

T. Doulamis et al.: (Eds.): GridNets 2009, LNICST 25, pp. 131–138, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Implementation of Random Linear Network Coding
Using NVIDIA's CUDA Toolkit

Péter Vingelmann1 and Frank H.P. Fitzek2

1 Budapest University of Technology and Economics
2 Aalborg University, Department of Electronic Systems

Abstract. In this paper we describe an efficient GPU-based implementation of
random linear network coding using NVIDIA's CUDA toolkit. The imple-
mentation takes advantage of the highly parallel nature of modern GPUs. The
paper reports speed ups of 500% for encoding and 90% for decoding in com-
parison with a standard CPU-based implementation.

Keywords: Random Linear Network Coding, GPGPU, CUDA, parallelization.

1 Introduction and Motivation

Network coding is a relatively new research area, as the concept was just introduced
in 2000 by Ahlswede, Cai, Li, and Yeung [1]. A large number of research works have
been carried out looking into the different aspects of network coding and its potential
applications in practical networking systems [7], [9], [10]. The authors in [3] provide
an excellent summary of network coding. A brief definition of linear network coding
could be: intermediate nodes in a packet network may send out packets that are linear
combinations of previously received information.

This approach may provide the following benefits: i.) improved throughput, ii.)
high degree of robustness, iii.) lower complexity and iv.) improved security.

As any other coding scheme, network coding can be used to deal with losses. In
addition to that, network coding offers the possibility to recode packets at any inter-
mediate node in the network. Traditional coding schemes only work end-to-end, so
this is a unique feature of network coding which can be of great help whenever packet
flows are intersecting as in fixed or meshed wireless networks. The potential advan-
tages of using network coding are discussed in detail in [4], [6].

As stated beforehand the basic concepts of network coding has been shown in
many research works. But only a small number of them considered the actual imple-
mentation of network coding together with complexity and resource constraints. Lin-
ear network coding requires enhanced computational capabilities and additional
memory at the network nodes. The idea would be to utilize cheap computational
power to increase network efficiency, as Moore's law suggests that processing power
is becoming less and less expensive. However, the computational overhead intro-
duced by network coding operations is not negligible and has become an obstacle to
the real deployment of network coding.

132 P. Vingelmann and F.H.P. Fitzek

In our previous paper [12] we suggested to use the Graphics Processing Unit
(GPU) for network coding calculations. We introduced a shader-based solution which
yielded reasonably high throughputs. However, other GPU-based alternatives are also
worth investigating.

The ideal solution would be to use a standard language and framework for GPU
computing which is supported on a wide range of platforms. There exists an open
standard for parallel programming of heterogeneous systems, it is called OpenCL
(Open Computing Language) [5]. It is a framework for writing programs that execute
across heterogeneous platforms consisting of CPUs, GPUs, and other processors. But
right now, OpenCL is nothing more than a specification, since the standard has not
been implemented yet (although both major GPU manufacturers, AMD and NVIDIA,
have decided to fully support OpenCL in the future).

There is another solution which is currently available: NVIDIA offers a general
purpose parallel computing toolkit called Compute Unified Device Architecture
(CUDA) [2]. Although this toolkit can provide a very good performance, it has a
major disadvantage: it only supports the last few generations of NVIDIA GPUs. This
paper will introduce a CUDA-based implementation of Random Linear Network
Coding (RLNC).

This work is organized as follows. Section 2 briefly describes the process of net-
work coding. Section 3 provides an overview of NVIDIA's CUDA toolkit. Section 4
presents our CUDA-based implementation. Section 5 contains some measurement
results, and Section 6 concludes this paper.

2 Concept of Random Linear Network Coding

The process of Network Coding can be divided into two separate parts, the encoder is
responsible for creating coded packets from the original ones and the decoder trans-
forms these packets back to the original format. The data to be sent can be divided
into packets and a certain amount of these packets forms a generation. The whole data
could be divided into several generations. The generation is a series of packets that
are encoded and decoded together.

During encoding, linear combinations of data packets are formed based on random
coefficients. All operations are performed over a Galois Field, in our case this is
GF(28). Let N be the number of packets in a generation, and let L be the size (in bytes)
of a single data packet. Each encoded packet contains a header (L bytes) and a pay-
load (N bytes), the aggregate size is N+L bytes. At least N linearly independent en-
coded packets are necessary to decode all the encoded data at the decoder side. There
is a slight chance that the generated random coefficients are not linearly independent,
thus the decoding needs additional encoded packets to be completed. The decoding
itself can be done using a standard Gaussian elimination.

2.1 The Encoding Mechanism

After reading N number of L sized messages, the encoder is ready to produce encoded
packets for this generation. The original data (LN× bytes) is stored in a matrix of
corresponding dimension (matrix B on Figure 1).

 Implementation of Random Linear Network Coding Using NVIDIA's CUDA Toolkit 133

Random coefficients are also necessary for the encoding process. Each encoded
packet requires N coefficients, i.e. N random bytes. For an entire generation we need

NN× bytes which are also stored in a matrix (matrix C on Figure 1).
The payload of each encoded packet is calculated by multiplying the header as a

vector with the data matrix. This operation can be realized with simple array lookups
and xor operations (as described later). Basically, encoding is a matrix multiplication
performed in the GF domain, as it is depicted on Figure 1.

Fig.1. Encoding process in a matrix form

2.2 The Decoding Mechanism

The decoding algorithm used here is called Gauss-Jordan elimination which is basi-
cally an on-the-fly version of the standard Gaussian elimination. The encoded pack-
ets from the same generation are aggregated together, containing both the header and
the payload part. Upon receiving a coded packet, the received data is being inter-
preted by using the previously received data. The elimination is based on the header
part of the coded packet, but the corresponding operations are also performed on the
payload part. The decoder stores the received, and partially decoded, data in an

()LNN +× sized decoding matrix. After the forward substitution part of the elimi-
nation each packet which carries new information will have a leading column in the
header part with a non-zero pivot element, let's mark this column with K. This row is
then normalized by dividing all of its elements by the leading value. After this
step the new row can be inserted into the decoding matrix to the corresponding row
(row K). The last step is to propagate this row back to the existing non-zero rows.
The algorithm stops when the matrix does not have any empty rows, thence the
header part forms an echelon form, and the payload part contains the decoded data in
order.

134 P. Vingelmann and F.H.P. Fitzek

3 NVIDIA's CUDA Toolkit

State-of-the-art 3D accelerator cards can be used to perform complex calculations,
although they were originally designed to render 3D objects in real-time. A new con-
cept is to use a modified form of a stream processor to allow a General Purpose
Graphics Processing Unit (GPGPU) [8]. This concept turns the massive computa-
tional power of a modern graphics accelerator's shader pipeline into general-purpose
computing power. On recent NVIDIA GPUs, it is possible to develop high-
performance parallel computing applications in the C language, using the Compute
Unified Device Architecture (CUDA) programming model and development tools [2].
GPUs have evolved into highly parallel, multi-threaded, multi-core processors. Unlike
CPUs, which are originally designed for sequential computing, the design of GPUs is
based on the Single Instruction Multiple Data (SIMD) architecture. It means that at
any given clock cycle, multiple processor cores execute the same instruction, but they
can operate on different data. The multiprocessor creates, manages, and executes
concurrent threads in hardware with zero scheduling overhead. This allows a low
granularity decomposition of problems by assigning one thread to each data element
(such as a pixel in an image or a cell in a grid-based computation). The multi-
processor maps each thread to one scalar processor core, and each scalar thread
executes independently with its own instruction address and register state.

In the CUDA model, the GPU is regarded as a data-parallel co-processor to the
CPU. In CUDA terminology, the GPU is called device, whereas the CPU is called
host. The device can only access the memory located on the device itself. A function
executed on the device is called a kernel. A kernel is executed in the Single Program
Multiple Data (SPMD) model, meaning that a user-specified number of threads
execute the same program. Threads are organized into thread blocks which can have
at most 512 threads. Threads belonging to the same thread block can share data
through shared memory and can perform barrier synchronization. Furthermore, thread
blocks can be organized into a grid. It is not possible to synchronize blocks within a
grid. Thread blocks are required to execute independently: It must be possible to
execute them in any order, in parallel or in series. This independence requirement
allows thread blocks to be scheduled in any order across any number of cores,
enabling programmers to write scalable code. The number of thread blocks in a grid is
typically dictated by the size of the data being processed rather than by the number of
processors in the system, which it can greatly exceed. The basic scheduling unit in
CUDA is called warp, which is formed by 32 parallel threads. A multiprocessor unit
is only fully utilized if all 32 threads in the warp have the same execution path. If the
threads in a warp have different execution paths due to conditional branching, the
instructions will be serialized, resulting in long processing time. Threads should be
carefully organized to achieve maximum performance.

4 Implementation

The fundamental question is how to realize the Galois Field arithmetics in CUDA. If
the field size is a power of 2, then addition and subtraction in the Galois Field are
identical with the exclusive OR (XOR) operation, and this can be performed natively

 Implementation of Random Linear Network Coding Using NVIDIA's CUDA Toolkit 135

on the GPU. On the other hand, multiplication and division are more complicated
over GF(28). These operations can be performed procedurally using a loop-based
approach. However, it would not be efficient to compute the results every single time,
a lot of clock cycles would be wasted this way. The other solution is to pre-calculate
the results and store them in tables. The field size is 28=256, so the multiplication and
division tables occupy 256x256 bytes = 65 kB each. These tables can be stored in
graphics memory, and they can be bound to CUDA texture references to facilitate fast
array look-ups. Two-dimensional texture coordinates are used to pinpoint a specific
texture element which is the result of the multiplication or division.

4.1 Encoding

The encoding process can be considered as a highly parallel computation problem,
because it essentially consists of a matrix multiplication in the GF domain. A parallel
implementation is possible with little or no communication and synchronization
among threads. Encoding of multiple coded packets - and even different sections of
the same coded packet - can proceed in parallel by using a large number of threads. In
CUDA, the GPU can only access the graphics memory, so all the coefficients and
original packets have to be transferred from the host to the graphics memory first.
Similarly, encoding results residing in graphics memory need to be transferred back to
system memory. This imposes an additional overhead, but fortunately CUDA
provides very efficient memory management functions.

The most essential design question here is how to partition the encoding task
among the threads. We could launch one thread per coded packet (i.e. N threads for a
generation), but this approach is simply not parallel enough. We can achieve higher
performance with a much finer granularity, with each GPU thread encoding only a
single byte of the coded packet, rather than working on an entire packet. This way

LN × threads are necessary for encoding a whole generation. Performance improves
significantly because GPUs are designed to create, manage, and execute concurrent
threads with (almost) zero scheduling overhead.

The next measure towards further optimization is to process original packet data in
4-byte chunks, rather than byte–by–byte. Thereby we can reduce the number of
memory accesses on the GPU. Each thread is responsible for computing a 4-byte
chunk (i.e. a 32-bit integer) of the resulting encoded packets. Thus, we need 4/LN ×
threads for a whole generation. The CUDA-based encoding implementation uses
random coefficients generated by the CPU, and transferred to the graphics memory
before the start of the encoding process. Using this approach it is possible to compare
the CUDA computation results with the reference results computed by an equivalent
CPU-based implementation.

4.2 Decoding

The decoding process has a higher computational complexity than encoding. This
leads to a reduced decoding performance in general. The efficient parallelization of
the decoding process is a real challenge in CUDA. The fundamental problem with the
Gauss-Jordan elimination is that the decoding of each coded packet can only start
after the decoding of the previous coded packets has finished, i.e. it is essentially a

136 P. Vingelmann and F.H.P. Fitzek

sequential algorithm. Parallelization is only possible within the decoding of the
current coded packet, and not across the whole generation as with the encoding
process. The GPU needs to run thousands of threads to be able to achieve its peak
performance, consequently the performance gain of GPU-based decoding is limited.

We receive each coded packet along with its associated coefficients (i.e. the
encoding vector) and decode it partially. After receiving and decoding the N linearly
independent coded packets, the decoding process completes and all the original
packets are recovered.

For every new coded packet, we can partition the aggregate N+L coefficients and
data, such that each byte of the aggregate data is assigned to a thread, leading to a
total of N+L threads. Each thread reduces the leading coefficients of the new coded
packet through a number of linear combinations. We multiply the previously decoded
packets so that their leading coefficient matches the corresponding coefficient in the
newly arrived coded packet. This way we can reduce a few of its coefficients to zeros.
This multiplication-based approach can be parallelized, because we can reduce each
coefficient using only the initial values of the other coefficients.

After completing this reduction step, a global search for the first non-zero
coefficient becomes necessary. It is most likely that the position of this pivot element
will match the current rank of the decoding matrix, but we cannot be sure about this.
Running this global search is a major issue, since CUDA’s synchronization construct
only works for threads within a single thread block (max. 256 threads), and not
among all GPU threads, therefore we are forced to perform this synchronization at the
CPU side. This effectively breaks the decoding process into two separate CUDA
kernels. Of course, if we want to develop a fully GPU-based solution for decoding,
we could omit the CPU-side synchronization by introducing a new CUDA kernel for
finding the pivot element. But it could run in only one thread, so there is no real
benefit in doing this. Also note that launching another kernel means additional
overhead, i.e. lower performance.

After finding the first non-zero coefficient at the CPU side, we launch another
CUDA kernel to perform the remaining decoding operations, i.e. the backward
substitution. But if we cannot find the pivot element (i.e. all coefficients were reduced
to zeros), then the packet was linearly dependent, hence it is not necessary to launch
this second kernel. The backward substitution part can be easily parallelized: we can
assign a thread to each affected element of the decoding matrix (we should consider
only the non-zero rows). This approach leads to a total of ()LNN +× threads when

we process the very last packet of a generation, otherwise this number can be lower.
The first task of this second kernel is to normalize the reduced packet, and

subsequently insert it into the decoding matrix. If the actual thread's index points to
the correct row, the thread simply inserts the normalized data to that position.
Otherwise, it has to perform a linear combination: we multiply the normalized packet
with the coefficient at the pivot position in the current row, then this row is xored with
this product. Note that each GPU thread affects only one byte of the decoding matrix.
Extra care must be taken when we manipulate the coefficients at the pivot position in
each row. Because the relative execution order of threads is not known, the initial
values of these coefficients (i.e. one column of the decoding matrix) must be saved
into a separate array. Thereby we can guarantee correct computation results.

 Implementation of Random Linear Network Coding Using NVIDIA's CUDA Toolkit 137

5 Results

The following measurements are done on different GPUs with different generation
sizes (N). The packet size is always equal to 1024 (L=1024). The following numbers
indicate the measured throughput values in megabytes/seconds for encoding and de-
coding separately. Note that these are rounded averages of several measurements.

Fig. 2. Measurements performed on NVIDIA GeForce 9600GT and 9200M GS graphics cards

Note that the GeForce 9600GT can be considered a middle-class GPU, and the
9200M GS belongs to the low class. If we compare the results with the other imple-
mentations presented in our previous paper [12], then we may notice the significantly
higher encoding throughputs. In some cases the CUDA implementation outperforms
the CPU implementation by an order of magnitude, and it is twice as fast as the
shader-based solution. The encoding algorithm is relatively simple, thereby its CUDA
implementation can be considered straightforward, and we can obtain near-optimal
encoding performance. On the other hand, the decoding throughput values are not
significantly higher than those of the shader-based solution. This indicates that the
current implementation is sub-optimal, so finding an optimal decoding solution for
the GPU remains an open question for the future.

6 Conclusion

We introduced a CUDA-based implementation of Random Linear Network Coding
which yields reasonably high throughput values. In fact, the numbers look promising
compared to our previous implementations. We intend to port one of our GPU-based
implementations onto mobile devices as soon as possible. At the moment, the GPUs
on these devices lack certain capabilities required to run our application.

138 P. Vingelmann and F.H.P. Fitzek

From a theoretical point of view, there is another interesting idea which might lead
to simpler (and faster) implementations. The authors in [11] suggest that it might be
beneficial to use a smaller Galois Field such as GF(2), despite the fact that the prob-
ability of generating linearly dependent packets increases significantly. On the other
hand, the computational complexity decreases dramatically. Combining this idea with
a GPU-based implementation can lead to very high throughput values in the future.

References

1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans-
actions on Information Theory 46(4), 1204–1216 (2000)

2. NVIDIA Corporation. NVIDIA CUDA: Programming Guide, Version 2.0 (July 2008)
3. Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network coding: an instant primer. SIG-

COMM Comput. Commun. Rev. 36(1), 63–68 (2006)
4. Fragouli, C., Soljanin, E.: Network Coding Applications. Now Publishers Inc. (January

2008)
5. Khronos Group. OpenCL - The open standard for parallel programming of heterogeneous

systems (February 2009)
6. Ho, T., Lun, D.: Network Coding: An Introduction. Cambridge University Press, Cam-

bridge (2008)
7. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: Xors in the air: practi-

cal wireless network coding. SIGCOMM Comput. Commun. Rev. 36(4), 243–254 (2006)
8. Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley, C., Le-

fohn, A.: GPGPU: general purpose computation on graphics hardware. In: SIGGRAPH
2004: ACM SIGGRAPH 2004 Course Notes. ACM Press, New York (2004)

9. Matsumoto, R.: Construction algorithm for network error-correcting codes attaining the
singleton bound E 90-A(9), 1729 (2007)

10. Park, J.-S., Gerla, M., Lun, D.S., Yi, Y., Medard, M.: Codecast: a network-coding-based
ad hoc multicast protocol. IEEE Wireless Communications 13(5), 76–81 (2006)

11. Heide, J., Pedersen, M.V., Fitzek, F.H.P.: Torben Larsen: Network Coding for Mobile De-
vices – Systematic Binary Random Rateless Codes. In: The IEEE International Conference
on Communications (ICC), Dresden, Germany, June 14-18 (2009)

12. Vingelmann, P., Zanaty, P., Fitzek, F.H.P., Charaf, H.: Implementation of Random Linear
Network Coding on OpenGL-enabled Graphics Cards. In: European Wireless 2009, Aal-
borg, Denmark, May 17-20, pp. 118–123 (2009)

	Implementation of Random Linear Network Coding Using NVIDIA's CUDA Toolkit
	Introduction and Motivation
	Concept of Random Linear Network Coding
	The Encoding Mechanism
	The Decoding Mechanism

	NVIDIA's CUDA Toolkit
	Implementation
	Encoding
	Decoding

	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

