
Architecture for WSN Nodes Integration in Context
Aware Systems Using Semantic Messages

Iker Larizgoitia, Leire Muguira, and Juan Ignacio Vazquez

MoreLab Research Lab, DeustoTech, Avda Universidades 24 48007 Bilbao, Deusto, Spain
ilarizgo@tecnologico.deusto.es, lmuguira@tecnologico.deusto.es,

ivazquez@eside.deusto.es
http://www.morelab.deusto.es/

Abstract. Wireless sensor networks (WSN) are becoming extremely popular in
the development of context aware systems. Traditionally WSN have been focused
on capturing data, which was later analyzed and interpreted in a server with more
computational power. In this kind of scenario the problem of representing the
sensor information needs to be addressed. Every node in the network might have
different sensors attached; therefore their correspondent packet structures will be
different. The server has to be aware of the meaning of every single structure and
data in order to be able to interpret them. Multiple sensors, multiple nodes, multi-
ple packet structures (and not following a standard format) is neither scalable nor
interoperable. Context aware systems have solved this problem with the use of
semantic technologies. They provide a common framework to achieve a standard
definition of any domain. Nevertheless, these representations are computationally
expensive, so a WSN cannot afford them. The work presented in this paper tries
to bridge the gap between the sensor information and its semantic representation,
by defining a simple architecture that enables the definition of this information
natively in a semantic way, achieving the integration of the semantic information
in the network packets. This will have several benefits, the most important be-
ing the possibility of promoting every WSN node to a real semantic information
source.

1 Introduction

In recent years the use of WSN is moving forward from the mere monitorization of cer-
tain environmental variables to its widespread adoption for context aware systems. The
reduction in the price of these devices and their increasingly powerful features, though
limited compared to a normal PC, are still enough for some scenarios unaffordable years
ago to be realized.

WSN are highly qualified to provide a great deal of information on a realtime ba-
sis. However, seldom does this information follow standard formats and it is usually
dependent on the type of network and sensors used. Because of this, there will always
be a process by which the sensor information is preanalyzed in order to extract its real
meaning for the system, before it can be used in a context aware manner (e.g. convert-
ing an n-byte raw data packet of a concrete noise sensor into a statement that declares
the environment as noisy).

J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 731–746, 2010.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

732 I. Larizgoitia, L. Muguira, and J.I. Vazquez

The research presented in this paper has been focused on how to provide a frame-
work that enables the use of semantic-like definitions using ontologies in the network
packets themselves. Taking as a prerequisite that the information has to be semantically
defined from the very moment it leaves the sensor node, the aim is to find a way to
use semantic structures, such as triples or statements in an affordable way, that is, not
causing too much overhead in the network, at least not one that is not likely to be ac-
cepted in some application scenarios. Using semantic information at sensor-data level
can contribute to advances in some of the current challenges in this kind of systems [1],
such as facilitating the exchange of information among nodes, the integration of differ-
ent kinds of sensors with minimum effort and the introduction of some intelligence in
the WSN nodes, not just using them as a source of information. The application field
that we have chosen is the area of smart objects. The idea is to create intelligent envi-
ronments by integrating these small nodes and sensors in real-life objects. This field has
great potential for the development of innovative applications, more precisely all those
related to activity based systems.

The rest of the paper is organised as follows. Section 2 presents some related work in
this area. Section 3 describes the mechanism used to adapt and represent the sensor node
messages as semantically defined messages. Then, Section 4 describes how this mech-
anism can be integrated in a more comprehensive context aware platform. In Section 5
the application scenario that has been developed to test this mechanism is detailed. The
objective of this scenario is to illustrate how sensors can be integrated in a more flexible
way following these mechanisms. Finally, Section 6 presents the conclusions and the
future work of this research.

2 Related Work

Current research in WSN suffers from some major drawbacks. The overwhelming het-
erogeneity of sensors, the lack of a common development framework or an applica-
tion level communication standard are among the biggest challenges for future research
projects [2]. More generally, context aware applications present some other technical
challenges informationwise [3]. One of the most important concerns is that sensor data,
high-level context information, actuators and human interfaces need a standard repre-
sentation.

In the attempt of converting this sensed information into a meaningful dataset, dif-
ferent approaches might be taken. Until now, the most popular was having a central
server or a gateway that is able to interpret sensor information and then transform it
into a meaningful representation for the rest of the system to use it in a higher level [4]
[5]. Some inniciatives, like the OGC Sensor Web Enablement [6] try to define a com-
prehensive framework to enable the capture, discovery and use of sensor information
through the Web. However, this approach present some problems, because it does not
use a formal ontology for data definition and the communication paradigm is based on
passive services with interfaces (pulling mechanisms) [7].

Besides, the role of sensors is moving on to a more sophisticated scenario, where the
information they provide is directly understandable. For example, in [8], WSN nodes
can evaluate their sensed information using some schemas, which enables them to work

Architecture for WSN Nodes Integration in Context Aware Systems 733

at event level, not just sending raw packages. The use of rule-based systems in the
WSN nodes is also another alternative. Systems like [9] or [10] define rule languages to
represent the information a sensor provides and how it has to react to certain conditions.

While these and other approaches manage to define the sensed information at a
higher level, still suffer from the lack of standardization. However, it seems like the
next steps in this field are directed to use semantic technologies at different levels in a
Semantic Sensor Network infrastructure [11] [2]. Semantics can be applied at different
levels, with different objectives. Our research focuses on sensor-data level. Working
at this level, a first approach is to adapt the sensor information to a semantic repre-
sentation after it has been captured [12]. Providing that sensed information needs to be
adapted to the semantic world, it would be better if that conversion is carried out as soon
as possible. This usually includes a definition of the information with some semantic
knowledge representation mechanisms, such as OWL (Ontology Web Language) [13]
or RDF (Resource Description Framework) [14]. Any of these mechanisms (and others
alike) defines a basic framework to share and model the knowledge of any system, but
their use in the WSN part of a system is problematic. First, this kind of representa-
tions is computationally expensive for the nodes to process them internally, due to their
limited capabilities. Working with XML in a WSN node is almost impossible or at the
very least, inefficient. Regarding this aspect, there will always be a trade-off between
the level of representation and the overhead it might produce in a network. The more
self-descriptive is a message, the larger size it will have.

3 Semantic Adaptation

A typical application of WSN for context aware systems basically consists of two steps.
First, the information from the sensors is sent to an entity, usually acting as a context
manager, which has the responsibility for interpreting the different types of messages.
Then that information has to be transformed into some meaningful representation for
the rest of the system. Taking this into account, the general objective of this research is
to merge these two steps into a more general one. One that will integrate the semantic
information in the network packets, saving time in the conversion process but also gain-
ing flexibility sensor informationwise because if a new node with new sensors wants
to share its values it just needs to represent them semantically to make them under-
standable for whoever is in the network. To achieve this, three main aspects have to be
defined:

– A mechanism to represent the information semantically (Section 3.1).
– A packet structure that could fit in a WSN platform, considering the limited char-

acteristics of these environments (Section 3.2).
– A protocol to share this semantic information (Section 3.3).

3.1 Information Representation

Semantizing any information could be seen as the process of formalizing its repre-
sentation so that it can be easily understood by many participants with no other prior

734 I. Larizgoitia, L. Muguira, and J.I. Vazquez

knowledge than the formal representation itself. Currently the most common semantic
representation mechanisms are RDF and OWL, being OWL able as well to be repre-
sented using RDF.

RDF is a knowledge representation mechanism based on resources and statements
that can be said about those resources. Basically a statement links two different re-
sources in a structure of the form subject-predicate-object, usually called triples. These
triples are the base of the entire model; therefore they are the smallest structure needed
to represent knowledge.

These triples can be represented using different formats and syntaxes such as N3,
N-Triple or RDF/XML. Unfortunately these representations are not suitable for a WSN
environment because the limited devices do not have the needed resources for them.
Bearing in mind the concept of triple, which is how the information from the different
sensors should be modelled, the next step is to define the prerequisites of the represen-
tation mechanism for the WSN messages:

– The basic structure to share in the network is a triple.
– A triple should reference resources that anybody could be able to understand. The

information provided by the different sensors is then supposed to have been previ-
ously formalized in any kind of knowledge representation, for example an ontology.

– The representation of those triples should be adapted to fit into the WSN environ-
ments, so it has to provide some compression or codification mechanism to reduce
the size of the network packages as much as possible.

Codification of the ontology information. Once it has been established that the in-
formation is going to be represented as triples, the specific representation has to be an-
alyzed. Following the RDF model concepts, each part of the triple will be represented
with a URI. A URI is usually too long a string to be used in a WSN packet directly.
So it might be a good solution to try to find a way to reduce those URIs without losing
expressivity. This is where a codification scheme can be used. A codification scheme
is just a function (see 1) that given a long URI converts it to a simplified representa-
tion, where the length of the code generated is much smaller than the original value.
This function could be reversible, but it does not need too, as long as the codes are
conveniently stored.

f : URI → code | legth(code) � length(URI) (1)

The idea is to encode every single term in the ontology, that is, the different URIs in
a simplified representation of each one applying the codification function. These codes
should then be used in the correspondent implementation to create the packets the node
is sending to the network. Creating the codes for all the terms of the ontology might be
a hard task. However, it can be easily automated. For this purpose a simple codification
architecture has been defined. Providing the ontologies to the system and defining the
concrete codification scheme different output formats can be generated. For example,
in the prototype described later (see Section 5) the WSN is based on tinyos (nesC pro-
gramming language) so the list of the codes is automatically formatted to a C header file.

Architecture for WSN Nodes Integration in Context Aware Systems 735

Fig. 1. Ontology codification architecture

Figure 1 shows this general architecture for the codification of an ontology following a
generic component model. The responsibilities of each component are as follows:

– Reader: this component is able to read OWL files and parse them, extracting every
term (URI) in the defined ontology.

– Encoder: this component implements the correspondent codification scheme,
basically it has to receive all the terms (URIs) of the ontology and encode them
accordingly.

– Formatter: this component gathers all the encoded terms and formats them in a
predefined format. The output format depends on the programming language to be
used in the WSN.

3.2 General Packet Structure

The next step is to define how the packet structure must be to hold the semantic infor-
mation. For this purpose at least three control fields are necessary:

– Codification Scheme: the codification algorithm used in the triples.
– Number of Triples: the number of triples that are contained in the packet.
– Ontology URI: a reference, using the correspondent codification scheme, to the

URI of the ontology the collection of triples refers to.

Besides these general fields, the packet must contain a group of triples, each of which
defines a new statement about the context information the node shares in the network.
For each part of the triple, it can be intuitively deduced that at least its size (in bytes) and
type (whether it is a resource or a literal value, etc.) are needed in order to completely
define the packet. This general packet structure is shown in Figure 2.

Packet structure optimization. Each part of the triple does not have a fixed size be-
cause their content depends on the codification scheme used in the packet. Assuming
that the content is basically a group of statements and analysing how they would be rep-
resented, the packet structure for each part (subject-predicate-object) can be optimized.
Instead of having a type and size field for every part of the triple, some of these values
can be deduced from the codification scheme used, as well as the possible alternatives
for each part.

736 I. Larizgoitia, L. Muguira, and J.I. Vazquez

The value of a subject represents the resource the statement describes, so two situ-
ations are possible. The resource is already defined in the ontology, having therefore a
predefined known URI or the resource the statement describes is not defined yet, so a
unique identifier must be provided, for which a UUID is an appropriate solution. Con-
sidering these aspects, the subject size field can be removed, because that information
is inherent to the codification scheme used, which needs to be necessarily known.

A predicate is bound to be a URI, because it has to be a valid OWL property (either
ObjectProperty or DataProperty) predefined in the ontology of the domain. Therefore,
in the predicate part the type and size can be eliminated, because that information is
also deduced from the codification scheme.

For objects, instead, there are more options, because, apart from the resource URI
and UUID, objects can be literals which refer to any XSD valid type. To support differ-
ent sizes of objects while trying to optimize the packet size, the object size is an optional
field which can be included when the object corresponds to a variable XSD type, for
example, string, but ignored when the type is an encoded URI or a UUID.

Codification example: Hash code. Now it will be illustrated how the packet structure
would be for a concrete codification mechanism, selecting a simple hash codification
scheme. For illustrative purposes we have just used the algorithm of the Java String
class. This simple hash codification would just take the URI as a string and compute it
with the formula shown in Eq. 2, where h is the URI string to transform:

h(s) =
i=0∑

n−1

s[i] ∗ 31n−1−i (2)

With this formula, each encoded value has 32 bits, with which it can be defined the
packet structure. Figure 3 shows the packet structure when this simple hash algorithm
is used.

3.3 Network Protocol

Once the semantic packet structure is defined, it has to be specified how this information
is going to be shared in the network. Strictly speaking, what has been defined is not a

Fig. 2. General semantic packet structure

Architecture for WSN Nodes Integration in Context Aware Systems 737

Fig. 3. Optimized packet structure with hash code

packet structure but a payload that could be part of a network packet of almost any
WSN protocol or architecture. If a central server is present, a collection protocol might
be more appropriate than a P2P approach, for example. Regardless the network protocol
used, this semantic payload can still be used and properly analysed by the correspondent
entities. As this mechanism is thought to be part of a WSN, the network protocol should
at least provide the means to create a mesh network and a reliable mechanism to send
the node packets. The selection of this protocol is implementation specific and might
vary from one application to another.

4 Context Management

The mechanism for sharing the semantic information of the nodes has been defined
but it needs to be integrated into a more comprehensive context aware system. There
are many design alternatives for the architecture of a context aware system as well as
for how the information is used in the system. A very challenging application field of
context aware systems involves the integration of small WSN nodes in real life objects,
what might help improve activity-based systems. Context-aware systems are usually
divided into three main parts: capture, reasoning and reaction (or proaction). To inte-
grate these functionalities, a general architecture has been defined, in which the WSN
nodes are seen as part of the capture phase and are seamlessly integrated as a knowl-
edge source for the reasoning part of the architecture. The reactivity model is generally
based on behaviours, which are components that can monitor the knowledge base and
react accordingly to the state of the context at a given moment. Figure 4 defines the
general architecture of the context-aware platform, following a component model. The
responsibility of each component is as follows:

– WSNDriver: This component acts as a driver for the entire WSN infrastructure to be
connected to the context management platform. This includes the implementation
of the packet listeners through the corresponding hardware device acting as a gate-
way. The concrete hardware platform will be explained in the prototype scenario.
The objective is to define a component that is able to receive any kind of WSN

738 I. Larizgoitia, L. Muguira, and J.I. Vazquez

packets based on plugins for the different options or transports and share them with
the rest of the architecture.

– Ontology Management: This component implements the mechanisms to decode
the semantic messages based on the ontologies that have previously been loaded or
defined. It provides an interface for converting the codes in the full URI of the term
being represented in the triple.

– RDF Converter: the semantic information provided to the reasoning component
needs to comply with a standard format. At this level, one of the more flexible
alternatives is RDF, so this component just transforms the triples (subject-predicate-
object) into its RDF representation and prepares them to be injected in the reasoning
capabilities of the platform.

– Reasoner: The range of reasoning techniques that can be applied in a context-aware
system is extremely wide, mostly different AI strategies (rule engines, semantic
reasoning, etc). To take advantage of the semantically defined information in the
prototype (Section 5) an ontological reasoner has been included, which can be aug-
mented with other techniques to add more reasoning capabilities to the system. As
the reasoning is decoupled from the capture of data, it will not be difficult to add
other reasoners with different techniques and coordination mechanisms.

– Behaviours: the behaviours define how the system is going to react when certain
conditions are met (based on new knowledge, either added or inferred). These com-
ponents should be notified when new knowledge is inferred, in order to evaluate
the conditions of activation. Accordingly, the behaviours could be able to query
the reasoner for other kind of information retrieval. These behaviours have to be
defined for each concrete reactivity scenario. This approach has been adopted be-
cause while using a semantic reasoner as a central unit, every behaviour can add
any other desired extra reasoning capabilities to its concrete purpose.

4.1 System General Operation

Figure 4 shows the different steps that are carried out in a common operation of the
context management server:

1. The ontology codification module preloads the ontologies that the semantic mes-
sages are going to use and exports its interface to let other components decode
ontology URIs from the WSN packages.

2. The WSN driver is physically connected to a node and receives the semantic pack-
ages following the previously defined protocol and structure.

3. These packages are then handed to the RDF Converter component which decodes
the URIs and content of every packet and transforms them automatically into a
valid RDF representation.

4. The Reasoner component receives the RDF information and merges it in the
Knowledge base, ensuring that the ontology remains consistent, as well as clas-
sifying the ontology again to generate new knowledge.

5. When new knowledge is inferred, the Behaviours have to check whether its condi-
tions are met in order to carry out some reaction.

6. Besides, behaviours can interact directly with the Reasoner if they need to extract
or update knowledge themselves.

Architecture for WSN Nodes Integration in Context Aware Systems 739

Fig. 4. Context management general architecture and operation

5 Prototype

To test the semantic messages architecture a prototype has been implemented following
the structure defined in Section 4 for the context-aware system.

5.1 Hardware Platform

For the hardware platform, there are different WSN platforms in the market. For this
prototype the Crossbow family of WSN was analyzed. Crossbow1 motes are a family of
embedded sensor nodes sharing roughly the same architecture. There are many different
kinds of Motes. Table 1 summarizes the analysis that was made in order to select a
concrete platform. The main versions (most used up to now) are compared, presenting
their principal characteristics. Finally the platform MicaZ was chosen. Even though
iMote2 was better, technologically speaking, MicaZ was more accessible, cheaper and
had a smaller OEM version, which is more likely to be integrated in real applications.
The hardware platform is programmed in nesC language, so when the ontology codes
are generated, the most appropriate format is a C header file with the correspondent
codes as constants. Table 1 how this file looks like when formatted as a C header using
a simple hash code codification scheme. The constants have a first part with the short-
name of the ontology (e.g. SMARTMOTES OWL) and a second part with the name of
the property or instance defined in the ontology.

With this helper file, the developer can then create the correspondent triple objects
according to the information that the node is going to share in the network.

5.2 Network Protocol

The network protocol defines how the information is spread in the WSN. The semantic
package is going to be part of the payload, so the network protocol can add any headers
needed. For the prototype a collection protocol has been chosen. It fits the purpose of
gathering information from the sensors, sending packets with the semantic information,

1 http://www.xbow.com

740 I. Larizgoitia, L. Muguira, and J.I. Vazquez

Table 1. Example C Header of the encoded ontology

#ifndef SMARTMOTES ONTOLOGY
#define SMARTMOTES ONTOLOGY
enum
{
SMARTMOTES OWL ONTOLOGY URI 0̄x5b9f59f9,
SMARTMOTES OWL HASDIRECTION 0̄xac5f284f,
SMARTMOTES OWL RIGHT 0̄xa747a2f2,
SMARTMOTES OWL STANDING 0̄x2d422796,
SMARTMOTES OWL UP 0̄x34e7c565,
SMARTMOTES OWL LEFT 0̄x9a07c851,
SMARTMOTES OWL DOWN 0̄x9a044cec,
SMARTMOTES OWL UNKNOWN 0̄x9b60aba0,
SMARTMOTES OWL SHAKEN 0̄x7bbdd7f2,
SMARTMOTES OWL MEASURE 0̄xb97d18d4,
...
...
}
#endif

and collecting the data generated in the network into a base station, which is connected
to the context management system [15].

5.3 Software Implementation

For the implementation of the server architecture the OSGi platform has been cho-
sen [16]. OSGi provides a perfect platform for developing applications where multiple
components interact in a dynamic way. OSGi will also give us scalability and a better
manageability of the life cycle of the different components, which in OSGi are called
bundles. There are several implementations of OSGi R4, the latest version. Equinox,
the platform behind Eclipse is the alternative used in this prototype. This platform has
an active community support and almost every optional service defined in the speci-
fication is implemented and tested. Every component has been developed in an OSGi
bundle, which exports or imports certain interfaces to communicate with the rest of the
components. The implementations details of every component are the following:

– WSN Driver: uses the TinyOS 2.x infrastructure to receive the network packets. It
is physically connected to a WSN base station via a serial com port.

– Ontology Manager: loads the different ontologies used in the application and imple-
ments the different codification schemes in order to be able to decode the semantic
messages. This component used the Jena library [17] to read the ontologies and
process them.

Architecture for WSN Nodes Integration in Context Aware Systems 741

– Converter: this component receives the semantic messages, parses them and gen-
erates a standard RDF-XML representation that can be used as a direct knowledge
source for the reasoner component.

– Reasoner: this component wraps a Pellet [18] reasoner associated to the ontologies
the application is going to use. It can notify when new knowledge is added through
its interface to the behaviours defined for the concrete application.

– Behaviours: these components implement the reactivity of the system, extending
the capabilities of the ontological reasoner and defining how the system should
react. In the prototype this behaviours just have a set of conditions that when are
fulfilled some actions are executed, but more complex behaviours might be easily
added in the future.

5.4 Application Scenario

Context-awareness applications can be applied to many scenarios. Home, work or
health-care scenarios are among the most popular ones. Using WSN embedded in
real-life objects enables the development of new applications beyond the monitoring
paradigm. For this prototype the basic scenario is focused on a child’s play scenario,
where not only the environment can be instrumented with WSN nodes, but also toys,
books or similar artefacts children can interact with. Each object might share its context
information using the semantic messages that have been described in this research.

The scenario is based on a puppet, inside of which a WSN node has been deployed
(MicaZ platform). This node has several sensors, from which only two are going to be
used to simplify the explanation, the light sensor and a 2 axis accelerometer. With this
sensors the puppet is going to be able to send messages about its manipulation state
(shaken, turned up, down, left, right) or the light sensor it has inside. Based on this
information many reactivity scenarios can be defined.

Deploying the scenario. Figure 5 shows the deployment process and the scenario used
in the prototype (see Figure 6). To deploy any scenario using the context aware platform
defined in this paper, the next steps have to be followed:

1. Define or reuse a context ontology. For the prototype, a simple ontology with the
objects, characteristics and the context information they provide has been modelled.

2. Convert the ontology to the correspondent encoded version and create the header
files to be used in the MicaZ Platform. This action can be performed automatically
using the components of the software platform.

3. Once the network protocol is chosen, prepare the TinyOS program to send the se-
mantically augmented packets. These packets are created by the WSN programmer
using the helper files created in the previous step.

4. Define and implement the correspondent behaviours that are going to be applied in
the scenario. In this prototype the next behaviours have been implemented:

– When the puppet is manipulated (shaken) in the upright position, a comic ap-
plication is started and displayed on a nearby screen.

– Once the application is started, moving the puppet left and right turn the pages
over.

742 I. Larizgoitia, L. Muguira, and J.I. Vazquez

– If the light sensor level is raised, then it is considered that the puppet is open
(because the sensor has been placed inside the puppet, so a warning is displayed
on the screen.

5. Deploy all the components in the OSGi server and start the platform, connecting the
WSN gateway to the server and activating the objects, the puppet in this scenario.

5.5 Prototype Analysis

After implementing and deploying this simple prototype some conclusions can be drawn:

– The overall deployment process, regarding the ontology-to-sensor-packets proce-
dure is rather simple. The conversion process is automatic and compared with any
other ad-hoc mechanism, the developer here does not have to worry about how
to encode sensor information, because this activity is now shared with Ontology
Engineers.

– In this prototype a simple codification mechanism has been included but adding
other kind of codifications is straightforward. Due to the plug-in structure of the
WSN driver, even different codification mechanisms could coexist.

– Even though the prototype is centred on MicaZ platform, it can be applied to other
platforms, e.g. SunSpots or iMote2.

– New nodes and new sensors can be easily incorporated into the system, as long as
the information they provide is semantically defined in an ontology.

– Ontologies usually evolve along the life cycle of an application and this could affect
already deployed sensors but this can be overcome with a careful version control of
the ontologies.

– One of the benefits of using this codification strategy, which still remains to be ex-
plored, is that different sensors could understand each other with the only prerequi-
site that they import the codes of the ontologies they want to be able to understand.

One of the major drawbacks of this codification system is the overhead it introduces
in the network packages. Considering the payload used in the prototype, it has 4 triples
and two control fields (number of triples and ontology URI) which has 73 bytes alto-
gether. An ad-hoc simple packet format could be considerably reduced, nevertheless
losing the benefits of the semantic representation. For some applications this might be
a problem, but others might benefit from it, like the one presented in the prototype,
focused on smart objects.

Other critical aspect is the amount of time spent in the conversion from the packets
to the correspondent RDF representation. In reality this conversion would depend on
several factors. Depending on the hardware platform, it would take some time for the
packet to arrive to the context manager. This packet would need to be converted to
the RDF representation, but assuming that the context manager has already loaded the
ontology, it is a straightforward conversion from one to the other.

Decoding the content of the objects (e.g. integers, strings, floats, etc.) could be con-
sidered negligible compared to the rest of the functions of the context aware system.

Architecture for WSN Nodes Integration in Context Aware Systems 743

Fig. 5. Prototype architecture and scenario

744 I. Larizgoitia, L. Muguira, and J.I. Vazquez

(a) iMote inside Donald
puppet

(b) Prototype scenario view

Fig. 6. Prototype view

6 Conclusions and Future Work

The use of WSN nodes as semantic information sources is a breeding ground for sev-
eral context aware applications that were not easily realized years ago. The research
presented in this paper has been focused on providing an infrastructure for sharing
context information optimized for WSN nodes, trying to solve one of the crucial prob-
lems that these systems are currently suffering: the lack of a standard representation
adapted to WSN nodes characteristics. The fact that a new sensor node can directly
make itself understandable based on a predefined ontology is a key step towards the
full interoperability of different nodes with different sensors and even with different
protocols. Besides, using semantic representations enables the context-aware systems
to take advantage of all the work done in the reasoning part of these systems, making
the development of smart environments an easier task.

A possible future direction of this kind of systems is the recent vision of Internet of
Things [19]. This movement embraces the concept of many gadgets and real-life objects
connected to the Internet sharing state and information. For this purpose, information
that comes from the sensors directly in a semantic format is more likely to be published
directly on the Internet. This integration of small sensors in real-life objects is also an
emerging application field for activity recognition systems, where objects might not
only react to certain inner-conditions but also be part of a context-aware system that
is aware of the whole picture and can improve the adaptability and reactivity of the
environment.

Regarding the infrastructure presented in this paper, the next step forward would
be to take advantage of this semantic representation of the information to make some
reduced reasoning in the sensor nodes. Having information from the ontology, every
node could parse the messages of any other node and make some deductions, which is
far more complicated if every node uses a different packet structure. Moreover, working
with different WSN nodes platforms with different sensors would not be such difficult a
problem anymore, assuming that they use the same network protocol (or even different
if the context-aware system is properly configured). No matter what mechanism is used,

Architecture for WSN Nodes Integration in Context Aware Systems 745

the semantic definition of all the information coming from WSN nodes is a key step for
their real integration in context aware systems in an interoperable and scalable way.

References

1. Hayes, J., O’Conor, E., Cleary, J., Kolar, H., McCarthy, R., Tynan, R., O’Hare, G.M.P.,
Smeaton, A.F., O’Connor, N.E., Diamond, D.: Views from the coalface: Chemo-sensors, sen-
sor networks and the semantic sensor web. In: SemSensWeb 2009 - International Workshop
on the Semantic Sensor Web (2009)

2. Ni, L.M., Zhu, Y., Ma, J., Luo, Q., Liu, Y., Cheung, S.C., Yang, Q., Li, M., Wu, M.-y.:
Semantic sensor net: an extensible framework. Int. J. Ad Hoc Ubiquitous Comput. 4(3/4),
157–167 (2009)

3. Kawahara, Y., Kawanishi, N., Ozawa, M., Morikawa, H., Asami, T.: Designing a framework
for scalable coordination of wireless sensor networks, context information and web services.
In: International Conference on Distributed Computing Systems Workshops, p. 44 (2007)

4. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart
house: a programmable pervasive space. Computer 38(3), 50–60 (2005)

5. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of context-
enabled applications. In: CHI 1999: Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, pp. 434–441. ACM, New York (1999)

6. Botts, M., Percivall, G., Reed, C., Davidson, J.: Ogc sensor web enablement: Overview and
high level architecture. Technical report, OGC (December 2007)

7. Moodley, D., Simonis, I.: A new architecture for the sensor web: The swap framework. In:
5th International Semantic Web Conference ISWC (2006)

8. Chow, K.W., Li, Q.: Issdm: an in-network semantic sensor data model. In: SAC 2007: Pro-
ceedings of the 2007 ACM symposium on Applied computing, pp. 959–960. ACM, New
York (2007)

9. Strohbach, M., Gellersen, H.W., Kortuem, G., Kray, C.: Cooperative artefacts: Assessing
real world situations with embedded technology. In: Davies, N., Mynatt, E.D., Siio, I. (eds.)
UbiComp 2004. LNCS, vol. 3205, pp. 250–267. Springer, Heidelberg (2004)

10. Terada, T., Tsukamoto, M., Hayakawa, K., Yoshihisa, T., Kishino, Y., Kashitani, A., Nishio,
S.: Ubiquitous chip: A rule-based I/O control device for ubiquitous computing. In: Ferscha,
A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 238–253. Springer, Heidel-
berg (2004)

11. Henricksen, K., Robinson, R.: A survey of middleware for sensor networks: state-of-the-
art and future directions. In: MidSens 2006: Proceedings of the international workshop on
Middleware for sensor networks, pp. 60–65. ACM, New York (2006)

12. Lewis, M., Cameron, D., Xie, S., Budak Arpinar, I.: Es3n: A semantic approach to data
management in sensor networks (2006)

13. Antoniou, G., van Harmelen, F.: Web ontology language: Owl. In: A Semantic Web Primer,
pp. 110–150. MIT Press, Cambridge (2004)

14. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation. World Wide Web Con-
sortium (February 2004)

15. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill,
J., Welsh, M., Brewer, E., Culler, D.: Tinyos: An operating system for sensor networks, pp.
115–148 (2005)

746 I. Larizgoitia, L. Muguira, and J.I. Vazquez

16. Osgi Alliance. OSGi Service Platform Core Specification (2007)
17. hp. Jena - a semantic web framework for java (2002),

http://jena.sourceforge.net/index.html
18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.

Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)
19. Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.): IOT 2008.

LNCS, vol. 4952. Springer, Heidelberg (2008)

http://jena.sourceforge.net/index.html

	Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages
	Introduction
	Related Work
	Semantic Adaptation
	Information Representation
	General Packet Structure
	Network Protocol

	Context Management
	System General Operation

	Prototype
	Hardware Platform
	Network Protocol
	Software Implementation
	Application Scenario
	Prototype Analysis

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

