

J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 780–794, 2010.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Programmable Re-tasking of Wireless Sensor Networks
Using WISEMAN

Sergio González-Valenzuela1, Min Chen2, Huasong Cao1, and Victor C.M. Leung1

1 Department of Electrical and Computer Engineering
The University of British Columbia

2332 Main Mall, Vancouver BC, V6Z1T4, Canada
{sergiog,huasongc,vleung}@ece.ubc.ca

2 School of Computer Science & Engineering

Seoul National University
Seoul, 151-744, Korea

mchen@mmlab.snu.ac.kr

Abstract. In this paper we present a flexible middleware platform for re-tasking
Wireless Sensor Networks (WSNs) that we coin WISEMAN. Based on our
previous experiences with mobile agents in computer networks, we developed a
lightweight interpreter of text-based codes that enables their deployment in
order to implement diverse WSNs tasks. WISEMAN occupies 19Kbytes of
TinyOS embedded code, and 3 Kbytes of memory to operate in commercially
available sensor nodes. We examine different agent migration methodologies,
and present performance evaluations to gauge their efficiency in terms of delay
and bandwidth with aims to determine which approach works best depending
on the intended agent application. Our results indicate that WISEMAN agents
can migrate as fast as 235 mS per-hop, which is comparable to existing
approaches, while supporting the necessary code execution flexibility needed
for the rapid implementation and deployment of WSN re-tasking programs.

Keywords: Mobile agents, wireless sensor networks, performance evaluation.

1 Introduction

WSNs are created by small hardware devices that possess the necessary
functionalities to measure and exchange a variety of environmental data in their
deployment setting. Most WSN applications warrant the use of battery-enabled
devices, to support their placement in locations where a wired electricity supply is
either impractical to set up, or is simply unavailable. Consequently, WSN algorithms
and communications protocols are designed to consume the least possible amount of
power in order to extend the batteries’ lifetime, and ultimately enable a more
convenient, cost-efficient solution. To achieve this objective, WSN research in the
past few years has produced novel ideas in the areas of signal processing, data
aggregation, and wireless networking protocols, among others [1]. Regardless of its
intended application, we note that it may be impractical to modify the operation of a

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 781

WSN once its forming devices have already been deployed. Therefore, additional
efforts have been put forward to enable dynamic WSN programmability, which is
commonly known as re-tasking.

WSN re-tasking approaches such as Maté [2], Impala [3] and Deluge [4] were the
first pioneers in this area, and were followed by others, such as SensorWare [5],
SmartMessages [6], and Agilla [7]. Compared to their predecessors, the latter
approaches introduced more sophisticated forms of code mobility. A closer look at all
of these schemes reveals that middleware design in WSNs is heavily dependent on the
targeted application of the system [8]. However, other factors also play important
roles, such as the way in which codes are moved from one host to another. These
mobile codes are often referred to as mobile agents, which are comprised of
interpretable instructions with a granularity level that reflects a particular level of
execution. Consequently, some agent systems support language constructs that afford
a fine-grained process execution flow, whereas other systems implement coarse-
grained languages to support high-level procedures and execute multiple instructions
in compound. Ultimately, mobile codes systems targeted at WSN re-tasking should
provide the necessary functionalities to: (1) efficiently support the main aspects of the
networked sensor system application (e.g., data aggregation, node coordination, etc.),
and (2) incur the least possible bandwidth and power consumption.

This paper presents follow-up work from our previous work on WISEMAN
(WIreless Sensors Employing Mobile AgeNts) – a mobile codes approach for flexible
WSN re-tasking [9]. WISEMAN is designed on the premise that WSNs are deployed
to gather distributed information in settings where the behaviour of the underlying
environment can constantly change. As a result, our proposed system is built to
interpret codes in the form of compact text scripts that can be dynamically modified
to provide enhanced flexibility. WISEMAN’s main features can be summarized as
follows:

A. Compact language. WISEMAN’s language constructs are based on an earlier
code mobility system that defines a high-level text-based language system
acting as a compact script that can help save bandwidth and battery power by
minimizing the number of packets needed for their transmission.

B. Small memory footprint. WISEMAN’s interpreter implementation in TinyOS
v1.1 occupies a mere 19Kbytes of memory, leaving plenty of space to
incorporate additional functionalities as needed.

C. Stateless execution model. Unlike most programming models, WISEMAN
implements an execution model based on self-depleting strings of codes that
simplifies their processing and reduces inter-node forwarding overhead.

D. Flexible code migration strategies. Our scheme enables the ability to
dynamically modify agent itineraries that can employ explicit hop-by-hop
migration, variable-based hopping, and a virtual-link navigation capability that
mimics multicast routing through labelled paths.

In a previous contribution, we described in detail WISEMAN’s system architecture
and language constructs, accompanied by results of a sample deployment scenario to
illustrate its applicability [9]. The contributions of this paper are summarized as
follows. We will provide a quick review of the WISEMAN system, including a
description of its latest features, and a discussion of the advantages and disadvantages

782 S. González-Valenzuela et al.

of using particular language constructs. In addition, we will discuss in detail the
features that make it a unique and effective system for the deployment of mobile
codes in WSNs. We will also present generic performance evaluations of
WISEMAN’s codes execution and migration delay, as well as bandwidth
consumption. In addition, we will describe programming aspects in more detail that
can help to better estimate the performance of possible applications, and anticipate
potential performance issues.

The rest of the paper is organized as follows. In Section 2, we describe
WISEMAN’s architecture, operation principles and language constructs. In Section 3,
we provide a detailed description of WISEMAN’s migration methodologies, its
supported code execution flows, and discussions of the potential benefits and
drawbacks obtained by employing each of these. In Section 4, we present
performance evaluations that depict execution and migration delay, as well as
bandwidth utilization of our mobile codes as processed by an interpreter programmed
in TinyOS v1.1 over commercially-available sensor hardware. Finally, we present
conclusions of our paper in Section 5.

2 Overview of WISEMAN

In this section, we revisit the most important aspects of WISEMAN’s architecture and
language constructs. A more detailed account of these can be found in [9]. We also
describe recently added functionalities to the system, followed by a discussion of the
advantages and disadvantages of employing our language structure.

Fig. 1. Internal architecture of the WIESEMAN interpreter

2.1 WISEMAN’s Architecture

One of the main objectives of WISEMAN is to ensure that the interpreter occupies the
least possible amount of resources in the implementing hardware. For that reason, we
define the interpreter’s architecture as having only four basic components: an
incoming agent queue, a code parser, a processor block, and an agent dispatcher, as
shown in Fig. 1. We also define a supplementary component regarded as the system’s
Engine. Although this block might not necessarily implement the type of
functionalities regularly attributed to software engines, it does implement a library of
functions that encompass a good deal of the data processing capabilities provided by
the interpreter as a whole, and thus the naming. An additional sub-block that is

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 783

responsible for setting up agent forwarding sessions is also described shortly. Fig. 1
shows that the Incoming Queue receives agents that arrive from other nodes in the
WSN once they have been re-assembled. However, it is also possible to pre-load the
Incoming Queue with agents that will be executed in an ongoing basis.

Step Code 1 Code 2 Code 3 Code 4 Code 5 Code 6 Code 7

t0 Head Tail

t1 Head Tail

t2 Skipped Head Tail

tn …

Fig. 2. Execution sequence of WISEMAN codes

Since WISEMAN is targeted at resource-limited WSN nodes, we assume that the
implementing hardware does not have multi-threading capabilities, and so agents are
removed one by one from the Incoming Queue. The Parser’s main task is to tokenize
each language instruction for subsequent handling by the processor module. Here, the
text string that forms the codes is separated into a head and tail. The former is the
code portion that will be immediately processed, whereas the latter contains the rest
of the codes that may be subsequently processed, depending on the outcome of the
head’s execution. The Parser forwards each tokenized instruction to the Processor,
which may in turn rely on the Engine block to perform any operation that has
interpreter-wide implications.

After being serviced, the current code is immediately discarded, and the Parser
regains control of the execution process. The next instruction is obtained from the tail
(becoming the new head), and is immediately tokenized for subsequent processing.
This execution sequence implies that the agent’s codes are gradually depleted,
although some portions of the codes may be skipped depending on how the agent
itself is structured, as seen in Fig. 2. Additionally, an instruction may indicate the
interpreter to forward the tail of the agent to one or more nodes, at which point the
agent’s tail is passed to the Dispatcher for immediate transmission.

Mobile Codes Layer
Parsing, tokenizing & execution of mobile codes;

maintenance of the virtual machine

Network Layer
Agent migration session setup, dispatching & queuing;

maintenance of labelled paths

OS Layer
TinyOS binary code, memory & event management

Fig. 3. Layered execution model of WISEMAN

784 S. González-Valenzuela et al.

Fig. 3 illustrates the layered structure of the WISEMAN system. At the top-most
position, the Mobile Codes Layer is in charge of all agent-handling functions, and is
comprised by the Parser, the Processor, and the Engine blocks of the interpreter as
explained above. Maintenance of the environmental variables for the agent being
currently executed is also performed at this level. The Network Layer is comprised by
a Session Warden that is in charge of reassembling WISEMAN agents as they arrive
from the wireless medium by using information embedded into the corresponding
session fields, as seen in Fig. 4.

Fig. 4. WISEMAN's forwarding session packet

This agent forwarding process carries out the necessary steps for ensuring that an
agent spanning multiple Zigbee packets is correctly received and reassembled at the
destination node. To accomplish this, values that correspond to the current segment
number, last segment indicator, source node, and the actual session number are
employed as the header part of a session packet that wraps all WISEMAN agents
during the forwarding process. This process consists of an exchange of simple
Request-to-Send (RTS) and Clear-To-Send (CTS) signals, as detailed in [9]. These
values help the system keep track of every single segment being transferred in case
errors in the wireless channel occur. The segment field is a 1-byte value that is
gradually incremented with every segment being sent. The last segment indicator field
(1-byte) is a simple flag value that specifies whether the current segment is the last for
the corresponding session. The source field contains the identification number of the
source node. This value is used separately from the one referenced by the interpreter
as the Predecessor value to help discriminate other agent segments that might be
transmitted by nearby nodes. The actual session number is a pseudo-random number
computed at the source at the beginning of each agent forwarding process that is kept
fixed for the duration of the process, after which it is subsequently discarded. On the
other hand, the Dispatcher block handles the necessary operations for setting up agent
forwarding sessions that are also part of the Network Layer. Finally, the Operating
System Layer is implemented by the TinyOS binary codes that WISEMAN is linked
against when the actual interpreter is compiled. All memory and event management
tasks that WISEMAN requires to operate are handled here.

2.2 WISEMAN’s Language Constructs

Table 1 summarizes WISEMAN’s language variable types, rules, operators, and
delimiters. WISEMAN derives its language and architecture from the Wave system

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 785

that was originally introduced in 1986 [10, 11]. Compared to Wave’s original syntax,
WISEMAN further condenses its language directives in order to reduce the size of
agents when migrating between nodes. As in the Wave system, our scheme also
interprets and processes codes implemented as text scripts. This approach has the
following advantages: (1) it makes the codes human-readable, unlike approaches like
Agilla that rely on agents built in a byte-code style, (2) it allows agents to be modified
more easily in a dynamic fashion, (3) it facilitates the parser’s structure by employing
a library of functions for string-manipulation, and (4) it allows for the implementation
of the interpreter in other languages and systems that can process WISEMAN strings
in the same fashion. For instance, this implies that a standard PC could pre-process
WISEMAN codes by running the corresponding programmed in, say, Perl language,
before injecting the agents into the WSN.

Table 1. The WISEMAN language

Lexeme Name Type Description

N Numeric Variable Local storage of numeric values

M Mobile A numeric value carried by an agent

C Character A character value stored locally

B Clipboard Temporary storage of a numerical value

I Identity (environmental) Holds the local ID node value

P Predecessor (environmental) Holds the ID value of the source node that dispatched the agent

L Link (environmental) A character value used to label virtual links

O Or Rule
Yields true if any of the embraced commands is executed
successfully

A And
Yields true if all of the embraced commands are executed
successfully

R Repeat
Cycles through the commands embraced until a false outcome is
encountered

+ - * / = Arithmetic Operator(s) Used to perform regular arithmetic operations on variables

< <= == => >
!=

Comparison Standard operators to evaluate values and variables

Hop Indicates that the agent will hop to another node or set of nodes

@ Broadcast Broadcast agent to 1-hop neighbours

$ Execute Performs local operation as indicated by parameters

!_ Halt Stops execution with success or fail outcome as indicated

^ Insert Inserts locally-stored agent

_? Label query Tests whether a labelled path exists in local node

; Semicolon Delimiter Used to separate individual expressions

{…} Curly bracket Used to delimit expressions encompassed by a Repeat rule

[…] Square bracket Used to delimit expressions encompassed by an And/Or rule

(…) Round bracket Used to perform compound operations

786 S. González-Valenzuela et al.

The main disadvantages of our approach are that the language may be perceived as
being cryptic, and that handling text strings in devices with severe processing
limitations can add unwanted delay, as seen later. Another disadvantage is that code
delimiters become a larger proportion of the overall agent text string when compared
to the actual codes. The simplest way to overcome this problem is to define fixed-
length instructions. For example, instructions could be set to span 2 bytes, where the
first byte represents the command, and the second byte the value to act upon (i.e., in
an assembly language-like fashion). By doing this, no explicit delimiters are needed,
which can help save bandwidth and processing overhead. In fact, this approach is
employed by the Agilla system, which can yield compact agents spanning tens of
bytes [7]. However, a counterargument to this is that Agilla’s programs cannot be
changed once they have been injected into a WSN, which hinders the flexibility of
their proposed scheme. In addition, Agilla’s codes require forwarding all or a portion
the whole program’s execution state, which may offset the bandwidth savings that had
been eliminated by not employing command delimiters.

Finally, WISEMAN has been recently enhanced by introducing a couple of extra
functionalities. One of these is the the query operator ‘?’. Previously, agents had no
way of knowing whether a given label had been already assigned to a hop between
two or more nodes. As a result, an agent attempting to use an inexistent labelled-path
would fail and its execution would immediately stop, having an unwanted effect on
the overall application process. On the other hand, providing the agent with the
necessary label-setting instructions meant added overhead. The introduction of the
query operator allows agents to test whether a specific label has been assigned at the
local node. For example, the instruction “a?” tests whether label ‘a’ exists. Depending
on the outcome of this query, the execution flow of the current agent can change as
desired. Another functionality introduced is the ability to switch the local node’s
transmission power and/or the radio frequency channel as needed. These actions can
be achieved by means of the execution operator ‘$’. By using the letter ‘w’ on the left-
hand side operand, and a valid numeric parameter on the right-hand side operand
(e.g., “w$7”), an agent can increase or decrease the transmission power at will. (In the
case of Crossbow Micaz hardware [12], valid numeric parameters are 3, 7, 11, 15, 19,
23, 27 and 31.) On the other hand, the node’s radio frequency channel can be adjusted
in the same fashion by using the letter ‘f’ on the left-hand side operand, and a valid
numeric parameter on the right-hand side operand. (For the Micaz, valid channel
values are from 11 to 26 – e.g., “f$15”.) These new functionalities built into the
interpreter for enabling flexible topology reconfiguration of the WSN, can be readily
employed to support diverse schemes being currently investigated in the area of
multi-channel mesh networking. However, the WSN programmer must be careful in
ensuring that the nodes are always reachable if the power and/or frequency operating
values of one or more nodes are modified. In the next section, we elaborate on the
agent migration procedures supported by WISEMAN’s, and present concise examples
to better understand its programming language and execution flow.

3 Migration Procedures and Agent Execution Flow

WISEMAN provides the means to migrate codes in three different ways: (1) by using
explicit hop-by-hop codes, (2) by using values held in numeric variables, and (3) by
means of a labelled (virtual) links. Each of these approaches has its advantages and

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 787

disadvantages, and will be explained here in detail. In addition, the execution flow of
an agent can be conveniently controlled by means of WISEMAN’s language rules, as
explained shortly.

3.1 Code Migration Methodology

Explicit path hopping. Mobile agent systems targeted at WSNs (and otherwise) must
provide the necessary means that allow agents to decide their hopping sequence
through the network. In this case, it is assumed that agents are dispatched with an
itinerary that meets the applications as defined by the agent’s source node [13, 14].
This approach results practical in deployment settings where the conditions being
monitored are for the most part stable. WISEMAN supports explicit path hopping by
specifying the target node on the right-hand side of a hop operation. For example the
instruction “#1” indicates an explicit hop to node 1 from the current location. By
the same token, the segment “#1;#2;#3;#4;…” defines an execution sequence wherein
the corresponding agent performs a hopping sequence that takes it to node 4 through
nodes 1, 2 and 3, at which point a certain set of local operations are performed.

Variable-target hopping. Depending on different factors, it is possible that the agent’s
itinerary may need to be modified as it travels through the WSN. This implies that the
hopping sequence might not be preset beforehand at the source node, but will be
dynamically determined by an algorithm implemented into the agent’s constructs
instead. WISEMAN supports this functionality by allowing the use of either a mobile
or a numeric (local) variable as the right-hand side of the hop operator. For instance the
instruction “#N1;…” as parsed by the interpreter indicates that the agent will hop to
the node whose numeric ID value is stored in the numeric variable N1. Evidently, the
variable in N1 must be set accordingly depending on the current circumstances, and
may be updated by a separate agent/process. However, we note that this value is stored
and maintained locally, and so modifying N1 at, say, node 3 has no effect on N1’s
value at, say, node 5. Nonetheless, WISEMAN provides the means to carry values that
accompany the agent as it travels through the network. These values are referred to as
mobile variables, as seen in Table 1, and are referenced in the same fashion when
issuing a hop instruction (e.g., “#M2…”). Unlike numeric variables, mobile variables
are temporarily stored at the local node where an agent arrives to. There, mobile
variables may be modified by the agent that owns it, (e.g., “M2+1”), and their value is
copied into the agent’s header fields before being dispatched onto a different node.
Whether numeric or mobile variables are used, the WSN operator must ensure that the
values stored in the corresponding variables referenced by the agent to define their
hopping sequence are properly maintained to avoid undesired effects.

Labelled path hopping. In certain cases, it may be desirable to allow an agent to
forward copies of it to different nodes at once. For instance, a given node might have
some semantic relationship with only a subset of neighbouring nodes to which one or
more agents need to be forwarded. In this case, the numeric variable-target hopping
explained before becomes inadequate since numeric and mobile variables can hold
only one value. To address this issue WISEMAN supports the creation of labelled
paths that can be employed to emulate multicast transmissions from the local node.

788 S. González-Valenzuela et al.

Labels are set in a pair-wise fashion between two nodes. However, one of these nodes
can serve as a “pivot” node that can add the identity of a subset of nodes to the same
label. For example, node 0 might have nodes 1 through 4 as neighbours, and the WSN
operator may wish to create two multicast groups: one for the odd-numbered nodes,
and one for the even-numbered nodes. In this case, the first labelled path can be set
with the following codes: “L=a;#1;#P;#3”. The labelled path is established by setting
the Link environmental variable L to the corresponding value, and the predecessor
environmental variable P is employed for defining the explicit path hopping sequence
through nodes 0-1-0-3 as shown in Fig. 5. A similar agent is then dispatched with the
corresponding values to set up the labelled path ‘b’: “L=b;#2;#P;#4”. After these
initial steps, subsequent agents can be dispatched using the instruction “a#”, or “b#”
in order to reach the corresponding nodes 1 and 3, or 2 and 4. Note that labelled path
hopping requires that the label identifier appears on the left-hand side of the operator.
A clear advantage of this approach is that any agent that arrives later at node 0 does
not need advance knowledge of the destination nodes’ identities. It follows that
labelled path hopping can be of either explicit-hopping or variable-target type. In the
former case, a fixed label identifier is used (“c#”), whereas the latter case warrants the
use of Character variables C (e.g., “C3#”), whose value can be modified as needed. It
also follows that variable-based hopping can rely on different types variables, which
are accessed by specifying their corresponding number at the right-hand side of it
(e.g., “N3”, “M2”, “C1”). It is also evident that the labelled-based approach can be an
advantageous approach to implement shorter agents. However, the overhead
introduced by the label-setting process needs to be taken into account. In the end, a
combination of the three agent migration procedures can be employed, and the
resulting agents’ codes should be evaluated to decide which approach is more
desirable depending on the intended application. In the next subsection, we explain
different ways to manipulate the process flow of an agent in WISEMAN.

 (a) (b)

Fig. 5. Example of path-labeling for multicast transmissions: (a) neighbors 1, 3 are marked with
label ‘a’; (b) neighbors 2, 4 are marked with label ‘b’

3.2 Agent Execution Flow

WISEMAN supports three basic forms of execution flow that can be programmed
into the agents, and they are implemented by means of the And, Or, and Repeat rules
of its language. These rules can be employed for condition-checking in order to make
hopping decisions, as explained next.

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 789

Multiple condition fulfilment. The WISEMAN interpreter supports a language
construct where all the instructions embraced by an And rule are evaluated to verify
that they produce a successful outcome. If a single instruction within the rule returns
false, then the whole rule fails and the agent’s execution is aborted. For instance, the
construct “…A[N1>1;M2==9;a?]…” will yield true only if numeric variable 1 is
greater than 1, mobile variable 2 equals 9, and the labelled path ‘a’ exists at the local
node. In practice, this rule has been seldom employed and is provided as legacy rule
from the original Wave language.

Single condition fulfilment. Unlike the previous rule, single condition checking is
carried out more often than not, and allows a programmer to implement widely-used
if-else constructs by means of the Or rule. When employed, the agent’s execution is
continued as long as at least a single embraced instruction yields true. For instance,
compared to the example seen in the multiple condition case shown above, the
construct “…O[N1>1;M2==9; a?]…” will yield success if any of the embraced
instructions yields true. Therefore, if the instruction “N1>1” is successful, then the
remaining two instructions will not be evaluated. Else, the next instruction is
subsequently evaluated, and so forth. If neither of the embraced instructions returns
true, then the whole construct fails, and the agent stops executing.

Compound execution. Our experience has shown that an agent often needs to
perform a specific instruction immediately after a certain condition is met. In
addition, the action to take depends on which condition checking instruction yielded a
true value. In these cases, compound operations can be employed to complement
the operation of the previous rules. For instance, the codes “…O[(M1>
3;#8);(N2=5;#7)]…” indicate that, if the value contained in mobile variable 1 is
greater than 3, then the agent will hop to node 8; otherwise, numeric variable 2 is set
to 5, and the agent hops to node 7. It can be seen that the compound operators force
the execution of all the embraced instructions. Otherwise, without using compound
execution, the first instruction yielding a true outcome would prevent the rest of the
following instructions from executing.

Condition cycling. This form of process flow implements a standard functionality
that enables cycling through a set of instructions embraced within. However,
WISEMAN defines an alternative means to execute cycles. In it, the codes embraced
by a repeat rule R are extracted and inserted in front of the corresponding rule.
Therefore, an agent program with the codes “R{N1<20;a#}” becomes “N1<20;
a#;R{N1<20;a#}” when the repeat rule is encountered by the WISEMAN interpreter.
The reason behind this approach is that it enables agent migration without having to
worry about forwarding the agent’s current execution state. In this particular example,
once the first instruction is evaluated and the labelled hop instruction is processed, the
only portion of the code that is actually forwarded to the next node is
“R{N1<20;a#}”, whereas the preceding codes that have already been executed are
discarded. This self-depleting agent approach rids the system from having to forward
program counters, register values, etc. that are normally associated with agent
migration, which ultimately simplifies the operation of the interpreter, helps save
bandwidth, and reduces agent forwarding delay.

790 S. González-Valenzuela et al.

4 Performance Evaluations

We performed a series of experiments to determine the performance of the
WISEMAN interpreter implemented in TinyOS version 1.1 over Crossbow Micaz
motes [15, 16]. These devices implement the Zigbee protocol for low-power
communications, provide up to 128Kbytes of flash memory to store user programs,
and 4 Kbytes of volatile RAM memory for variables’ use. This hardware platform has
as proven to be popular choice among researchers in the area of WSN, as it provides
an ideal example of the resource limitations that have to be dealt with.

Fig. 6. Execution time for individual WISEMAN instructions

Fig. 6 illustrates the actual execution time incurred by individual WISEMAN
instructions averaged over 1000 runs. We can see that the hop operations incur the
lowest execution time, whereas the arithmetic operations yield the highest with an
overall average execution time per instruction of around 800 µS. Compared to
Agilla’s instruction set, WISEMAN’s instructions take longer to execute. We attribute
this to WISEMAN’s text-based codes’ parsing and tokenizing delay, as mentioned in
Section II. In addition, the lack of an arithmetic co-processor in the hardware of the
Micaz mote is expected to introduce larger processing delays when the interpreter
encounters codes that include the corresponding instructions. The processing delay
shown for the execute operator $ was obtained by averaging over LED, transmission
power and frequency channel change operations, which are already built into TinyOS.

Fig. 7 shows the migration delay of a sample WISEMAN agent as a function of the
number of Zigbee packets it spans. At first, the agent employed in our simulations
was coded to fit in a single Zigbee packet. Then, the same agent was gradually

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 791

Fig. 7. Agent migration delay as a function of Zigbee packets incurred

Fig. 8. Forwarding delay for distinct agent migration techniques

increased in size using arbitrary instructions to occupy up to 5 Zigbee packets in total,
which is the maximum number that can be used before the 170-byte agent-size limit
set for the current WISEMAN implementations is reached. The results shown are
averaged over 100 runs for each case, and they provide a good estimate that can be
referenced when creating WISEMAN programs for deployment in WSNs formed by
Crossbow Micaz. We also note that the previous results were obtained by setting the
transmission power of the sensor nodes to -15dbm, and the sensor nodes were placed
at 10 cm from one another in a non-controlled environment with regards to the
present RF signals.

Fig. 8 shows migration delay results for agents that employ the corresponding
techniques explained in the previous section for a path length of up to 7 hops (that
correspond to 8 Micaz sensors at hand). We see that the label-hopping technique
yields the shortest migration delay, whereas the delay seen in variable-target method
approaches the one experienced by the fixed-path hopping technique as the path
length increases. It can also be observed that the performance of the variable-target
technique approaches the one obtained using the fixed path method as a function of
the number of hops, which reflects the growing agent size due to explicit hop
instructions being added to the codes (e.g., “…#1…”, followed by “…#1;#2…”, and
then “…#1;#2;#3…”), and so forth.

792 S. González-Valenzuela et al.

Fig. 9. Number of Zigbee packets incurred for distinct agent migration techniques

Fig. 9 depicts the number of Zigbee packets generated by forwarding by each of
the three types of agents implementing the corresponding migration techniques being
considered for up to 40 hops (limited by the maximum agent size of 170 bytes). These
numbers were numerically calculated, and provide a compelling reason for using the
labelled-path hopping technique whenever possible. We can also observe that the
bandwidth overhead of an agent implementing the variable-target hopping technique
is twice as long as the labelled based, with the fixed path approach yielding the worse
performance. As expected, these results are consistent with the delay performance
observations of Fig. 8. Thus, the increasing number of explicit hop-by-hop
instructions has a direct effect on both the migration delay and the incurred bandwidth
as the agents’ size occupies additional Zigbee packets. The longer the explicit hop-by-
hop sequence, the more Zigbee packets that are needed to accommodate the
corresponding codes. Based on this figure, we can see that explicit hop-by-hop
migration is not as costly when hopping through a short path, but its use becomes
otherwise detrimental when hopping through longer paths, in addition to being a more
inflexible approach that is unsuited for environments monitored by the WSN that may
change unpredictably.

5 Conclusions

In this paper, we have provided a more detailed insight of the WISEMAN system for
the deployment of mobile codes in WSNs, and described a number of features that
make our proposed system a viable solution to enabling programmability in this type
of networks. Our performance evaluations show that the efficiency in terms of
migration delay and bandwidth consumption of a WISEMAN agent script may
depend heavily on how the program is designed. This performance depends in part on
the size of the WSN, and so the longer the path that an agent has to traverse, the
higher the impact that its program structure will have on the overall WSN

 Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN 793

performance. In particular, we have shown that employing the explicit path-hopping
approach can have a significant impact in bandwidth usage for large WSN, whereas
smaller WSNs are not as vulnerable to the migration methodology employed.
However, even though labelled-path hopping provides the most energy-efficient
approach to agent migration, it should be noted that a deployment scenario in which
the underlying conditions warrant constant label-maintenance sub-tasks might incur
increased bandwidth consumption overhead. If this is the case, then variable-target
hopping rivals labelled-path hopping. On the other hand, the effectiveness of variable-
target hopping depends on how an agent’s codes are structured, thus putting into play
the skill of the WSN programmer, who decides how WISEMAN’s execution flow
constructs are used. In addition, it is possible that the task being carried out by the
WSN is complex enough to require injecting multiple agents, since memory
availability hinders the creation of a single larger agent that accomplishes all the
required objectives. In such case, a programmer may rely on distinct migration
techniques and execution flows to accomplish the goal in the most efficient manner.

Acknowledgments. This project was supported in part by the National Sciences and
Engineering Research Council of the Canadian Government under grants STPGP
322208-05 and 365208-08, and by KRCF and the Ministry of Knowledge Economy,
Korea, under the Information Technology Research Center support program
supervised by the IITA (grant number IITA-2009-C1090-0902-0006).

References

1. MacRuairi, R., Keane, M.T., Coleman, G.: A Wireless Sensor Network Application
Requirements Taxonomy. In: Proceedings of the Second International Conference on
Sensor Technologies and Applications, SENSORCOMM, Cap Esterel, France, August
25-31 (2008)

2. Levis, P., Culler, D.: Maté: A Tiny Virtual Machine for Sensor Networks. In: Proceedings
of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, USA (October 2002)

3. Liu, T., Martonosi, M.: Impala: A Middleware System for Managing Autonomic, Parallel
Sensor Systems. In: Proceedings of ACM SIGPLAN: Symposium on Principles and
Practice of Parallel Programming, San Diego, USA (June 2003)

4. Hui, J., Culler, D.: The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, Baltimore, USA (November 2004)

5. Boulis, A., Han, C.-C., Srivastava, M.: Design and Implementation of a Framework for
Efficient and Programmable Sensor Networks. In: Proceedings of the First International
ACM Conference on Mobile Systems, Applications and Services, San Francisco, USA
(May 2003)

6. Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart Messages: A
Distributed Computing Platform for Networks of Embedded Systems. The Computer
Journal, Special Issue on Mobile and Pervasive Computing, Oxford Journals 47(4), 475–
494 (2004)

794 S. González-Valenzuela et al.

7. Fok, C.-L., Roman, G.-C., Lu, C.: Rapid Development and Flexible Deployment of
Adaptive Wireless Sensor Network Applications. In: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS), Columbus, USA (June 2005)

8. Chen, M., Gonzalez, S., Leung, V.: Applications and Design Issues of Mobile Agents in
Wireless Sensor Networks. IEEE Wireless Communications Magazine 14(6), 20–26
(2007)

9. González-Valenzuela, S., Chen, M., Leung, V.C.M.: Design, Implementation and Case
Study of WISEMAN: WIreless Sensors Employing Mobile AgeNts. In: Proceedings of the
2nd International ICST Conference on MOBILe Wireless MiddleWARE, Operating
Systems, and Applications (MobilWare), Berlin, Germany (April 2009)

10. Sapaty, P.: A Wave Language for Parallel Processing of Semantic Networks. Computers
and Artificial Intelligence 5(4) (1986)

11. Sapaty, P.: Mobile Processing in Distributed and Open Environments. John Wiley & Sons,
Chichester (2000)

12. Crossbow Technology, http://www.xbow.com
13. Min Chen, T., Kwon, Y., Yuan, Y., Choi, Y., Leung, V.: MADD: Mobile-agent-based

Directed Diffusion in Wireless Sensor Networks. EURASIP Journal on Applied Signal
Processing (2007), doi:10.1155/2007/36871

14. Chen, M., Leung, V., Mao, S., Kwon, T., Li, M.: Energy-efficient Itinerary Planning for
Mobile Agents in Wireless Sensor Networks. In: IEEE ICC 2009, Dresden, Germany, June
14-18 (2009)

15. TinyOS for wireless embedded sensor networks, http://www.tinyos.net
16. The Wiseman Agent System for WSNs,

http://www.ece.ubc.ca/~sergio/wiseman

	Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN
	Introduction
	Overview of WISEMAN
	WISEMAN’s Architecture
	WISEMAN’s Language Constructs

	Migration Procedures and Agent Execution Flow
	Code Migration Methodology
	Agent Execution Flow

	Performance Evaluations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

