

J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 825–840, 2010.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

An Area-Based Overlay Architecture for Scalable
Integration of Sensor Networks

Lampros Pappas1 and Spyros Lalis1,2

1 Center for Research & Technology Thessaly
Technology Park of Thessaly

1st Industrial Area, 38500, Volos, Greece
lampros.pappas@gmail.com

2 Dept. Computer & Communication Eng.
University of Thessaly

Glavani 37, 38221 Volos, Greece
lalis@inf.uth.gr

Abstract. With many different sensor networks being deployed, there will be
an increased need to facilitate their uniform and efficient access at a large,
perhaps even global, scale. To this end, we present an overlay-based
architecture for organizing and querying multiple sensor networks based on
their geographical area. The nodes of the system, representing query processors
and individual sensor network gateways, are organized in a hierarchy which is
used for query forwarding and result delivery. The key features of our system
are: (i) support for the dynamic addition and removal of query processors and
sensor network gateways; (ii) automatic hierarchy construction and awareness
of sensing capabilities based on explicit metadata information; and (iii) efficient
query multiplexing and result de-multiplexing within the overlay. We present a
first evaluation of the proposed architecture. Results indicate that our design
considerably reduces the communication between the nodes of the overlay as
well as the actual sensing load at the edges (sensor networks) of the system.

1 Introduction

In the last years many wireless sensor networking platforms have been developed and
deployed for various purposes, such as weather condition probing, smart agriculture,
pollution measurement, surveillance of areas, and health monitoring. As sensing and
sensor networking technology becomes more mature, numerous such installations will
emerge in different places. One can imagine a couple of sensor networks deployed in
each block, tens or hundreds in a medium-sized city, up to thousands in a region, not
to mention an entire state or country.

Each sensor network will probably be deployed for a specific application in mind,
and probably be operated by a different authority. Nevertheless, it could turn out to be
useful for a wider (open) group of applications; some of them may be conceived long
after the sensor network is deployed. It could be in fact very beneficial to let clients
access multiple individual sensor networks in a transparent fashion. In this case, the

826 L. Pappas and S. Lalis

seamless integration of distinct sensor networks and their unified access, at a large
scale, is of major importance. Providers should be able to make the deployed sensor
networks available to others, if desired, in a straightforward way. Clients wishing to
retrieve sensor data for a given domain should be able to do this without being aware
of every possible subsystem or having to deal with its internals.

To this end, this paper presents an overlay-based architecture for integrating a large
number of sensor networks that cover different geographical areas in a unified
infrastructure which can be efficiently queried from any computing device with
Internet connectivity. Each one of the available sensor networks is represented by a
gateway node which is responsible for intercepting queries, forwarding them to the
actual sensor network, and sending back the results. Individual sensor networks can
join and leave in a dynamic fashion, without disrupting the operation of the
infrastructure. The system self-organizes itself into a hierarchy according to the area
and sensing metadata of each node. Special focus is on supporting long-lived queries
with wide area coverage, by transparently distributing and (de)multiplexing queries
and results, taking into account the available sensor networks and sensing capabilities.

The rest of the paper is structured as follows. Section 2 gives an overview of
related work. Section 3, 4 and 5 presents the system architecture, the formation
process of the hierarchical peer overlay, and the management of queries, respectively.
Section 6 provides a first evaluation of the proposed design via simulations. Finally,
Section 7 concludes the paper.

2 Related Work

Several gateway systems have been proposed for making sensor devices and systems
accessible through the Internet. VIPBridge [1] is a platform through which users can
send queries to many, distinctive sensor networks. The idea is to map each sensor to a
unique IPv6 address via a bridge-component that is aware of the number and type of
available sensors. Every time an application needs data (or meta-data) from a sensor,
the respective query is sent at the IP level; it is then received by the bridge which
transforms it and forwards it to the target sensor through the proper (legacy) protocol.
The results produced by sensor devices follow the reverse route. VIPBridge and other
similar projects [2, 3, 4, 5] focus on the ability to access individual sensor nodes or an
entire sensor network in a transparent way, but do not provide sufficient support for
the scalable integration and querying of many different sensor networks.

A more advanced approach is presented [6] where services from different sensor
networks can be accessed and combined via JXTA [7]. Specifically, JXTA is used to
form a network of P2P nodes which act as a bridge for a specific sensor network,
declaring the corresponding attributes in a JXTA advertisement. Sensor data is
exchanged, merged and filtered amongst the nodes through JXTA messages. Client
applications access the available sensing services through a UPnP [8] Gateway (a
UPnP proxy is created for each service). Location-based queries are supported, but
the organization of the P2P overlay is not driven by their location. Node discovery
and message routing are conducted by the JXTA middleware in a location-agnostic
way, thus it is not possible to forward/merge queries and reuse results based on the
actual physical location of the sensor networks that participate in the system.

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 827

Recently, there are efforts for integrating sensors into grid computing applications
[9], mainly focusing on making special equipment remotely available. SPRING [10]
integrates wireless sensor networks with grid computing by using proxies as
interfaces between the sensor networks and the grid, but does not address the issue of
scalability and transparent access for a large number of individual sensor networks. In
general, grid-related work is concerned with the efficient processing of large amounts
of sensor data, regardless of the geographical area they were produced.

Microsoft’s SenseWeb [11] is a platform that features mechanisms for storing
sensor data, processing queries, aggregating and presenting results through easy-to-
use web-interfaces. The system consists of four main components: the GeoDB sensor
index, the DataHub data publishing toolkit, the IconD aggregator and the client-side
GUI. GeoDB is a geographically indexed database for sensor metadata descriptions.
DataHub is the gateway component for a concrete sensor subsystem, providing
metadata to the GeoDB database as well as the actual sensor data in response to user
queries. User queries are issued through a web-page [12] to IconD, the system’s query
processor and aggregator. Given a query’s attributes, IconD queries GeoDB for sensor
metadata and then the appropriate DataHub services to get the actual sensor data.
When this becomes available, IconD properly aggregates it to create the result, which
is finally displayed at the client interface. However, SenseWeb gathers and aggregates
data centrally differing from the architecture we propose that provides distributed
query dissemination and data gathering.

The HiFi [13] project aims in the collection, aggregation and filtering of data
produced by large fan-in systems. The proposed architecture can be used in scenarios
where organizations with hierarchical structure need to process large amounts of data
produced in their edges. The major HiFi components are the Meta Data Repository, a
globally accessible registry, the Data Stream Processor which is responsible for the
data stream processing on each node (and may be implemented using any stream
processing technology - TelegraphCQ stream query processor [14] is used in the first
system prototype), and the HiFi Glue, which runs on each node and seamlessly binds
it to the rest of the system. A prototype has been implemented based on the TinyDB
sensor database system [15].

IrisNet [16] is a distributed architecture enabling convenient deployment of wide
area sensing services, collecting data from heterogeneous sensor networks. IrisNet
comprises of so-called sensing agents (SAs) and organizing agents (OAs). All agents
run on Internet-connected PCs. Each SA is connected to one or more sensing devices
and provides a common runtime environment for the running services, to share and
filter the sensors’ data. SAs are easily programmable, making possible to install
simple code for filtering or storing sensor data and to add support for special
hardware. Each OA holds a database, storing sensor data from various SAs in XML
format. In turn, OAs are organized in groups and combine their local database into a
distributed one, dedicated to a specific service. A location-based hierarchy is used to
efficiently access the group’s database, also supporting data replication and migration.
Client queries are processed via XPath and other XML technologies.

The Global Sensor Networks (GSN) project [17] introduces a middleware which
supports flexible integration and discovery of sensor networks and provides
distributed querying, aggregation and combination of sensor data. The key entity in
GSN is the so-called virtual sensor which abstracts a data stream coming from an

828 L. Pappas and S. Lalis

actual sensor or other virtual sensors. Sensor network owners create virtual sensor
descriptions (in the form of key-value pairs) and publish them to a directory so that
virtual sensors can be discovered and contacted based on any combination of their
properties, for example, geographical location or sensor type. GSN nodes are
organized in a peer-to-peer network targeting greater scalability.

Hourglass [18] also addresses the need for rapid development and deployment of
applications that consume data from multiple, heterogeneous sensor networks. The
concept of a so-called circuit is used to link a set of data producers, a data consumer,
and in-network services into a data flow. Control messages are used to set up the
sensor data channels that travel over multiple services. Data provision, consumption
and processing is abstracted in the form of services, which must be implemented to
support a minimum functionality in terms of registration and circuit management.

Our work shares some of the design features of Hifi, IrisNet, GSN and Hourglass,
which also introduce peer to peer architectures for distributed collection and
aggregation of data from different sensor networks. However, although these systems
do support location-based queries, the node hierarchy is either not related to location
or is statically defined a priori. On the contrary, our system allows the node hierarchy
to be formed dynamically as a function of the location information provided by each
subsystem, and adapts query processing in order to exploit newly appearing sensor
networks, also for already running queries. We discuss the differences between these
projects and the system we propose in Section 6.

3 System Overview

We have developed a prototype system that enables the straightforward integration of
several different sensing subsystems covering different areas, in order to support
applications that wish to continuously receive sensor values for a wide area and a long
period of time. This section gives an overview of the system, focusing on the main
design aspects and describing the core elements as well as the interaction between
client applications and the system.

3.1 System Elements

The core elements of the system, implemented in Java, are: (i) the Registry; (ii) the
Query Processor (QP); (iii) the Sensor Network Gateway (SNG); and (iv) the Client
Front-End (CFE). An indicative system configuration is shown in Figure 1.

The Registry manages the formation of the query processing overlay, deciding
about the position of each QP in the hierarchy and keeping track of the respective
parent-child relationships. Query Processors contact the Registry when they wish to
join or leave the system, and Client Front-Ends contact the Registry to find out which
QP should be used to submit a query to the system, based on the area concerned. The
Registry is also contacted if a Query Processor is suspected to have failed in order to
adjust the overlay as needed.

Query Processors are responsible for handling queries for a particular area, i.e., for
a subset of the system’s hierarchical name space. A QP accepts queries from one or
more clients (via the Client Front-End) or other QPs, hands them over to an actual

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 829

Fig. 1. Indicative system configuration

Fig. 2. Key primitives of the Sensor Network Gateway interface

Fig. 3. Key primitives of the Client Front-End interface

sensor network subsystem and/or forwards them to other QPs that cover a part of the
area concerned. When results become available, it sends them back to the clients and
QPs that issued the respective queries. The QP is implemented in Java and interacts
with the sensor network via a Sensor Network Gateway component (SNG) which
performs the necessary communication and protocol/data conversion.

int postQuery(String queryString);
List<Data> getResults (int queryID);
void cancelQuery(int queryID);
List<String> getAvlAreas(String areaOfInterest);
List<String> getAvlSensors(String areaOfInterest);

List<String> getSensorTypes();
String getArea();
int submitQuery (String sensorType,
 String aggrOp,
 int samplingPeriod);
List<Data> getQueryData(int queryID);
void cancelQuery(int queryID);

830 L. Pappas and S. Lalis

The Sensor Network Gateway (SNG) is co-located with the QP on the same
machine and is invoked via a well-defined interface (an excerpt is given in Figure 2).
This component provides abstract query submission and result delivery functions that
are independent of the technology used to implement a sensor network. Its role is to
mediate between a concrete sensor network and a QP that represents it to the rest
of the system. In order to integrate a sensor network in the system, a class
implementing the SNG interface must be developed, which is responsible for (i)
issuing queries to the actual sensor network or sensing device, (ii) gathering the data
produced by it, and (iii) temporarily storing this data until the QP component retrieves
them. Obviously, the component that implements the SNG functionality must be able
to communicate with the sensor network or device driver via the appropriate protocol
stack or driver, while performing all the necessary protocol and data conversions.

Finally, clients issue queries to the system and receive results via the Client Front-
End. The CFE is a Java component which can be included in a conventional Java
program (an excerpt of the interface is given in Figure 3). It submits client queries
to the Query Processor suggested by the Registry and receives the corresponding
results.

3.2 Area Names

The query processing overlay is organized based on the area covered by each sensor
network subsystem. Areas are explicitly specified in the form of DNS-like names,
denoting a path with reference to a hierarchically structured name space. For example,
eu.gr.thessaly.volos.port can be used to denote the port area in the city of Volos in the
region of Thessaly in Greece in Europe. When joining the system, each Query
Processor must provide the Registry with the name of the area for which it provides
data. Similarly, a client that issues a query to the Client Front-End must specify the
area of interest in order for the CFE to find (via the Registry) the most appropriate QP
for submitting the query.

The use of such names simplifies the self-organization of QPs in the form of a tree
structure and allows for a natural and simple inference of coverage relationships. For
example if a QP registers for eu.gr.thessaly.volos.port and another QP registers for
eu.gr.thessaly.volos.port.dock1, the latter becomes a child of the former. Also, if two
QPs register for eu.gr.thessaly.volos.port.dock1 and eu.gr.thessaly.volos.port.dock2,
respectively, both of them will be considered if a client asks for data in the area of
eu.gr.thessaly.volos.port or eu.gr.thessaly.volos etc.

It is important to note that the name hierarchy is not a priori specified. It emerges
as a side-effect of the names employed by the participating QPs. Of course, QPs may
use “incompatible” names, giving rise to different sub-domains, even though they
cover the same area. For example, one QP could register for eu.gr.thessaly.volos.port
while another QP could register for eu.gr.thessaly.volos.harbor. This cannot be
avoided unless there is an authority (or hierarchy of authorities) responsible for
assigning names to QPs. Our design does not preclude the existence of such
authorities but neither imposes it. It is also possible for two QPs to register for the
same area name, in which case it is simply assumed that they cover the same area.

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 831

3.3 Sensor Types

Each Query Processor informs the Registry about the sensor types that are supported
for the area covered. This information is updated dynamically, also within the
overlay, as Query Processors join or leave the system. As a consequence, a parent QP
is aware of the sensor types supported by its children. This information is exploited to
forward queries in a targeted fashion, only to the Query Processors which cannot
provide data for the desired type of sensor.

The names used to specify sensor types are ASCII strings. Just as with area names,
there are no predefined sensor types. Hence each QP may register for any sensor type
name(s) / ASCII string(s) it desires. While it is desirable to use the same names for
the same type of sensors, enforcing a common type system or ontology is beyond the
scope of our work.

3.4 Query Submission and Reception of Results

Queries are submitted to the system via the submitQuery method of the Client Front-
End (see Figure 3). The querying language is intentionally kept modest, designed to
support applications that wish to continuously receive sensor values for a particular
area of interest. In essence, queries are of the following form:

return sensor data of type <SensorType>,
 aggregated using operator <AggregatorOp>,
 from area <AreaName>,
 at a sampling period <SamplingPeriod>,
for the next <Lifetime> minutes

Apart from the type of the sensor data to be retrieved, clients must specify the
aggregation (avg, sum, min, max, void) that should be performed on the data
produced by the participating sensing subsystems. Aggregation is performed only at
the level of individual sensor networks, but not for values produced by different
subsystems. This enables the application to issue a single query for a (very) large area
yet receive a separate value for each of the sensor networks that can provide data for
various (overlapping or disjoint) sub-areas. If desired, the application can combine
these values to produce a higher-level (also in terms of semantics) aggregate. If the
aggregation parameter is void, the system will return distinct values for every single
sensor of every sensor network for the area of interest.

 The area parameter denotes the area from which sensor data need to be retrieved.
The application must also specify the period at which to sample the underlying sensor
networks. This setting affects both the rate at which data will be produced and
shipped back to the client but also the monitoring “granularity”. Notably, the traffic
between the sensor network subsystems and the client could be drastically reduced by
adopting an event-oriented approach, e.g., by allowing the client to submit a data
filtering/processing expression in order to receive sensor data in a more refined way.
We do not to support this because we focus on applications that wish to continuously
receive data rather than just be notified when an “event of interest” occurs. Needless
to say, this makes support for query/result (de)multiplexing even more important.

832 L. Pappas and S. Lalis

Finally, each query is also given a lifetime. When the lifetime of a query expires, it
is removed (garbage-collected) from the system. Client queries can be long-lived,
having a lifetime of days or months, depending on the nature and requirements of the
application.

When a client issues a query the Client Front-End contacts the Registry to find the
Query Processor responsible for the specified sensor type and area of interest. If no
matching QP exists, the query is rejected and an error code is returned. Else, the query
is submitted to the QP suggested by the Registry. Once a query has been successfully
submitted, the client may invoke the getResults method of the CFE to retrieve data as
it arrives (blocking can be avoided by using a separate thread for this). The results
are returned in the form of a list, each entry holding a distinct (aggregate) sensor
value along with the area name of the subsystem that produced it. The client may
cancel a query at any point in time via the cancelQuery method. A query remains
active for its specified lifetime, unless it is explicitly cancelled. This allows a client to
disconnect from and re-connect to the system in a seamless fashion, making it
possible to tolerate connectivity problems. Currently, results are buffered until an
(internal) threshold is reached with new results overwriting older ones; in principle it
would be possible for the client to specify the desired buffer space and replacement
policy for each query.

4 Maintenance of the Overlay

The hierarchical overlay of Query Processors is maintained as QPs join and leave the
system or fail. All decisions regarding the position of each QP in the tree structure are
taken by the Registry, which has a global view of the system (knows which QPs are
registered for what areas). Even though QPs communicate in a peer-to-peer fashion,
as far as overlay management tasks are concerned, they act exactly as instructed by
the Registry, informing it in case they fail to proceed as required.

4.1 A Query Processor Joins the System

The joining Query Processor contacts the Registry, providing information about the
sensor types supported and the area covered. Based on the area name supplied by the
joining QP and the names used by the registered QPs, the Registry decides which QP
should become the parent and which QPs (if any) should become the children of the
joining QP, and sends a corresponding reply. When the joining QP receives the reply,
it proceeds as follows. First, it sends an ADD-CHILD request to its parent, including
its address, sensor types supported and the area covered, which in turn updates its
children list and sends an acknowledgement. Then, the QP sends a SWITCH-PARENT
request to each of its children, if any, with the same information. As a result, each
child updates its parent information and sends an acknowledgement to the joining QP.
It also sends a REMOVE-CHILD request to its old parent, which updates its children
list. Finally, the joining QP informs the Registry that the process was completed
successfully, and is ready to handle requests sent by clients and other QPs.

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 833

4.2 A Query Processor Leaves the System

When a QP wishes to leave the system, it contacts the Registry to inform it about its
intended departure. The Registry replies suggesting a new parent for its children, if
any. Upon receipt of the reply, the QP first sends a REMOVE-CHILD request to its
parent, which updates its children list and sends an acknowledgement. Then, it sends
a SWITCH-PARENT request for the new parent suggested by the Registry to each of
its children, if any. As a result, each child updates its parent information and sends an
acknowledgement. It also sends an ADD-CHILD request to its new parent, which in
turn updates its list of children and sends an acknowledgement. Finally, the leaving
QP informs the Registry that the process was completed successfully, and from that
point onwards it is no longer part of the system.

4.3 A Query Processor Fails

A QP may fail or become unavailable for a long period of time. This will be
eventually detected by its parent or its children when attempting to communicate with
it. In this case, a CHECK-FAULT request is sent to the Registry, which double checks
the problem. If the Registry decides to ignore the QP, it updates the overlay and
notifies the QPs that are affected by this change. Specifically, it sends a REMOVE-
CHILD request to the parent of the failed QP and a SWITCH-PARENT request along
with a suggested new parent to each of the children of the failed QP. These requests
are processed as usual.

Failures may also occur at various points during the join and leave protocol. If the
joining QP does not receive an acknowledgement from its parent, it sends a CHECK-
FAULT request to the Registry, and returns an error message that informs the sensor
network owner to try and join later, when the hierarchy will be fixed. If it has
successfully contacted its parent but cannot contact one of its children, it sends a
CHECK-FAULT request to the Registry. If the Registry confirms that the child has
failed, it sends a “switch parent” request to each of its children to be added as children
of the joining QP. Else, the Registry sends an ADD-CHILD request to the joining QP
for the child it just ignored. It is also possible that the joining QP itself fails in the
midst of the join procedure. This will be detected either by a QP or by the Registry,
and the overlay will be eventually “rolled back” to its old configuration. During the
leave process, if the departing QP is not able to contact either its parent or one of its
children, it sends a respective CHECK-FAULT request to the Registry and proceeds
as usual. In other words, the leave process always terminates successfully without
blocking the QP.

Last but not least, the Client Front-End may suspect that the Query Processor it
used to submit a client query to the system has failed. It then sends a CHECK-FAULT
request to the Registry and periodically inquires the Registry for a QP that can be
used to re-submit the query.

4.4 Areas of Responsibility and Promotion of Query Processors

The Registry arranges the overlay so that a QP registered for an area name at the kth
level of the name space hierarchy will have as children QPs registered for various
sub-areas at the k+nth level of the hierarchy, where n>=1.

834 L. Pappas and S. Lalis

The “natural” situation would be for n=1, i.e., for each QP registered for a given
area to have as children QPs registered for direct sub-areas. For example, QP
eu.gr.thessaly.volos could have as children QPs eu.gr.thessaly.volos.port and
eu.gr.thessaly.volos.park. However, this is by no means guaranteed in our system.
Not only are QPs free to choose the area names for which they register, but it is also
quite likely that these names will only sparsely occupy the name space. As a
consequence, it can be that n>1, i.e., a QP may have as children QPs registered for a
sub-sub-area or sub-sub-sub-area of the parent. In this case, the parent is responsible
for accepting queries targeted at any of the intermediate levels (for which there is no
registered QP). The areas of responsibility of each QP are defined by the Registry and
communicated to QPs as needed. For example, if QP registered for eu.gr.thessaly has
as children QPs registered for eu.gr.thessaly.volos.port and eu.gr.thessaly.volos.park
(i.e., there is no QP registered for eu.gr.thessaly.volos), it will also be responsible for
accepting queries for eu.gr.thessaly.volos.

The absence of “intermediate” QPs in the name space, and thus in the overlay
structure as well, may lead to situation where a QP registered for an area at the kth
level of the hierarchy has “too many” children for sub-areas at the k+nth level of the
hierarchy, where n>1. To achieve better scalability, if the number of children at the
level k+n becomes greater than a threshold, one of those children is “promoted” to act
as a parent for the rest, and consequently becomes responsible for the corresponding
area. For example, assume a promotion threshold of 3 and QP eu.gr.thessaly having 3
children registered for eu.gr.thessaly.volos.port, eu.gr.thessaly.volos.center and
eu.gr.thessaly.volos.park. If a QP joins for eu.gr.thessaly.volos.promenade, then one
of the 4 QPs registered for eu.gr.thessaly.volos.* (in our implementation, it is the
joining QP) will be promoted to be the parent for the other 3 and its area of
responsibility will include eu.gr.thessaly.volos. Note that the promotion feature does
not apply to children that already have a “direct” (in terms of name space) parent.

4.5 Examples

In Figure 4, join and leave examples are presented in order to illustrate the promotion
and demotion scheme. Figure 4a displays the system’s initial state. Assuming that the
child threshold is equal to 3, when a QP registered for eu.gr.thessaly.volos.promenade
joins the system, is is promoted (becoming responsible for area eu.gr.thessaly.volos)
and QPs registered for eu.gr.thessaly.volos.port, eu.gr.thessaly.volos.park and
eu.gr.thessaly.volos.center become its children (Figure 4b).

If the QP registered for eu.gr.thessaly.volos.center leaves the system, proper
messages are sent and the QP registered for eu.gr.thessaly becomes again responsible
for area eu.gr.thessaly.volos. The QPs registered for eu.gr.thessaly.volos.port and
eu.gr.thessaly.volos.park become children of their former father (eu.gr.thessaly) and
QP registered for eu.gr.thessaly.volos.promenade is properly demoted (Figure 4c).
This happens because the indirect children-QPs of eu.gr.thessaly are again 3, just
below the promotion threshold.

Notably, the QP registered for eu.gr.thessaly.larissa is not affected by these
transformations of the overlay, because it is a direct (genuine) child of eu.gr.thessaly.

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 835

Fig. 4. Example scenario of Query Processors joining/leaving the system, triggering promotion
and demotion of QPs in the hierarchy

5 Query Processing

Queries are processed based on the QP hierarchy, being submitted to the QP that is
responsible for the area of interest. The hierarchy is exploited to forward queries to
QPs that cover sub-areas. If possible, queries are multiplexed as they trickle down
towards the individual sensor networks, and results are de-multiplexed as they travel
back to the clients/QPs that issued the respective queries. The system also handles the
dynamic addition and removal of QPs as well as the cancellation of queries.

5.1 Query Forwarding and Multiplexing

As already discussed, the Client Front-End submits client queries to the appropriate
QP suggested by the Registry. When a QP receives a query and features a subsystem
that supports the desired sensor type, it checks if there are similar queries (for same

eu.gr.thessaly.larissa

eu.gr.thessaly.volos.park
 eu.gr.thessaly.volos.center

eu.gr.thessaly.volos.port

eu.gr.thessaly

eu.gr.thessaly.volos.park

eu.gr.thessaly.volos.center

eu.gr.thessaly

eu.gr.thessaly.larissa.center

eu.gr.thessaly.larissa

eu.gr.thessaly.larissa

eu.gr.thessaly.volos.park

eu.gr.thessaly.volos.promenade

eu.gr.thessaly.volos.port
eu.gr.thessaly

eu.gr.thessaly.volos.promenade

eu.gr.thessaly.volos.port

a) initial state

b) QP registered for eu.gr.thessaly.volos.promenade joins

c) QP registered for eu.gr.thessaly.volos.center leaves

eu.gr.thessaly.larissa.center

eu.gr.thessaly.larissa.center

836 L. Pappas and S. Lalis

sensor type and aggregation operator) running locally. If such a query does not exist,
the newly received query is submitted to the Sensor Network Gateway. Else, the new
query is linked to that query in order to exploit the results being produced anyway; the
SNG is invoked only if the new query has a shorter sampling period. In any case, the
QP forwards the new query to any of its children that can provide data for the desired
type of sensor (no multiplexing is attempted at this level). The reason for this is to be
able to tolerate the failure of the QP that received the client query in a simple way,
without forcing the Client Front-End to re-submit the query from scratch.

5.2 Result Delivery and De-multiplexing

Results travel along the reverse path, from each QP that features a sensing subsystem
to the Client Front-End that submitted the query and/or the parent QP (if it forwarded
the query). The transmission/delivery of results is asynchronous, depending on when
they become available from the SNG or children QPs. The same data is transmitted
only once for all linked queries, de-multiplexing it as needed for different CFEs.

5.3 Query Cancellation

A client may decide to cancel a query at any point in time. In this case, the Client
Front-End sends a cancellation request to the Query Processor that is responsible for
handling the query. Cancellations are forwarded to SNGs and other QPs in the same
way this is done for queries. If the cancelled query is linked to other queries, it is
removed; the SNGs are invoked only if the cancelled query had the shortest sampling
period, which is set to the shortest sampling period of the remaining linked queries.

6 Evaluation

We have implemented a system prototype in Java, including an SNG for a real sensor
network based on the Smart-Its platform [19], and tested it for various small
configurations and client queries. We used the respective Java API in order to send
and receive messages from the class that implements the SNG interface. More
efficient SNG implementations, supporting other sensor platforms or sensor database
systems like TinyDB, can be developed and merged transparently into our prototype.

To evaluate our system for a large scale, we developed a simple simulator used to
perform several virtual experiments. The simulator parameters include the (i) number
of QPs that participate in the system; (ii) the branch degree (the maximum number of
sub-areas per area of the hierarchy); (iii) the probability of a QP participating for a
sub-area; (iv) the promotion threshold; (v) the available sensor types; and (vi) the
number of queries submitted.

In a first experiment we simulate the creation of the Query Processor overlay for
4000 QPs and a branch degree of 7, varying the probability of join for an area. The
overlay is created in a top-down and breadth-first fashion, by considering each area of
the hierarchy and deciding randomly (based on the join probability) whether a QP will
register for that area, subject to the branch degree specified, until the specified
number of QPs has been reached. In essence, the smaller the join probability is, the
sparser the occupation of the name space is by the participating QPs. The experiment

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 837

is performed with the promotion feature disabled and enabled (with a threshold of 7),
measuring the maximum number of children of any QP in the resulting overlay. As
shown in Figure 5, this number rises excessively as the name space occupation
becomes sparser if promotion is not enabled. On the contrary, child promotion keeps
the maximum number of children per parent to a rather steady and small value,
independently of the occupation density of the name space.

In the second and third experiment we evaluate the benefit of the awareness
regarding the sensor types supported by each QP and the query multiplexing support.
The overlay is formed for 10000 QPs with a branch degree of 7 and a promotion
threshold of 7, varying the join probability. Each QP is assumed to support up to 2
different sensor types, randomly chosen out of 8 possible values. Finally, 200’000
queries are submitted to the system, for randomly selected areas and sensor types,
with the same sampling period and an infinite lifetime.

Figure 6 depicts the total number of queries forwarded and maintained at all QPs
with and respectively without disseminating information about the sensor types
supported by each QP. As it can be seen, the resources used are drastically reduced
(roughly 80%) when parent QPs are aware of the sensor types supported by their
children, grandchildren etc.

0

500

1000

1500

2000

2500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

probability of join

m
ax

im
u

m
 n

u
m

b
er

 o
f

ch
ild

-Q
P

s

joining w ithout threshold check joining w ith threshold check

Fig. 5. Maximum number of child QPs with / without threshold check

0

1000000

2000000

3000000

4000000

5000000

6000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

probability of join

 q
u

er
y

o
b

je
ct

s

sensor aw areness not enabled sensor aw areness enabled

Fig. 6. Number of Query Objects with / without sensor type awareness

838 L. Pappas and S. Lalis

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1,80%

2,00%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

probability of join

q
u

er
y

lo
ad

 w
it

h
 /

w
it

h
o

u
t

q
u

er
y

m
u

lt
ip

le
xi

n
g

Fig. 7. Number of SNG Query Objects when query multiplexing is used to number of SNG
Query Objects when query multiplexing is not used

Figure 7 plots the percentage of queries submitted to SNGs when multiplexing
queries using as a reference the number of queries that would have been submitted in
a system without multiplexing support. It is clear that query multiplexing significantly
reduces the involvement of SNGs in providing results for the queries issued (by
roughly 98%), which in turn translates to a reduced overhead/cost at each individual
sensor network. Equally important, the larger the degree of multiplexing, the greater
the amount of data that can be reused for different queries, and the smaller the amount
of data that needs to travel back to QPs in a bottom-up fashion.

As we mentioned in Section 2, the system we propose shares some of the features
of Hifi [13], IrisNet [16], GSN [17] and Hourglass [18], which also introduce
distributed, overlay architectures for collection and aggregation of data from different
sensor networks. However, there are some key differences amongst these
architectures and our work, either in the goal or the implementation. Hifi nodes are
organized in a fixed hierarchy according to the organization that they are deployed.
On the contrary, we introduce a dynamic hierarchy, based on the nodes’ declared
locations. The children promotion scheme we described and evaluated avoids having
nodes with excessive number of children, thereby eliminating possible congestion
points. IrisNet is quite similar to our work as it focuses on location based queries, but
in essence it is a distributed XML database. Data retrieved from the Sensing Agents
are replicated to the Organizing Agents according to statistics held for the queries
issued by user applications. Our system supports more efficient query multiplexing
and sensor data reuse utilizing the constructed dynamic hierarchy and sensor type
awareness, aiming at reducing the resource consumption at the edges of the system,
i.e., the actual sensor networks. Hourglass and GSN are similar to Continuous Query
systems with Hourglass focusing on maintaining quality of service in the presence of
disconnections while GSN is more abstract and targets mainly on supporting flexible
configurations. None of these systems facilitates the establishment of a hierarchy
based on the sensor networks’ location. Instead, the node hierarchy is statically
defined and location is merely one of the query parameters used to route and filter
queries within the system.

 An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks 839

7 Conclusion

We have presented an overlay-based architecture for the straightforward integration
and transparent querying of multiple sensor networks through the Internet, based on a
structured hierarchical name space for denoting areas of coverage. The major
innovation is the self-organization of the participating Query Processors in a suitable
hierarchy, which in turn is used to support query forwarding and multiplexing towards
the edges of the system where actual sensor network subsystems reside. Simulated
experiments show that our approach scales nicely even for a large number of nodes
and a sparse occupation of the name space. Our design supports the dynamic addition
and removal of Query Processors and sensor subsystems, without interfering with the
operation of the infrastructure and client applications using it.

The proposed architecture can be further enhanced and expanded. A distributed
version of the self-organization algorithm could be pursued in order to perform
adaptations of the overlay with a minimal or more asynchronous involvement of the
Registry, which currently controls the entire process in a tightly coupled fashion. Of
course, the failure handling protocol would have to be re-engineered correspondingly.
Better availability and scalability could also be achieved by distributing the Registry.
Finally, it would be interesting to apply the idea of self-organization with areas being
specified in a more refined way, e.g., via circles or polygons with reference to a
global coordinate system.

References

1. Lei, S., Xiaoling, W., Hui, X., Jie, Y., Cho, J., Lee, S.: Connecting Heterogeneous Sensor
Networks with IP Based Wire/Wireless Networks. In: Proceedings of the The Fourth IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, and
the Second International Workshop on Collaborative Computing, Integration, and
Assurance (SEUS-WCCIA 2006), pp. 127–132 (2006)

2. Dunkels, A., Alonso, J., Voigt, T., Ritter, H., Schiller, J.: Connecting Wireless Sensornets
with TCP/IP Networks. In: Proceedings of the Second International Conference on
Wired/Wireless Internet Communications (WWIC 2004), Frankfurt (Oder), Germany
(2004)

3. Dai, H., Han, R.: Unifying Micro Sensor Networks with the Internet via Overlay
Networking. In: Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, pp. 571–572 (2004)

4. Marco, Z., Bhaskar, K.: Integrating Future Large-scale Wireless Sensor Networks with the
Internet. USC Computer Science Technical Report CS 03-792 (2003)

5. Chen, M., Mao, S., Xiao, Y., Li, M., Leung, V.: IPSA: A Novel Architecture for
Integrating IP and Sensor Networks. International Journal on Sensor Networks
(IJSNet) 5(1), 48–57 (2009)

6. Isomura, M., Riedel, T., Decker, C., Beigl, M., Horiuchi, H.: Sharing sensor networks. In:
Proceedings of 26th IEEE International Conference on Distributed Computing Systems
Workshops, 2006. ICDCS Workshops, p. 61 (2006)

7. The JXTA technology community, https://jxta.dev.java.net/
8. The UPnP forum, http://www.upnp.org/

840 L. Pappas and S. Lalis

9. Bramley, R.: Instruments and sensors as network services: Making instruments first class
members of the grid. Technical Report 588, Indiana University CS Department (2003)

10. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An Open Grid
Services Architecture for distributed systems integration. Open Grid Service Infrastructure
WG, Global Grid Forum (2002)

11. Nath, S., Liu, J., Zhao, F.: Challenges in Building a Portal for Sensors World-Wide. In:
First Workshop on World-Sensor-Web: Mobile Device Centric Sensory Networks and
Applications (WSW 2006), Boulder CO (2006)

12. Microsoft’s Sensormap,
http://atom.research.microsoft.com/sensewebv3/sensormap/

13. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O.,
Edakkunni, A., Hong, W.: Design Considerations for High Fan-in Systems: The HiFi
Approach. In: CIDR 2005, pp. 290–304 (2005)

14. Chandrasekaran, S.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World. In: CIDR 2003 (2003)

15. Madden, S., Hellerstein, J., Hong, W.: TinyDB: In-Network Query Processing in TinyOS.
Release documentation, version 0.4 (2004)

16. The Iris Net documentation web page,
http://www.intel-iris.net/research.html

17. Aberer, K., Hauswirth, M., Salehi, A.: The Global Sensor Networks middleware for
efficient and flexible deployment and interconnection of sensor networks. Technical report
LSIR-REPORT-2006-006 (2006)

18. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:
Hourglass: An Infrastructure for Connecting Sensor Networks and Applications. Harvard
Technical Report TR-21-04 (2004)

19. The smart-its devices, http://particle.teco.edu/

	An Area-Based Overlay Architecture for Scalable Integration of Sensor Networks
	Introduction
	Related Work
	System Overview
	System Elements
	Area Names
	Sensor Types
	Query Submission and Reception of Results

	Maintenance of the Overlay
	A Query Processor Joins the System
	A Query Processor Leaves the System
	A Query Processor Fails
	Areas of Responsibility and Promotion of Query Processors
	Examples

	Query Processing
	Query Forwarding and Multiplexing
	Result Delivery and De-multiplexing
	Query Cancellation

	Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

