridNets 2009, LNICST 25, pp. 45–56, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Percolation-Based Replica Discovery in Peer-to-Peer
Grid Infrastructures

Francesco Palmieri

Federico II University of Napoli,
Via Cinthia, 5, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

francesco.palmieri@unina.it

Abstract. Peer-to-peer Grids are collaborative distributed computing/data proc-
essing systems, characterized by large scale, heterogeneity, lack of central con-
trol, unreliable components and frequent dynamic changes in both topology and
configuration. In such systems, it is desirable to maintain and make widely ac-
cessible timely and up-to-date information about shared resources available to
the active participants. Accordingly we introduce a scalable searching frame-
work for locating and retrieving dataset replica information in random unstruc-
tured peer-to-peer Grids built on the Internet, based on a widely known uniform
caching and searching algorithm. Such algorithm is based on bond percolation,
a mathematical phase transition model well suited for random walk searches in
random power law networks, which automatically shields low connectivity
nodes from traffic and reduces total traffic to scale sub-linearly with network
size. The proposed schema is able to find the requested information reliably end
efficiently, even if every node in the network starts with a unique different set
of contents as a shared resources.

Keywords: P2P Grids, content search, percolation.

1 Introduction

Grid is an exciting buzzword in the computing world today, mainly in the scientific
area. It is usually defined as the exploitation of a varied set of networked computing
resources, including large or small computers, storage/file servers and special purpose
devices. The emerging Internet based peer-to-peer (P2P) Grid infrastructures, which
are based on a “flat” organization allowing seamless discovery, access to, and interac-
tions among resources and services, have complex and highly dynamic computational
and interaction behaviors resulting in significant development and management chal-
lenges. P2P Grid infrastructures have the potential of a disruptive technology since
they can aggregate enormous storage and processing resources while minimizing the
overall costs and greatly reducing or avoiding at all the need for centralized servers. A
P2P assembly of general purpose nodes connected through the Internet can evolve
better from small configurations to larger ones, ensuring almost unlimited scalability
features. In such totally distributed architecture, we increasingly face the problem of
providing to the running applications fast and reliable access to large data volumes,
often stored into datasets geographically distributed across the network. As a direct

46 F. Palmieri

consequence, the concept of replication, that is the distribution of multiple copies of a
data source of interest across multiple grid nodes, to be processed locally when
needed, has been adopted by grid community to increase data availability and maxi-
mize job throughput. Replication starts with an initial data discovery operation aiming
to detect all the copies of the required dataset already existing on the Grid, given its
logical file name. In traditional grids a centralized catalogue is searched in order to
find all the locations where the requested dataset is available, obtaining a list of all the
already available replicas. A dataset itself can consist of several physical files but the
end-user normally only knows the dataset concept. Unfortunately, the peer to peer
paradigm by definition, excludes any form of centralized structure, requiring resource
management and control to be completely decentralized, hence no traditional catalog
service o centralized search facility can be implemented in P2P grids. In such sys-
tems, it is however desirable to maintain and make widely accessible timely and up-
to-date information about active participants such as services offered and replicated
dataset resources available. It is not obvious how to enable powerful discovery query
support and collective collaborative functionality that operate on such a distributed
and unstructured organization as a whole, rather than on a given part of it. Further, it
is not obvious how to allow for the propagation of search results that are fresh, allow-
ing time-sensitive dynamic content. To cope with the above challenges, we introduce
a scalable searching framework for locating and retrieving shared replica information
in random unstructured peer-to-peer Grids built on transport networks, such as the
Internet, characterized by Power-Law, scale-free network structure and heavy-tailed
degree distributions. Such framework is based on a known searching and local uni-
form caching algorithm based on bond percolation, a mathematical phase transition
model well suited for random walk searches in random power law networks, which
automatically shields low connectivity nodes from traffic and reduces total traffic to
scale sub-linearly with network size. Our focus here is on the adaptability of the
search network, dynamically accommodating changes in the data and query distribu-
tion, when nodes and data are continually joining and leaving the P2P system. Unlike
other P2P information retrieval solutions, there is no need to assume that multiple
copies of the shared information made available must be present on the Grid; the
proposed schema is able to find the requested information reliably end efficiently,
even if every node in the network starts with a unique different set of or objects.

2 Related Work

Several papers have analyzed search strategies for unstructured decentralized P2P
infrastructures. Some of these strategies have been also used to implement search
facilities in P2P grids [1]. Content-based search techniques include content-mapping
networks [2][3][4]. In such schemes, when a peer joins a network it is assigned a
responsibility to index a “zone” of the advertisement space in such a way that the
union of the indices of all the peers covers the whole advertisement space. The paper
in [5] explores alternatives (expanding rings and random walks) to the classical flood-
ing search strategies whereas [6] exploits the theory of random graphs to prove
properties of a generalization of the search that combines flooding and random walks.
The work in [7] focuses on random walks and introduces a number of local search

 Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures 47

strategies that utilize high degree nodes in power-law graphs to reduce search time.
The work in [8] quantifies the effectiveness of random walks for searching and con-
struction of unstructured P2P networks. It also compares flooding and random walk
by simulations on different network topologies. On the other side, [9] introduces a
scalable searching approach for locating contents in random networks with heavy-
tailed degree distributions. The analysis of the size of the giant connected component
of a random graph with heavy tailed degree distributions under bond percolation is the
heart of their results on which also our scheme is based.

3 P2P Grid Infrastructures

The traditional early production grid architectures are based on a service-oriented
computing model with a super-local resource management and scheduling strategy. In
detail, the overall control logic is based on a certain number of centralized managers
that are the only entities with a complete view of the resources available on the whole
Grid or on their own local management domain. On the other side, the P2P model,
that has achieved wide prominence in the context of multimedia file exchange, allows
the distributed computing concept to reach out to harness the outer edges of the Inter-
net and consequently will involve scales that were previously unimaginable. The
client/server architecture does not exist in a peer-to-peer system. Instead, peer nodes
act as both clients and servers - their roles are determined by the characteristics of the
tasks and the status of the system. Conceptually, these new computing infrastructures
are characterized by decentralized control, heterogeneity and extreme dynamism of
their environment. Participants frequently join, leave and act on a best effort basis.
Predictable, timely, consistent and reliable global state maintenance is infeasible. The
information to be aggregated and integrated may be outdated, inconsistent, or not
available at all. Failure, misbehavior, security restrictions and continuous change are
the norm rather than the exception. Deployment of P2P grids is entirely user driven,
obviating the need for any dedicated management of these systems. Peers expose the
resources that they are willing to share (i.e. a dataset) and each resource may be repli-
cated several times, a process that is totally decentralized and over which the original
peer that advertised the resource has little or no control at all. Peers can form groups
with fluid group memberships. Today, the greatest enabling factor for peer-to-peer
Grid architectures is the widespread availability of high-end desktop PC or Work-
station always connected to the Internet that at the state of the art offer a computa-
tional capacity of 4-6 GFlops, that is expected to become in the order of 100 GFlops
within the same time frame. Such a great processing power that makes it possible to
execute extremely demanding applications is largely unused (at least for the most part
of the day). This opens up a very interesting window for resource sharing, also sus-
tained by the current trend of growth of the bandwidth availability on the average and
high-end Internet connections making ubiquitous Internet-based peer-to-peer Grid
computing one of the most valid options available in the computing arena.

4 A Scalable Search Model in P2P Grids

The fact that today most computers in peer-to-peer grids are interconnected through
the Internet give us the opportunity, in formulating our replica discovery paradigm, to

48 F. Palmieri

exploit some of the Internet characteristics, a task that can greatly benefit from physi-
cal modeling approaches. Several empirical studies on the topology of the Internet
showed that the connectivity of its nodes exhibits power law attributes and scale-free
behavior in degree distribution [10]. In other words, let P(k) such distribution, that is
the probability that an arbitrary node be connected to exactly k other nodes:

mkckkP ≥= − ,)(λ

(1)

with an exponent 2 < λ < 3; where c is a normalization factor and m is the minimal
connectivity (usually taken to be m = 1). Here, we can also evidence that

∑
=

=
max

2

1)(
k

k

kP

(2)

where kmax is the maximum number of neighbors any node may have. Many naturally
occurring networks (social contacts, ecological nets of predator-prey, etc.,) exhibit
such degree distribution, and since several features are shared by peer-to-peer grid
computing systems and these complex networks, much can be gained through integra-
tive and comparative approaches, allowing cross-fertilization between those two im-
portant areas. Power–law networks can also be characterized by two fundamental
properties [10][11]:

− a small number of links are connected by numerous nodes, while a large number
of links are connected by a few nodes;

− the number of hop–counts between nodes is reduced (small–world property).

The second characteristic promotes faster propagation of information between nodes,
which is a great advantage in distributed search, by optimizing the performance of the
query/response traffic. However, because of the first characteristic, if several spoke
nodes propagate some information at the same time or at almost the same time, the
involved messages concentrate at the hub node. That is, the nodes with the very high-
est connectivity are subject to most of the search/query traffic. It is also likely that this
tendency will increase as the number of nodes in the network increases because the
number of links connected to the hub–node in turn increases. Finding a provably
scalable method to search for unique content (such as the location of a replicated file)
on unstructured power law networks is still an open problem. Several solutions, based
on various random-walk strategies, have been proposed, but most of these reduce
query traffic cost only by a constant factor. However, Power law networks are known
to be an ideal platform for efficient percolation search [9], that can be a very attractive
approach to ensure the needed scalability to the overall replica search/discovery
system because of its relations between the probabilistic and algebraic topological
properties of the Internet-based P2P organizations. According to such approach, it is
always possible to overlay a scalable global-search system on this naturally scale-free
graph of social contacts to enable peers to exchange their replication data efficiently.
Furthermore, the query traffic cost using percolation search scales sub-linearly as a
function of the system size [9]. When performing percolation search on a power–law
network, we can distinguish several types of participating nodes working at different
scales. Some nodes have a small number of neighbors, and thus are required to proc-
ess a small number of queries passing through them. On the other end, there are nodes

 Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures 49

with large numbers of neighbors that will do a lot of work. Such search scheme im-
plicitly makes use of high degree nodes to both cache information and respond to as
much queries as possible. Thus, to achieve the best performance, one should enforce a
basic form of hierarchy in the P2P Grid topological organization – that is: only high
performance and huge capacity nodes have to be highly connected.

5 The Percolation Paradigm

Percolation theory [12][13] is a field of mathematics and statistical physics that pro-
vides models of phase transition phenomena that are observed in nature. Let us
consider the following question, originally due to Broadbent and Hammersley, to
introduce percolation theory [14]. Water is poured on one side of a large (ideally
infinite) porous stone. What is the probability that the water finds a path to the oppo-
site side? By modeling the stone as a square grid (see fig. 1 below) in which each
edge can be open and hence traversed by water with probability p, and closed other-
wise, independently of all other edges, one can show that for p > 0.5 water percolates
trough the stone with probability one. One can then ask at what rate the water perco-
lates and how it depends on. In other words, how rich in disjoint paths is the con-
nected component of open edges? Bond percolation removes each edge in the
grid with probability 1 – p (each edge is kept with probability p), where p is the
percolation probability. The surviving edges and nodes form the percolated network.

Fig. 1. Percolation on a square lattice

We can construct a mapping such that the open grid edges of a percolation model
correspond to the presence of an active peering connection between the grid nodes, and
the open percolating paths represent the resulting search tree on the P2P grid infra-
structure that can be used to convey the requested replica location information. The
percolation threshold pc is the lowest percolation probability in which the expected size
of the largest connected component goes to infinity for an infinite-size graph. If
the percolation probability is lower than the percolation threshold, then the percolated
network consists only of small-size connected components and lacks a giant connected
component. Otherwise, if p > pc then a giant connected component emerges in the
percolated network. Note that the percolation threshold is extremely small for any PL
network. As a result, the size of the percolated network core is extremely small, since

50 F. Palmieri

it is proportional to pc. When percolation occurs above pc, high-degree nodes are al-
ways reached during the process and become part of the giant connected component.
Thus, in an unstructured P2P network search, when dataset replica information
is cached in random high-degree nodes and every query originating from a random
initiator node reaches and restarts from a random high-degree node, percolation can
reliably find any specific dataset with an high probability (near to 1).

5.1 The Percolation Search Algorithm

Accordingly we adapted to our problem the random-walk search algorithm suggested
in [9] where each node scans the contents of all its neighbors. The random walk
search idea is simple: for each query, a random walker starts from the initiator and
asks the nodes on the way for the requested information until it finds a match. If there
are enough replicas of the needed dataset on the network, each query would be suc-
cessfully answered after a few steps. In this schema, a random walker starts from a
requester node to resolve a query. At each step of the walk, it scans the neighbors of
the node it visits. For a power-law graph, the search quickly (with probability ap-
proaching one) converges towards high-degree nodes. Percolation search properly
consists of three building blocks: content implantation, query implantation, and bond
percolation.

Content implantation (fig. 2-a) means that every peer node in a network of n nodes
announces its content through a short random walk of size O(log n) starting from
itself. Only its own contents are duplicated (cached) on any node visited along the
way. Clearly, highly connected nodes will develop larger caches. In fact the cache
sizes obey exactly the same distribution as the degrees. The total number of contents
is hence O(n log n) and the average cache size is O(log n).

A Query implantation (fig. 2-b) is executed each time a peer node issues a query.
This means that the query will be ”implanted” on a small number of peers through a
random walk of size O(log n) starting from the requester. Content and query implan-
tation ensure that both content (in our case a replica location information) and queries
are known by at least one high-degree node, since a random walk in a power-law
network gravitates towards high-degree nodes because they have a higher number of
incoming links. The search is finally executed in the bond percolation step (fig. 2-c).
Each peer which has an implanted query will perform a probabilistic broadcast, in
which it sends the query to each of its neighbors with probability p. Probability p is
set to such a value (usually a constant multiple of the percolation threshold pc) so that
a query starting from a high-degree node will be broadcast to the so-called giant com-
ponent of the network (which all high-degree nodes are part of with a high probabil-
ity). Clearly, if a query reaches a node which has already received the same query
from another neighbor, the query is not implanted, thus avoiding loops in the query
path. Since content implantation ensures that if each resource is known by at least one
high-degree node, it will be found with a probability very close to 1. The information
resulting from a successful search process reaches backwards the request originator
node through the same path by which the query message arrived at the hit node (fig.
2-a). Every step in the algorithm is totally local and truly uniform. High degree nodes
will be naturally “distilled” from on the power law network.

 Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures 51

Fig. 2. Percolation search example

The search networks generated by the above algorithm form random connected
graphs, where nodes are connected to few random neighbors, and have a relatively
small distance between each other. The average number of hops between nodes is
approximately equal to log(n)/log(k), where n is the number of nodes and k is the
average node degree. The existence of a small network diameter gives only a lower
limit to the number of hops between two peers. The fact that the network has a power
law distribution of the edges, even performing a random walk from node to node, will
result in significant reduction in the number of nodes visited. This is because a ran-
dom walk will tend to select high degree nodes. However, specifically choosing high
degree nodes to traverse first, improves search further. Such search networks can be
essentially controlled by two parameters: the exponent λ of the power–law, and the
maximum degree kmax. Another important parameter greatly conditioning the
efficiency of the whole search process is the percolation threshold pc. In detail, in
power-law networks of a finite size, the percolation threshold approaches 0 and can
be calculated [15] from a degree distribution, as:

kk

k
pc −

=
2

 (3)

Here, k stands for the degree of a node, and the notation K means the average

over the degree distribution. Finally, since any content in the network can be found

with probability one in time O(log n), while generating only)
log2

(
max

max

k

k
nO × traffic

52 F. Palmieri

per query, and since in random PL networks kmax = c×n then the overall traffic scales
sub-linearly with the network size as O(log2 n) per query [16].

5.2 Implementation Issues

While the design of the above search algorithm is based on theoretical concepts, the
final formulation is straightforward and hence very easy to implement through dedi-
cated search agents. The multi-agent technology has features well fitting for distrib-
uted communication, and is particularly robust for the interaction and negotiation
tasks within P2P organizations. In a distributed agent framework, we conceptualize a
dynamic community of agents, where multiple agents contribute services to the com-
munity by cooperating like individuals in a social organization. The appeal of such
architectures depends on the ability of populations of agents to organize themselves
and adapt dynamically to changing circumstances without top-down control from a
central control logic. At first, each grid node that needs to export a dataset replica
activates a specific content implantation agent that periodically starts a short random
walk throughout its neighborhood and replicates on the traversed nodes the involved
dataset content. Such an agent lives for the entire lifetime of each active replica.
Clearly the data replication will be performed on a node along the short walk only if it
is really needed (the information is not already present) and feasible (there is available
space and the replica operation is locally authorized). When a job requests a specific
object resource in the grid through a specific web service interface, a job-related
search agent will be created. This agent will be in charge of finding candidate dataset
replicas through the proposed percolation-based interactions, lives until the associated
search task executes and will be dissolved when it is finished and the replica results
are sent to the requesting node and cached on the intermediate nodes along the search
tree. Clearly, an aging timeout is associated to each cached replica so that when such
a timeout expires and the information has not been refreshed by another content im-
plantation or during the backward query/response process, the entry is no longer valid
and hence deleted. It should be noted that a search agent might be involved in several
query implantation activities during the same percolation search process. Since coop-
eration, negotiation, and competition are natural activities common in multi-agent
systems the above content and query implantation functionalities and the following
percolation search process are naturally implemented by using the agent oriented
approach. The percolation search network needs to be overlaid on top of the peer-to-
peer interactions between the grid nodes built during both the content implantation
and query processing activities and the involved agents cooperate by implementing
the above search steps by interacting through an existing P2P grid communication
paradigm. Communication between neighbor peers can be enabled by existing P2P
interaction facilities such as JXTA [17] (from juxtaposition) or P2PS [18] (Peer-to-
Peer Simplified) protocols. JXTA provides features such as dynamic discovery while
allowing peers to communicate across NAT, DHCP, and firewall boundaries. It is
independent of transport protocols and can be implemented on top of TCP/IP, HTTP,
TLS, and many other protocols. P2PS is a lightweight infrastructure for developing
P2P style applications whose architecture is inspired to and provides a subset of

 Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures 53

functionality of JXTA. In both the solutions a peer is any node that supports the spe-
cific interaction protocols and could be any digital device. Peers publish the existence
of a dataset resource through an advertisement, which is simply an XML document
describing the resource. Interactions between agent peers are self-attenuating, with
interactions dying out after a certain number of hops. These attenuations in tandem
with traces of the peers, which the interactions have passed through, eliminate the
continuous echoing problem that results from loops in peer connectivity. In such envi-
ronment, the specific agents described before will be implemented at the P2P Grid
middleware level on each local grid node involved in the above percolation-based
replica discovery and management framework. These agents provide a high-level
representation of the corresponding search or replica location notification capability.
Hence, they also characterize the available dataset resources as information service
providers in a wider grid environment. Agents can be structured within the proposed
architecture according to a simple layered model (see fig. 3).

Fig. 3. The generic agent layered structure

Here we can distinguish a bottommost communication layer, implemented through
the above JXTA or P2PS facilities, realizing all the Agent-to-Agent interactions and
peer communication mechanisms. An intermediate local control layer is needed for all
the authorization and management tasks to be autonomously performed at the indi-
vidual node level (local resources management, authorization and access-control
policies enforcing, data replication etc.). Finally, a “percolation engine” at the upper-
most layer realizes all the main specialized agent functionalities, starting from imple-
menting the random walks for content implantation to replica information caching and
performing percolation search through “probabilistic broadcast” query implantation
activities and backward result propagation.

6 Functional Evaluation

In order to evaluate our model through simulation, we generated a random
network with a power law link distribution by using the Pajek [19] environment. The

54 F. Palmieri

generation process is based on generalized Barabasi-Albert construction model [20],
which presumes that every vertex has at least some baseline probability of gaining an
edge, to generate edges by mixture of preferential attachment and uniform attachment.
For generating condition, we set the total node number to 30000, λ=2 and a maximum
degree of 6. We worked with a TTL value varying from 15 to 25. Such parameter can
be thought as an upper bound of hops on the query implantation. In order to evaluate
the results, we analyzed under varying percolation probabilities the behavior of the
following three metrics expressed as percentage values: the success rate in finding an
object, the number of edges and the number of nodes traversed throughout the search
process. We first evaluated our replica search algorithm with a single copy of a con-
tent randomly located on the network (Fig. 4).

Fig. 4. Simulation results with 1 replica, TTL=15

Here no content implantation step is performed by the owner node and no informa-
tion is cached throughout the network during the search process. We can observe that
the percolation search mechanism is however effective but it really converges only
when percolation probability approaches to 0.4 and an unacceptably high number of
nodes and edges are traversed to reach the needed content. In fact the hit ratio and the
traversed edges/nodes trends grow together almost linearly with the percolation prob-
ability. Next we also considered another relevant issue: what would be the improvement
in performance if multiple high degree nodes in the network had the same content so
that the above percolation paradigm may be really effective. Accordingly as a part of the
percolation search algorithm, we execute both the initial content implantation and the
following caching steps that make sure that any subsequent query step would find any
content with probability approaching one. Figure 5 below shows the case where 10
replicas of any content are randomly spread in the network. We can note that, in pres-
ence of a sufficient number of replicated contents, also a slight increment in percolation
probability improves the hit rate exponentially until it rapidly reaches 100%.

 Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures 55

Fig. 5. Simulation results with 10 replicas, TTL=15

7 Conclusion

This work focuses on searching for replicated objects (files, resources, etc.) in fully
decentralized P2P grids, i.e., where a (large) set of peers, can exchange information in
absence of any central service. Accordingly we propose a scalable search model for
such totally unstructured grids based on a known algorithm that uses random-walks
and bond percolation on random graphs with heavy-tailed degree distributions to
provide access to any content on any node with probability one. We analyzed the
validity of our model and examined its dynamics through simulations. We can con-
clude that our proposal can be effective in both reducing the total amount of que-
ries/checks and ensuring an high success rate, which means we can provide a robust
and effective search platform for emerging P2P grid infrastructures.

References

1. Botros, S., Waterhouse, S.: Search in JXTA and other distributed networks. In: P2P Com-
puting conference (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content ad-
dressable Network. In: ACM SIGCOM (2001)

3. Dabek, F., Brunskill, E., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I., Balakrishnan,
H.: Building peer-to-peer systems with Chord, a Distributed Lookup Service (2001),
http://pdos.lcs.mit.edu/chord

4. Zhao, B.Y., Kubiatowicz, I., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide
area location and routing”, Computer Science Department, UCB Report UCB/CSD-O 1-
1141 (2001)

5. Lv, Q., Cohen, E., Li, K., Shenker, S.: Search and Replication in unstructured peer-to-peer
network. In: International Conference on Supercomputing (2002)

56 F. Palmieri

6. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid Search Schemes for Unstructured Peer-to-
Peer Networks. In: IEEE Infocom 2005. IEEE CS Press, Los Alamitos (2005)

7. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in Power-Law
Networks. Physical Review E 64 (2001)

8. Gkantsidis, C., Mihail, M., Saberi, A.: Random Walks in Peer-to-Peer Networks. In: IEEE
INFOCOM 2004, Hong Kong, China (2004)

9. Sarshar, N., Roychowdury, V., Boykin, P.O.: Percolation search algorithm, making un-
structured p2p networks scalable. In: Fourth IEEE P2P 2004, Zurich, Switzerland. IEEE
Computer Society Press, Los Alamitos (2004)

10. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power–law relationships of the Internet to-
pology. In: Proceedings of ACM SIGCOMM 1999, October 1999, pp. 251–262 (1999)

11. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512
(1999)

12. Grimmett, G.: Percolation, 2nd edn. Springer, New York (1999)
13. Meester, R., Roy, R.: Continuum Percolation. Cambridge Univ. Press, Cambridge (1996)
14. Broadbent, S.R., Hammersley, J.M.: Percolation processes in Crystals and mazes. Proc.

Cambridge Philosoph. Soc. 53, 629–641 (1957)
15. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2),

167–256 (2003)
16. Sarshar, N., Boykin, P.O., Roychowdury, V.: Scalable percolation search on complex net-

works. Theoretical Computer Science 355, 48–64 (2006)
17. Sun Microsystems. The JXTA project and peer-to-peer technology (November 2004),

http://www.jxta.org
18. Wang: P2PS (Peer-to-Peer Simplified. In: 13th Conference - Frontiers of Grid Applica-

tions and Technologies, Louisiana State University, pp. 54–59 (2005)
19. Pajek project, http://vlado.fmf.uni-lj.si/pub/networks/pajek
20. Albert, R., Barabasi, A.: Topology of Evolving Networks: Local Events and Universality.

Phys. Rev. Lett. 85, 5234–5237 (2000)

	Percolation-Based Replica Discovery in Peer-to-Peer Grid Infrastructures
	Introduction
	Related Work
	P2P Grid Infrastructures
	A Scalable Search Model in P2P Grids
	The Percolation Paradigm
	The Percolation Search Algorithm
	Implementation Issues

	Functional Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

