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Abstract. Peer-to-peer Grids are collaborative distributed computing/data proc-
essing systems, characterized by large scale, heterogeneity, lack of central con-
trol, unreliable components and frequent dynamic changes in both topology and 
configuration. In such systems, it is desirable to maintain and make widely ac-
cessible timely and up-to-date information about shared resources available to 
the active participants. Accordingly we introduce a scalable searching frame-
work for locating and retrieving dataset replica information in random unstruc-
tured peer-to-peer Grids built on the Internet, based on a widely known uniform 
caching and searching algorithm. Such algorithm is based on bond percolation, 
a mathematical phase transition model well suited for random walk searches in 
random power law networks, which automatically shields low connectivity 
nodes from traffic and reduces total traffic to scale sub-linearly with network 
size. The proposed schema is able to find the requested information reliably end 
efficiently, even if every node in the network starts with a unique different set 
of contents as a shared resources.  
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1   Introduction 

Grid is an exciting buzzword in the computing world today, mainly in the scientific 
area. It is usually defined as the exploitation of a varied set of networked computing 
resources, including large or small computers, storage/file servers and special purpose 
devices. The emerging Internet based peer-to-peer (P2P) Grid infrastructures, which 
are based on a “flat” organization allowing seamless discovery, access to, and interac-
tions among resources and services, have complex and highly dynamic computational 
and interaction behaviors resulting in significant development and management chal-
lenges. P2P Grid infrastructures have the potential of a disruptive technology since 
they can aggregate enormous storage and processing resources while minimizing the 
overall costs and greatly reducing or avoiding at all the need for centralized servers. A 
P2P assembly of general purpose nodes connected through the Internet can evolve 
better from small configurations to larger ones, ensuring almost unlimited scalability 
features. In such totally distributed architecture, we increasingly face the problem of 
providing to the running applications fast and reliable access to large data volumes, 
often stored into datasets geographically distributed across the network. As a direct 
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consequence, the concept of replication, that is the distribution of multiple copies of a 
data source of interest across multiple grid nodes, to be processed locally when 
needed, has been adopted by grid community to increase data availability and maxi-
mize job throughput. Replication starts with an initial data discovery operation aiming 
to detect all the copies of the required dataset already existing on the Grid, given its 
logical file name. In traditional grids a centralized catalogue is searched in order to 
find all the locations where the requested dataset is available, obtaining a list of all the 
already available replicas. A dataset itself can consist of several physical files but the 
end-user normally only knows the dataset concept. Unfortunately, the peer to peer 
paradigm by definition, excludes any form of centralized structure, requiring resource 
management and control to be completely decentralized, hence no traditional catalog 
service o centralized search facility can be implemented in P2P grids. In such sys-
tems, it is however desirable to maintain and make widely accessible timely and up-
to-date information about active participants such as services offered and replicated 
dataset resources available. It is not obvious how to enable powerful discovery query 
support and collective collaborative functionality that operate on such a distributed 
and unstructured organization as a whole, rather than on a given part of it. Further, it 
is not obvious how to allow for the propagation of search results that are fresh, allow-
ing time-sensitive dynamic content. To cope with the above challenges, we introduce 
a scalable searching framework for locating and retrieving shared replica information 
in random unstructured peer-to-peer Grids built on transport networks, such as the 
Internet, characterized by Power-Law, scale-free network structure and heavy-tailed 
degree distributions. Such framework is based on a known searching and local uni-
form caching algorithm based on bond percolation, a mathematical phase transition 
model well suited for random walk searches in random power law networks, which 
automatically shields low connectivity nodes from traffic and reduces total traffic to 
scale sub-linearly with network size. Our focus here is on the adaptability of the 
search network, dynamically accommodating changes in the data and query distribu-
tion, when nodes and data are continually joining and leaving the P2P system. Unlike 
other P2P information retrieval solutions, there is no need to assume that multiple 
copies of the shared information  made available must be present on the Grid; the 
proposed schema is able to find the requested information reliably end efficiently, 
even if every node in the network starts with a unique different set of or objects. 

2   Related Work 

Several papers have analyzed search strategies for unstructured decentralized P2P 
infrastructures.  Some of these strategies have been also used to implement search 
facilities in P2P grids [1]. Content-based search techniques include content-mapping 
networks [2][3][4]. In such schemes, when a peer joins a network it is assigned a 
responsibility to index a “zone” of the advertisement space in such a way that the 
union of the indices of all the peers covers the whole advertisement space. The paper 
in [5] explores alternatives (expanding rings and random walks) to the classical flood-
ing search strategies whereas [6] exploits the theory of random graphs to prove  
properties of a generalization of the search that combines flooding and random walks. 
The work in [7] focuses on random walks and introduces a number of local search 
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strategies that utilize high degree nodes in power-law graphs to reduce search time. 
The work in [8] quantifies the effectiveness of random walks for searching and con-
struction of unstructured P2P networks. It also compares flooding and random walk 
by simulations on different network topologies. On the other side, [9] introduces a 
scalable searching approach for locating contents in random networks with heavy-
tailed degree distributions. The analysis of the size of the giant connected component 
of a random graph with heavy tailed degree distributions under bond percolation is the 
heart of their results on which also our scheme is based. 

3   P2P Grid Infrastructures 

The traditional early production grid architectures are based on a service-oriented 
computing model with a super-local resource management and scheduling strategy. In 
detail, the overall control logic is based on a certain number of centralized managers 
that are the only entities with a complete view of the resources available on the whole 
Grid or on their own local management domain. On the other side, the P2P model, 
that has achieved wide prominence in the context of multimedia file exchange, allows 
the distributed computing concept to reach out to harness the outer edges of the Inter-
net and consequently will involve scales that were previously unimaginable. The 
client/server architecture does not exist in a peer-to-peer system. Instead, peer nodes 
act as both clients and servers - their roles are determined by the characteristics of the 
tasks and the status of the system. Conceptually, these new computing infrastructures 
are characterized by decentralized control, heterogeneity and extreme dynamism of 
their environment. Participants frequently join, leave and act on a best effort basis. 
Predictable, timely, consistent and reliable global state maintenance is infeasible. The 
information to be aggregated and integrated may be outdated, inconsistent, or not 
available at all. Failure, misbehavior, security restrictions and continuous change are 
the norm rather than the exception. Deployment of P2P grids is entirely user driven, 
obviating the need for any dedicated management of these systems. Peers expose the 
resources that they are willing to share (i.e. a dataset) and each resource may be repli-
cated several times, a process that is totally decentralized and over which the original 
peer that advertised the resource has little or no control at all. Peers can form groups 
with fluid group memberships. Today, the greatest enabling factor for peer-to-peer 
Grid architectures is the widespread availability of high-end desktop PC or Work-
station always connected to the Internet that at the state of the art offer a computa-
tional capacity of 4-6 GFlops, that is expected to become in the order of 100 GFlops 
within the same time frame. Such a great processing power that makes it possible to 
execute extremely demanding applications is largely unused (at least for the most part 
of the day). This opens up a very interesting window for resource sharing, also sus-
tained by the current trend of growth of the bandwidth availability on the average and 
high-end Internet connections making ubiquitous Internet-based peer-to-peer Grid 
computing one of the most valid options available in the computing arena. 

4   A Scalable Search Model in P2P Grids 

The fact that today most computers in peer-to-peer grids are interconnected through 
the Internet give us the opportunity, in formulating our replica discovery paradigm, to 
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exploit some of the Internet characteristics, a task that can greatly benefit from physi-
cal modeling approaches. Several empirical studies on the topology of the Internet 
showed that the connectivity of its nodes exhibits power law attributes and scale-free 
behavior in degree distribution [10]. In other words, let P(k) such distribution, that is 
the probability that an arbitrary node be connected to exactly k other nodes:  
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where kmax is the maximum number of neighbors any node may have. Many naturally 
occurring networks (social contacts, ecological nets of predator-prey, etc.,) exhibit 
such degree distribution, and since several features are shared by peer-to-peer grid 
computing systems and these complex networks, much can be gained through integra-
tive and comparative approaches, allowing cross-fertilization between those two im-
portant areas. Power–law networks can also be characterized by two fundamental 
properties [10][11]: 

−   a small number of links are connected by numerous nodes, while a large number 
of links are connected by a few nodes; 

−   the number of hop–counts between nodes is reduced (small–world property). 

The second characteristic promotes faster propagation of information between nodes, 
which is a great advantage in distributed search, by optimizing the performance of the 
query/response traffic. However, because of the first characteristic, if several spoke 
nodes propagate some information at the same time or at almost the same time, the 
involved messages concentrate at the hub node. That is, the nodes with the very high-
est connectivity are subject to most of the search/query traffic. It is also likely that this 
tendency will increase as the number of nodes in the network increases because the 
number of links connected to the hub–node in turn increases. Finding a provably 
scalable method to search for unique content (such as the location of a replicated file) 
on unstructured power law networks is still an open problem. Several solutions, based 
on various random-walk strategies, have been proposed, but most of these reduce 
query traffic cost only by a constant factor. However, Power law networks are known 
to be an ideal platform for efficient percolation search [9], that can be a very attractive 
approach to ensure the needed scalability to the overall replica search/discovery  
system because of its relations between the probabilistic and algebraic topological 
properties of the Internet-based P2P organizations. According to such approach, it is 
always possible to overlay a scalable global-search system on this naturally scale-free 
graph of social contacts to enable peers to exchange their replication data efficiently. 
Furthermore, the query traffic cost using percolation search scales sub-linearly as a 
function of the system size [9]. When performing percolation search on a power–law 
network, we can distinguish several types of participating nodes working at different 
scales. Some nodes have a small number of neighbors, and thus are required to proc-
ess a small number of queries passing through them. On the other end, there are nodes 
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with large numbers of neighbors that will do a lot of work. Such search scheme im-
plicitly makes use of high degree nodes to both cache information and respond to as 
much queries as possible. Thus, to achieve the best performance, one should enforce a 
basic form of hierarchy in the P2P Grid topological organization – that is: only high 
performance and huge capacity nodes have to be highly connected. 

5   The Percolation Paradigm 

Percolation theory [12][13] is a field of mathematics and statistical physics that pro-
vides models of phase transition phenomena that are observed in nature. Let us  
consider the following question, originally due to Broadbent and Hammersley, to 
introduce percolation theory [14]. Water is poured on one side of a large (ideally 
infinite) porous stone. What is the probability that the water finds a path to the oppo-
site side? By modeling the stone as a square grid (see fig. 1 below) in which each 
edge can be open and hence traversed by water with probability p, and closed other-
wise, independently of all other edges, one can show that for p > 0.5 water percolates 
trough the stone with probability one. One can then ask at what rate the water perco-
lates and how it depends on. In other words, how rich in disjoint paths is the con-
nected component of open edges? Bond percolation removes each edge in the  
grid with probability 1 – p (each edge is kept with probability p), where p is the  
percolation probability. The surviving edges and nodes form the percolated network. 

 
Fig. 1. Percolation on a square lattice 

We can construct a mapping such that the open grid edges of a percolation model 
correspond to the presence of an active peering connection between the grid nodes, and 
the open percolating paths represent the resulting search tree on the P2P grid infra-
structure that can be used to convey the requested replica location information. The 
percolation threshold pc is the lowest percolation probability in which the expected size 
of the largest connected component goes to infinity for an infinite-size graph. If  
the percolation probability is lower than the percolation threshold, then the percolated 
network consists only of small-size connected components and lacks a giant connected 
component. Otherwise, if p > pc then a giant connected component emerges in the 
percolated network. Note that the percolation threshold is extremely small for any PL 
network. As a result, the size of the percolated network core is extremely small, since  
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it is proportional to pc. When percolation occurs above pc, high-degree nodes are al-
ways reached during the process and become part of the giant connected component. 
Thus, in an unstructured P2P network search, when dataset replica information  
is cached in random high-degree nodes and every query originating from a random 
initiator node reaches and restarts from a random high-degree node, percolation can 
reliably find any specific dataset with an high probability (near to 1). 

5.1   The Percolation Search Algorithm 

Accordingly we adapted to our problem the random-walk search algorithm suggested 
in [9] where each node scans the contents of all its neighbors. The random walk 
search idea is simple: for each query, a random walker starts from the initiator and 
asks the nodes on the way for the requested information until it finds a match. If there 
are enough replicas of the needed dataset on the network, each query would be suc-
cessfully answered after a few steps. In this schema, a random walker starts from a 
requester node to resolve a query. At each step of the walk, it scans the neighbors of 
the node it visits. For a power-law graph, the search quickly (with probability ap-
proaching one) converges towards high-degree nodes. Percolation search properly 
consists of three building blocks: content implantation, query implantation, and bond 
percolation. 

Content implantation (fig. 2-a) means that every peer node in a network of n nodes 
announces its content through a short random walk of size O(log n) starting from 
itself. Only its own contents are duplicated (cached) on any node visited along the 
way. Clearly, highly connected nodes will develop larger caches. In fact the cache 
sizes obey exactly the same distribution as the degrees. The total number of contents 
is hence O(n log n) and the average cache size is O(log n). 

A Query implantation (fig. 2-b) is executed each time a peer node issues a query. 
This means that the query will be ”implanted” on a small number of peers through a 
random walk of size O(log n) starting from the requester. Content and query implan-
tation ensure that both content (in our case a replica location information) and queries 
are known by at least one high-degree node, since a random walk in a power-law 
network gravitates towards high-degree nodes because they have a higher number of 
incoming links. The search is finally executed in the bond percolation step (fig. 2-c). 
Each peer which has an implanted query will perform a probabilistic broadcast, in 
which it sends the query to each of its neighbors with probability p. Probability p is 
set to such a value (usually a constant multiple of the percolation threshold pc) so that 
a query starting from a high-degree node will be broadcast to the so-called giant com-
ponent of the network (which all high-degree nodes are part of with a high probabil-
ity). Clearly, if a query reaches a node which has already received the same query 
from another neighbor, the query is not implanted, thus avoiding loops in the query 
path. Since content implantation ensures that if each resource is known by at least one 
high-degree node, it will be found with a probability very close to 1. The information 
resulting from a successful search process reaches backwards the request originator 
node through the same path by which the query message arrived at the hit node (fig. 
2-a).  Every step in the algorithm is totally local and truly uniform. High degree nodes 
will be naturally “distilled” from on the power law network. 
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Fig. 2. Percolation search example 

The search networks generated by the above algorithm form random connected 
graphs, where nodes are connected to few random neighbors, and have a relatively 
small distance between each other. The average number of hops between nodes is 
approximately equal to log(n)/log(k), where n is the number of nodes and k is the 
average node degree. The existence of a small network diameter gives only a lower 
limit to the number of hops between two peers. The fact that the network has a power 
law distribution of the edges, even performing a random walk from node to node, will 
result in significant reduction in the number of nodes visited. This is because a ran-
dom walk will tend to select high degree nodes. However, specifically choosing high 
degree nodes to traverse first, improves search further. Such search networks can be 
essentially controlled by two parameters: the exponent λ of the power–law, and the 
maximum degree kmax. Another important parameter greatly conditioning the  
efficiency of the whole search process is the percolation threshold pc. In detail, in 
power-law networks of a finite size, the percolation threshold approaches 0 and can 
be calculated [15] from a degree distribution, as: 
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per query, and since in random PL networks kmax = c×n then the overall traffic scales 
sub-linearly with the network size as O(log2 n) per query [16]. 

5.2   Implementation Issues 

While the design of the above search algorithm is based on theoretical concepts, the 
final formulation is straightforward and hence very easy to implement through dedi-
cated search agents. The multi-agent technology has features well fitting for distrib-
uted communication, and is particularly robust for the interaction and negotiation 
tasks within P2P organizations. In a distributed agent framework, we conceptualize a 
dynamic community of agents, where multiple agents contribute services to the com-
munity by cooperating like individuals in a social organization. The appeal of such 
architectures depends on the ability of populations of agents to organize themselves 
and adapt dynamically to changing circumstances without top-down control from a 
central control logic. At first, each grid node that needs to export a dataset replica 
activates a specific content implantation agent that periodically starts a short random 
walk throughout its neighborhood and replicates on the traversed nodes the involved 
dataset content. Such an agent lives for the entire lifetime of each active replica. 
Clearly the data replication will be performed on a node along the short walk only if it 
is really needed (the information is not already present) and feasible (there is available 
space and the replica operation is locally authorized). When a job requests a specific 
object resource in the grid through a specific web service interface, a job-related 
search agent will be created. This agent will be in charge of finding candidate dataset 
replicas through the proposed percolation-based interactions, lives until the associated 
search task executes and will be dissolved when it is finished and the replica results 
are sent to the requesting node and cached on the intermediate nodes along the search 
tree. Clearly, an aging timeout is associated to each cached replica so that when such 
a timeout expires and the information has not been refreshed by another content im-
plantation or during the backward query/response process, the entry is no longer valid 
and hence deleted. It should be noted that a search agent might be involved in several 
query implantation activities during the same percolation search process. Since coop-
eration, negotiation, and competition are natural activities common in multi-agent 
systems the above content and query implantation functionalities and the following 
percolation search process are naturally implemented by using the agent oriented 
approach. The percolation search network needs to be overlaid on top of the peer-to-
peer interactions between the grid nodes built during both the content implantation 
and query processing activities and the involved agents cooperate by implementing 
the above search steps by interacting through an existing P2P grid communication 
paradigm. Communication between neighbor peers can be enabled by existing P2P 
interaction facilities such as JXTA [17] (from juxtaposition) or P2PS [18] (Peer-to-
Peer Simplified) protocols. JXTA provides features such as dynamic discovery while 
allowing peers to communicate across NAT, DHCP, and firewall boundaries. It is 
independent of transport protocols and can be implemented on top of TCP/IP, HTTP, 
TLS, and many other protocols. P2PS is a lightweight infrastructure for developing 
P2P style applications whose architecture is inspired to and provides a subset of  
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functionality of JXTA. In both the solutions a peer is any node that supports the spe-
cific interaction protocols and could be any digital device. Peers publish the existence 
of a dataset resource through an advertisement, which is simply an XML document 
describing the resource. Interactions between agent peers are self-attenuating, with 
interactions dying out after a certain number of hops. These attenuations in tandem 
with traces of the peers, which the interactions have passed through, eliminate the 
continuous echoing problem that results from loops in peer connectivity. In such envi-
ronment, the specific agents described before will be implemented at the P2P Grid 
middleware level on each local grid node involved in the above percolation-based 
replica discovery and management framework. These agents provide a high-level 
representation of the corresponding search or replica location notification capability. 
Hence, they also characterize the available dataset resources as information service 
providers in a wider grid environment. Agents can be structured within the proposed 
architecture according to a simple layered model (see fig. 3).  

 

Fig. 3. The generic agent layered structure 

Here we can distinguish a bottommost communication layer, implemented through 
the above JXTA or P2PS facilities, realizing all the Agent-to-Agent interactions and 
peer communication mechanisms. An intermediate local control layer is needed for all 
the authorization and management tasks to be autonomously performed at the indi-
vidual node level (local resources management, authorization and access-control 
policies enforcing, data replication etc.). Finally, a “percolation engine” at the upper-
most layer realizes all the main specialized agent functionalities, starting from imple-
menting the random walks for content implantation to replica information caching and 
performing percolation search through “probabilistic broadcast” query implantation 
activities and backward result propagation. 

6   Functional Evaluation 

In order to evaluate our model through simulation, we generated a random  
network with a power law link distribution by using the Pajek [19] environment. The 
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generation process is based on generalized Barabasi-Albert construction model [20], 
which presumes that every vertex has at least some baseline probability of gaining an 
edge, to generate edges by mixture of preferential attachment and uniform attachment. 
For generating condition, we set the total node number to 30000, λ=2 and a maximum 
degree of 6. We worked with a TTL value varying from 15 to 25. Such parameter can 
be thought as an upper bound of hops on the query implantation. In order to evaluate 
the results, we analyzed under varying percolation probabilities the behavior of the 
following three metrics expressed as percentage values: the success rate in finding an 
object, the number of edges and the number of nodes traversed throughout the search 
process. We first evaluated our replica search algorithm with a single copy of a con-
tent randomly located on the network (Fig. 4).  

 

Fig. 4. Simulation results with 1 replica, TTL=15 

Here no content implantation step is performed by the owner node and no informa-
tion is cached throughout the network during the search process. We can observe that 
the percolation search mechanism is however effective but it really converges only 
when percolation probability approaches to 0.4 and an unacceptably high number of 
nodes and edges are traversed to reach the needed content. In fact the hit ratio and the 
traversed edges/nodes trends grow together almost linearly with the percolation prob-
ability. Next we also considered another relevant issue: what would be the improvement 
in performance if multiple high degree nodes in the network had the same content so 
that the above percolation paradigm may be really effective. Accordingly as a part of the 
percolation search algorithm, we execute both the initial content implantation and the 
following caching steps that make sure that any subsequent query step would find any 
content with probability approaching one. Figure 5 below shows the case where 10 
replicas of any content are randomly spread in the network. We can note that, in pres-
ence of a sufficient number of replicated contents, also a slight increment in percolation 
probability improves the hit rate exponentially until it rapidly reaches 100%. 
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Fig. 5. Simulation results with 10 replicas, TTL=15 

7   Conclusion 

This work focuses on searching for replicated objects (files, resources, etc.) in fully 
decentralized P2P grids, i.e., where a (large) set of peers, can exchange information in 
absence of any central service. Accordingly we propose a scalable search model for 
such totally unstructured grids based on a known algorithm that uses random-walks 
and bond percolation on random graphs with heavy-tailed degree distributions to 
provide access to any content on any node with probability one. We analyzed the 
validity of our model and examined its dynamics through simulations. We can con-
clude that our proposal can be effective in both reducing the total amount of que-
ries/checks and ensuring an high success rate, which means we can provide a robust 
and effective search platform for emerging P2P grid infrastructures. 
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