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Abstract. In this paper we describe an efficient GPU-based implementation of 
random linear network coding using NVIDIA's CUDA toolkit. The imple-
mentation takes advantage of the highly parallel nature of modern GPUs. The 
paper reports speed ups of 500% for encoding and 90% for decoding in com-
parison with a standard CPU-based implementation. 
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1   Introduction and Motivation 

Network coding is a relatively new research area, as the concept was just introduced 
in 2000 by Ahlswede, Cai, Li, and Yeung [1]. A large number of research works have 
been carried out looking into the different aspects of network coding and its potential 
applications in practical networking systems [7], [9], [10]. The authors in [3] provide 
an excellent summary of network coding. A brief definition of linear network coding 
could be: intermediate nodes in a packet network may send out packets that are linear 
combinations of previously received information. 

This approach may provide the following benefits: i.) improved throughput, ii.) 
high degree of robustness, iii.) lower complexity and iv.) improved security.  

As any other coding scheme, network coding can be used to deal with losses. In 
addition to that, network coding offers the possibility to recode packets at any inter-
mediate node in the network. Traditional coding schemes only work end-to-end, so 
this is a unique feature of network coding which can be of great help whenever packet 
flows are intersecting as in fixed or meshed wireless networks. The potential advan-
tages of using network coding are discussed in detail in [4], [6]. 

As stated beforehand the basic concepts of network coding has been shown in 
many research works. But only a small number of them considered the actual imple-
mentation of network coding together with complexity and resource constraints. Lin-
ear network coding requires enhanced computational capabilities and additional 
memory at the network nodes. The idea would be to utilize cheap computational 
power to increase network efficiency, as Moore's law suggests that processing power 
is becoming less and less expensive. However, the computational overhead intro-
duced by network coding operations is not negligible and has become an obstacle to 
the real deployment of network coding. 
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In our previous paper [12] we suggested to use the Graphics Processing Unit 
(GPU) for network coding calculations. We introduced a shader-based solution which 
yielded reasonably high throughputs. However, other GPU-based alternatives are also 
worth investigating. 

The ideal solution would be to use a standard language and framework for GPU 
computing which is supported on a wide range of platforms. There exists an open 
standard for parallel programming of heterogeneous systems, it is called OpenCL 
(Open Computing Language) [5]. It is a framework for writing programs that execute 
across heterogeneous platforms consisting of CPUs, GPUs, and other processors. But 
right now, OpenCL is nothing more than a specification, since the standard has not 
been implemented yet (although both major GPU manufacturers, AMD and NVIDIA, 
have decided to fully support OpenCL in the future). 

There is another solution which is currently available: NVIDIA offers a general 
purpose parallel computing toolkit called Compute Unified Device Architecture 
(CUDA) [2]. Although this toolkit can provide a very good performance, it has a 
major disadvantage: it only supports the last few generations of NVIDIA GPUs. This 
paper will introduce a CUDA-based implementation of Random Linear Network 
Coding (RLNC). 

This work is organized as follows. Section 2 briefly describes the process of net-
work coding. Section 3 provides an overview of NVIDIA's CUDA toolkit. Section 4 
presents our CUDA-based implementation. Section 5 contains some measurement 
results, and Section 6 concludes this paper. 

2   Concept of Random Linear Network Coding 

The process of Network Coding can be divided into two separate parts, the encoder is 
responsible for creating coded packets from the original ones and the decoder trans-
forms these packets back to the original format. The data to be sent can be divided 
into packets and a certain amount of these packets forms a generation. The whole data 
could be divided into several generations. The generation is a series of packets that 
are encoded and decoded together. 

During encoding, linear combinations of data packets are formed based on random 
coefficients. All operations are performed over a Galois Field, in our case this is 
GF(28). Let N be the number of packets in a generation, and let L be the size (in bytes) 
of a single data packet. Each encoded packet contains a header (L bytes) and a pay-
load (N bytes), the aggregate size is N+L bytes. At least N linearly independent en-
coded packets are necessary to decode all the encoded data at the decoder side. There 
is a slight chance that the generated random coefficients are not linearly independent, 
thus the decoding needs additional encoded packets to be completed. The decoding 
itself can be done using a standard Gaussian elimination. 

2.1   The Encoding Mechanism   

After reading N number of L sized messages, the encoder is ready to produce encoded 
packets for this generation. The original data ( LN×  bytes) is stored in a matrix of 
corresponding dimension (matrix B on Figure 1). 
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Random coefficients are also necessary for the encoding process. Each encoded 
packet requires N coefficients, i.e. N random bytes. For an entire generation we need 

NN×  bytes which are also stored in a matrix (matrix C on Figure 1). 
The payload of each encoded packet is calculated by multiplying the header as a 

vector with the data matrix. This operation can be realized with simple array lookups 
and xor operations (as described later). Basically, encoding is a matrix multiplication 
performed in the GF domain, as it is depicted on Figure 1. 

 
Fig.1. Encoding process in a matrix form 

2.2   The Decoding Mechanism   

The decoding algorithm used here is called Gauss-Jordan elimination which is basi-
cally an on-the-fly version of the standard Gaussian elimination. The encoded pack-
ets from the same generation are aggregated together, containing both the header and 
the payload part. Upon receiving a coded packet, the received data is being inter-
preted by using the previously received data. The elimination is based on the header 
part of the coded packet, but the corresponding operations are also performed on the 
payload part. The decoder stores the received, and partially decoded, data in an 

( )LNN +×  sized decoding matrix. After the forward substitution part of the elimi-
nation each packet which carries new information will have a leading column in the 
header part with a non-zero pivot element, let's mark this column with K. This row is 
then normalized by dividing all of its elements by the leading value. After this  
step the new row can be inserted into the decoding matrix to the corresponding row 
(row K). The last step is to propagate this row back to the existing non-zero rows. 
The algorithm stops when the matrix does not have any empty rows, thence the 
header part forms an echelon form, and the payload part contains the decoded data in 
order. 
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3   NVIDIA's CUDA Toolkit 

State-of-the-art 3D accelerator cards can be used to perform complex calculations, 
although they were originally designed to render 3D objects in real-time. A new con-
cept is to use a modified form of a stream processor to allow a General Purpose 
Graphics Processing Unit (GPGPU) [8]. This concept turns the massive computa-
tional power of a modern graphics accelerator's shader pipeline into general-purpose 
computing power. On recent NVIDIA GPUs, it is possible to develop high-
performance parallel computing applications in the C language, using the Compute 
Unified Device Architecture (CUDA) programming model and development tools [2]. 
GPUs have evolved into highly parallel, multi-threaded, multi-core processors. Unlike 
CPUs, which are originally designed for sequential computing, the design of GPUs is 
based on the Single Instruction Multiple Data (SIMD) architecture. It means that at 
any given clock cycle, multiple processor cores execute the same instruction, but they 
can operate on different data. The multiprocessor creates, manages, and executes 
concurrent threads in hardware with zero scheduling overhead. This allows a low 
granularity decomposition of problems by assigning one thread to each data element 
(such as a pixel in an image or a cell in a grid-based computation). The multi-
processor maps each thread to one scalar processor core, and each scalar thread 
executes independently with its own instruction address and register state. 

In the CUDA model, the GPU is regarded as a data-parallel co-processor to the 
CPU. In CUDA terminology, the GPU is called device, whereas the CPU is called 
host. The device can only access the memory located on the device itself. A function 
executed on the device is called a kernel. A kernel is executed in the Single Program 
Multiple Data (SPMD) model, meaning that a user-specified number of threads 
execute the same program. Threads are organized into thread blocks which can have 
at most 512 threads. Threads belonging to the same thread block can share data 
through shared memory and can perform barrier synchronization. Furthermore, thread 
blocks can be organized into a grid. It is not possible to synchronize blocks within a 
grid. Thread blocks are required to execute independently: It must be possible to 
execute them in any order, in parallel or in series. This independence requirement 
allows thread blocks to be scheduled in any order across any number of cores, 
enabling programmers to write scalable code. The number of thread blocks in a grid is 
typically dictated by the size of the data being processed rather than by the number of 
processors in the system, which it can greatly exceed. The basic scheduling unit in 
CUDA is called warp, which is formed by 32 parallel threads. A multiprocessor unit 
is only fully utilized if all 32 threads in the warp have the same execution path. If the 
threads in a warp have different execution paths due to conditional branching, the 
instructions will be serialized, resulting in long processing time. Threads should be 
carefully organized to achieve maximum performance. 

4   Implementation 

The fundamental question is how to realize the Galois Field arithmetics in CUDA. If 
the field size is a power of 2, then addition and subtraction in the Galois Field are 
identical with the exclusive OR (XOR) operation, and this can be performed natively 
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on the GPU. On the other hand, multiplication and division are more complicated 
over GF(28). These operations can be performed procedurally using a loop-based 
approach. However, it would not be efficient to compute the results every single time, 
a lot of clock cycles would be wasted this way. The other solution is to pre-calculate 
the results and store them in tables. The field size is 28=256, so the multiplication and 
division tables occupy 256x256 bytes = 65 kB each. These tables can be stored in 
graphics memory, and they can be bound to CUDA texture references to facilitate fast 
array look-ups. Two-dimensional texture coordinates are used to pinpoint a specific 
texture element which is the result of the multiplication or division. 

4.1   Encoding  

The encoding process can be considered as a highly parallel computation problem, 
because it essentially consists of a matrix multiplication in the GF domain. A parallel 
implementation is possible with little or no communication and synchronization 
among threads. Encoding of multiple coded packets - and even different sections of 
the same coded packet - can proceed in parallel by using a large number of threads. In 
CUDA, the GPU can only access the graphics memory, so all the coefficients and 
original packets have to be transferred from the host to the graphics memory first. 
Similarly, encoding results residing in graphics memory need to be transferred back to 
system memory. This imposes an additional overhead, but fortunately CUDA 
provides very efficient memory management functions. 

The most essential design question here is how to partition the encoding task 
among the threads. We could launch one thread per coded packet (i.e. N threads for a 
generation), but this approach is simply not parallel enough. We can achieve higher 
performance with a much finer granularity, with each GPU thread encoding only a 
single byte of the coded packet, rather than working on an entire packet. This way 

LN ×  threads are necessary for encoding a whole generation. Performance improves 
significantly because GPUs are designed to create, manage, and execute concurrent 
threads with (almost) zero scheduling overhead.  

The next measure towards further optimization is to process original packet data in 
4-byte chunks, rather than byte–by–byte. Thereby we can reduce the number of 
memory accesses on the GPU. Each thread is responsible for computing a 4-byte 
chunk (i.e. a 32-bit integer) of the resulting encoded packets. Thus, we need 4/LN ×  
threads for a whole generation. The CUDA-based encoding implementation uses 
random coefficients generated by the CPU, and transferred to the graphics memory 
before the start of the encoding process. Using this approach it is possible to compare 
the CUDA computation results with the reference results computed by an equivalent 
CPU-based implementation. 

4.2   Decoding 

The decoding process has a higher computational complexity than encoding. This 
leads to a reduced decoding performance in general. The efficient parallelization of 
the decoding process is a real challenge in CUDA. The fundamental problem with the 
Gauss-Jordan elimination is that the decoding of each coded packet can only start 
after the decoding of the previous coded packets has finished, i.e. it is essentially a 
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sequential algorithm. Parallelization is only possible within the decoding of the 
current coded packet, and not across the whole generation as with the encoding 
process. The GPU needs to run thousands of threads to be able to achieve its peak 
performance, consequently the performance gain of GPU-based decoding is limited. 

We receive each coded packet along with its associated coefficients (i.e. the 
encoding vector) and decode it partially. After receiving and decoding the N linearly 
independent coded packets, the decoding process completes and all the original 
packets are recovered. 

For every new coded packet, we can partition the aggregate N+L coefficients and 
data, such that each byte of the aggregate data is assigned to a thread, leading to a 
total of N+L threads. Each thread reduces the leading coefficients of the new coded 
packet through a number of linear combinations. We multiply the previously decoded 
packets so that their leading coefficient matches the corresponding coefficient in the 
newly arrived coded packet. This way we can reduce a few of its coefficients to zeros. 
This multiplication-based approach can be parallelized, because we can reduce each 
coefficient using only the initial values of the other coefficients. 

After completing this reduction step, a global search for the first non-zero 
coefficient becomes necessary. It is most likely that the position of this pivot element 
will match the current rank of the decoding matrix, but we cannot be sure about this. 
Running this global search is a major issue, since CUDA’s synchronization construct 
only works for threads within a single thread block (max. 256 threads), and not 
among all GPU threads, therefore we are forced to perform this synchronization at the 
CPU side. This effectively breaks the decoding process into two separate CUDA 
kernels.  Of course, if we want to develop a fully GPU-based solution for decoding, 
we could omit the CPU-side synchronization by introducing a new CUDA kernel for 
finding the pivot element. But it could run in only one thread, so there is no real 
benefit in doing this. Also note that launching another kernel means additional 
overhead, i.e. lower performance. 

After finding the first non-zero coefficient at the CPU side, we launch another 
CUDA kernel to perform the remaining decoding operations, i.e. the backward 
substitution. But if we cannot find the pivot element (i.e. all coefficients were reduced 
to zeros), then the packet was linearly dependent, hence it is not necessary to launch 
this second kernel. The backward substitution part can be easily parallelized: we can 
assign a thread to each affected element of the decoding matrix (we should consider 
only the non-zero rows). This approach leads to a total of ( )LNN +×  threads when 

we process the very last packet of a generation, otherwise this number can be lower. 
The first task of this second kernel is to normalize the reduced packet, and 

subsequently insert it into the decoding matrix. If the actual thread's index points to 
the correct row, the thread simply inserts the normalized data to that position. 
Otherwise, it has to perform a linear combination: we multiply the normalized packet 
with the coefficient at the pivot position in the current row, then this row is xored with 
this product. Note that each GPU thread affects only one byte of the decoding matrix. 
Extra care must be taken when we manipulate the coefficients at the pivot position in 
each row. Because the relative execution order of threads is not known, the initial 
values of these coefficients (i.e. one column of the decoding matrix) must be saved 
into a separate array. Thereby we can guarantee correct computation results. 
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5   Results 

The following measurements are done on different GPUs with different generation 
sizes (N). The packet size is always equal to 1024 (L=1024). The following numbers 
indicate the measured throughput values in megabytes/seconds for encoding and de-
coding separately. Note that these are rounded averages of several measurements. 

 

 

Fig. 2. Measurements performed on NVIDIA GeForce 9600GT and 9200M GS graphics cards 

Note that the GeForce 9600GT can be considered a middle-class GPU, and the 
9200M GS belongs to the low class. If we compare the results with the other imple-
mentations presented in our previous paper [12], then we may notice the significantly 
higher encoding throughputs. In some cases the CUDA implementation outperforms 
the CPU implementation by an order of magnitude, and it is twice as fast as the 
shader-based solution. The encoding algorithm is relatively simple, thereby its CUDA 
implementation can be considered straightforward, and we can obtain near-optimal 
encoding performance. On the other hand, the decoding throughput values are not 
significantly higher than those of the shader-based solution. This indicates that the 
current implementation is sub-optimal, so finding an optimal decoding solution for 
the GPU remains an open question for the future. 

6   Conclusion 

We introduced a CUDA-based implementation of Random Linear Network Coding 
which yields reasonably high throughput values. In fact, the numbers look promising 
compared to our previous implementations. We intend to port one of our GPU-based 
implementations onto mobile devices as soon as possible. At the moment, the GPUs 
on these devices lack certain capabilities required to run our application. 
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From a theoretical point of view, there is another interesting idea which might lead 
to simpler (and faster) implementations. The authors in [11] suggest that it might be 
beneficial to use a smaller Galois Field such as GF(2), despite the fact that the prob-
ability of generating linearly dependent packets increases significantly. On the other 
hand, the computational complexity decreases dramatically. Combining this idea with 
a GPU-based implementation can lead to very high throughput values in the future. 
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