
J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 704–717, 2010.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Error Correction with the Implicit Encoding Capability
of Random Network Coding

Suné von Solms, Magdalena J. Grobler, and Albert S.J. Helberg

School for Electric, Electronic and Computer Engineering,
North West University – Potchefstroom Campus, Potchefstroom, South Africa
{sune.vonsolms,leenta.grobler,albert.helberg}@nwu.ac.za

Abstract. In this paper, we present a technique for a network error correcting
code using Random Network Coding. We introduce a novel error correction
scheme that uses the implicit encoding capability of Random Network Coding.
This scheme does not add redundancy to the data prior to transmission, but ads
redundancy based on information already contained in the network. Random
Network Coding within a large network generates enough redundant
information to perform error correction on transmitted data.

Keywords: Error Correction, Network Coding, Random Network Coding.

1 Introduction

The concept of Network Coding was first introduced by Ahlswede et al. in 2000 [1].
Instead of simply forwarding data in a network, as in traditional routing, they
proposed that nodes may recombine several input packets into one or more output
packets. In [1], the combinations formed by the nodes are based on a specific
topology.

The concept of Random Network Coding was introduced by Ho et al. in [2]. Their
approach provides an improvement in robustness [5] where the success of information
reception does not depend on receiving packets that contain the specific transmitted
information, but on receiving enough linearly independent packets [6]. Knowledge of
the linear combinations of the information contained in each data packet is used to
solve a set of simultaneous equations to obtain the transmitted data.

Random Network Coding, described in [2] works as follows: All the nodes in the
network, except the receiver node, perform independent random linear mappings of
their inputs. This creates independent linear combinations that are then forwarded to
the next node, where once again random linear combinations are formed from the
inputs of the node. The outputs are chosen independently and randomly and must be
non- zero. The receiver node of the network then obtains a series of independent
linear combinations which it can use to decode the transmitted data. The receiver has
to wait a certain amount of time in order to receive a set of equations that can be used
to decode the transmitted message. The receiver node of the network only needs to
know the overall linear combination of the source processes in each of the incoming
packets. This information is provided by a coding vector that is included in each
message overhead [7].

 Error Correction with the Implicit Encoding Capability of Random Network Coding 705

A Random Network Coding environment is not necessarily error free. This
disadvantage means that the network can be very sensitive to errors [3]. A single error
packet has the potential to infect the whole network and corrupt other packets used by
the receiver for decoding. When a corrupted packet is linearly combined with
legitimate packets, it can corrupt all the information contained in that packet.

It is possible to address these shortcomings by implementing error correction in the
network. An error correction code will be able to correct and detect data packets
corrupted due to additive errors. This will improve the robustness of the network
where we will be able to obtain the correct information, even when only partially
correct information is received.

Yeung and Cai [8] constructed such a linear network code with error-correcting
capabilities. In erroneous network channels, Network Error Correction can be applied
so that errors occurring in the network can be detected and corrected. Lower and
upper bounds are also defined for the specific error-correcting capability of the code.
Jaggi et al. [10] addressed the problem of error correction by adding redundancy to
the source information that satisfies certain constraints and achieves optimal rates.
This redundancy will enable the receiver node to correct network errors.

It can be seen that the topic of error correction in Random Network Coding is of
current interest. However, the construction of the error correcting codes is in a
concatenated form where error correcting encoding takes place prior to transmission.
The implicit encoding capabilities of Random Network Coding for error correction
codes are not considered. This fact opens up possibilities in the field of network error
detection and correction in Random Network Coding which we aim to exploit.

In this paper, we aim to exploit the implicit encoding capabilities of a network
implementing Random Network Coding. This method will encode the information
sent by the source within the network, instead of transmitting a codeword encoded at
the source.

2 Network Model

We adopt the notation used in [2], [3] of an acyclic network model. The network is
represented by a directed graph ܩ ൌ ሺܸ, .ሻܧ ܸ is the set of nodes in the network and ܧ the set of edges in ܩ which represents the communication channels. ܵ א ܸ
represents the source node and T א V the sink node in the multiple unicast network.
The source node sends messages selected from a source alphabet, ܼ. Let ܺ be the
finite set of code alphabet for the network where ܺ א ܼ in a finite field ܨ. Each edge, ሺܽ, ܾሻ א in the network has unit capacity; therefore it is able to transmit a single ,ܧ
unit of information per unit time.

Definition 1: Information Rate (R) is a measure of the average amount of information
that is being carried by a symbol [1]. Information Rate is represented by information
symbols sent from the source node into the network, and channel symbols received by
the receiver from the network.
 ܴ ൌ ݊݅ݐܽ݉ݎ݂݊݅ ݈݄݁݊݊ܽܿݏ݈ܾ݉ݕݏ ݏ݈ܾ݉ݕݏ

706 S. von Solms, M.J. Grobler and A.S.J. Helberg

Theorem 1: Min-Cut Max-Flow: A network with a single source, ܵ, and receiver, ܶ,

is given. This connection can be described as ܿ ൌ ቀܵ, ܶ, ܺ൫ܵ, ܶ൯ቁ. This network

problem can only be solved if and only if the rate of the connection R(c) is less than
or equal to the minimum value of all the cuts between S and T [3] ݉ܽݓ݈݂ݔሺܶሻ ܴሺܿሻ. (1)

Fragouli et al. stated in [11] that when a network ܩ ൌ ൫ܸ, ൯ with node Sܧ א V and
any non-source node ܶ א ܸ has a min-cut between S and T of K and a connection of c;
then the information can be sent from ܵ to ܶ at a maximum rate ܴሺܿሻ of ܭ. They
prove that there exist exactly ܭ edge-disjoint paths between S and T when the min-cut
between them is ܭ, therefore: ܴሺܿሻ ൌ (2) ܭ

and ݉ܽݓ݈݂ݔሺܶሻ (3) .ܭ

By the min-cut max-flow theorem, it can be seen that equation (3) is a required
condition for any node ܶ to solve the message sent from the source node. This means
that for ܭ independent information packets to be sent successfully to the receiver, ܭ
edge-disjoint paths must exist in the network that connects the source to the receiver.

According to [7], if ܭ linearly independent packets are sent into the network, the
min-cut between the source and the receiver in the network must be large enough to
support their transmission. This means that the rate of information transmission
between the source node and the receiver node is upper-bounded by the min-cut
between the nodes in the network [10].

2.1 Random Network Coding

Assume that a packet contains a sequence of n symbols from the finite field ܨ. Let ݔଵ, ,ଶݔ … , ݔ be the ܭ information packets (vectors of length n over finite field ܨ)
transmitted by the source node ܵ into the network with a ݉݅݊ െ ݐݑܿ ,ଵݕ Let .ܭ ,ଶݕ … , .ᇱ channel packets received by the receiver node [4]ܭ ᇱ be theݕ

Random Network Coding is implemented where each network node randomly and
independently selects coefficients from a finite field ܨ. As described in [12], each
information packet ݕ in the network formed are random linear combinations of ݔଵ, ,ଶݔ … , ݔ ,

ݕ ൌ ࢞ߙ
ୀଵ (4)

where ߙ is called the global encoding vector of ݔ. References [12] as well as [7]
assume that this vector is sent along with x in its header. We will adopt the same
assumption and send the global encoding vector inside the information packet.

Example 1: Suppose that the source node, ܵ, sends ܭ information packets into the
network with a ݉݅݊ െ ݐݑܿ ,ݔ Each information packet .ܭ ݅ ൌ 1,2, … , has a ܭ

 Error Correction with the Implicit Encoding Capability of Random Network Coding 707

Fig. 1. Information Packets sent from the source through the network

length n that consists of a information message (length ݇) along with the header
(length ݊ െ ݇ሻ, as can be seen in Fig 1.

The overhead (header) sent with the information packet has a size ݊ െ ݇ ൌ ܭ ଶ݈݃ .bits. This is negligibly small if the packet size, ݊, is sufficiently large [12] ݍ
Let the receiver obtain ܭԢ channel packets: ݕଵ ൌ ଶݕଵݔଵߙ ൌ ᇱݕڭଶݔଶߙ ൌ ݔଷߙ (5)

where ݔ, ݅ ൌ 1,2, … , areߙ are the K information packets sent from the source and ܭ
random coefficients. Equation (5) can also be written as ݕ ൌ (6) ,ݔߙ

where ݔ ൌ ሾݔሿ is the ܭ ൈ ݊ transmitted array formed by stacking the information
packets ݔଵ, ,ଶݔ … , ݔ as the rows of x, where the subscript of ݔ indicates the j’th
entry of packet ݔ, ݅ ൌ 1,2, … , ݕ ,Also .ܭ ൌ ሾݕሿ is the ܭԢ ൈ ݊ received array formed
by stacking the received channel packets ݕଵ, ,ଶݕ … , ᇱ as the rows of y where theݕ
subscript of y୧୨ indicates the j’th entry of packet ݕ, ݅ ൌ 1,2, … , Ԣܭ Ԣ. α is aܭ ൈ ܭ
matrix over ܨ corresponding to the overall transfer function of the network from the
source to the receiver [4].

Linearly dependent packets (packets with linearly dependent global encoding
vectors) are useless for the decoding of the channel messages at the receiver. The
min-cut between the source node and receiver nodes must therefore be large enough
to support the transmission of the ܭ linearly independent packets. When the receiver
receives ܭ channel packets with linearly independent global encoding vectors, it will
be able to decode the ܭ message packets [12].

It can be clearly seen that the information rate of this network is ܴ ൌ ൌ 1,

where K information symbols are sent into the network ሺ݉݅݊ െ ݐݑܿ ܭ ሻ andܭ
channel symbols are received.

. . .

n – packet size

x K – batch size

k – message size header

I

I

Ixi

708 S. von Solms, M.J. Grobler and A.S.J. Helberg

3 Error Correction in Random Network Coding: Traditional
Method

We now assume that errors occur in the network. We assume that packet errors occur
on the edge of the network. If ܭ information packets are sent over the network, let ݖ denote error packets applied to the packet ݇ א ሼ1, … , ሽ. Equation (6) thenܭ
becomes

ݕ ൌ ݔߙ
ୀଵ ݖߚ

ୀଵ (7)

or ݕ ൌ ݔߙ (8) ,ݖߚ

where ݖ ൌ ሾݖଵ் , ଶ்ݖ , . . . , ்ሿ is an array consisting of all the erroneous packetsݖ
introduced in the network and ߚ is the overall transfer matrix of these packets from
the source to destination. If ݖ ൌ 0, no errors were applied to message packet ݅ א ሼ1, … , .ሽܭ

3.1 Redundant Symbols

Jaggi et al. described in [10] that the errors that occur in the network can be thought
of as a second source. The information received at the receiver is linear combinations
of the information of the source as well the error information. This can be seen in (7).

Reference [10] addressed the topic of extracting the source information from the
received mixture of channel information and errors. He addressed this problem by
adding redundancy to the source information that satisfies certain constraints. This
information packet is constructed as in Fig. 2 [10]:

Fig. 2. Information Packet with redundancy symbols

Each packet contains a sequence of ݊ symbols from the finite field ܨ. Out of the ݊
symbols in the information packet; ݊ߜ symbols are redundancy added by the source.
The ݊ߜ redundant symbols are chosen as parity symbols in order for the receiver to
decode the channel packet. Also included in the packet is the identity matrix, ܫ, that
acts as the global encoding vector by reflecting the linear combinations formed on the
channel packet.

n – packet size

k – message size

x I

δn – redundant symbols

header

 Error Correction with the Implicit Encoding Capability of Random Network Coding 709

3.2 Redundant Packets

Definition 2: A network code is t-error-correcting if it can correct all ߛ-errors for ߛ i.e., if the total number of errors in the network are at most t, then the source ,ݐ
message can be recovered by the sink node ܶ א ܸ [8].

Definition 3: A block code is a rule for converting a sequence of source symbols of
length ܭ into a transmitted sequence of length ܰ symbols [13].

Yeung and Cai [9] correct errors in network coding not by adding redundancy to each
information packet sent, but by adding redundant packets at the source to be sent over
the network. They use ሺܰ, ሻ linear block codes and consider these as a linearܭ
network code. The source node takes ܭ information packets as its input and outputs ܰ
coded message packets, basically adding packets as parity.

We describe this process as follows: Let the information packets ࢞ଵ, ,ଶ࢞ … , ࢞
(vectors of length ݊ over finite field ܨ) be the ܭ message packets of ࢞ ൌ ሾ࢞ሿ that
must be transmitted over the network. The source node uses a ሺܰ, ሻ block code toܭ
encode these ܭ information packets into ܰ outgoing coded packets, denoted as ࢞Ԣଵ, ,Ԣଶ࢞ … , ܰ Ԣே, where࢞ and ܭ

Ԣݔ ൌ ݃࢞
ୀଵ (9)

These redundant packets are generated by using randomly generated coefficients ݃
from a finite field ܨଶ. The set of coefficients ݃ଵ, ݃ଶ, … , ݃ can be referred to as the
encoding vector for ࢞ [6] and are sent in the information packet as the overhead.

This method can be represented by Fig. 3.

Fig. 3. Information packets with redundancy (parity) packets

Example 2: Assume in this example that the global encoding vector is sent along
with the information packet, ࢞, in its header. This overhead, however, is negligible
because the information packets are sufficiently large, therefore ݊ ൎ ݇.

. . .

n – packet size

k – message size header

N–batc
h

si
ze

redundancy packet

I

I

redundancy packet I

I

K
2t

710 S. von Solms, M.J. Grobler and A.S.J. Helberg

Let ࢞ ൌ ,ଵ࢞ ,ଶ࢞ … , information packets that must be transmitted over the network. The source node ܭ be the (ܨ vectors with the length of ݇ symbols over finite field) ࢞
applies a ሺܰ, ܭ ሻ forward error correcting block code to linearly combine theseܭ
information packets into ܰ coded packets, as can be seen in Fig. 3.

These packets are then transmitted by the source node, ܵ, into the network with a ݉݅݊ െ ݐݑܿ ܰ. Let ࢟ ൌ ,ଵ࢟ ,ଶ࢟ … , ே be the ܰ channel packets received by the࢟
receiver node, where

ݕ ൌ ݔߙ ே
ୀଵ ேݖߚ

ୀଵ (10)

The receiver only has to decode the ሺܰ, ሻ block code to successfully regenerate theܭ
sent data. The receiver can decode the message correctly when at most t errors occur,
where ݐ ൌ ሺܰ െ ሻ/2. This means that x is a classical error correcting code that canܭ
detect ሺܰ, ,ሻ and correct ሺܰܭ .ሻ/2 errorsܭ

For Example 2, the information rate of the network (݉݅݊ െ ݐݑܿ ܰ) is ܴ ൌ ேே ൌ 1,

where ܰ information symbols are sent into the network and ܰ channel symbols are
received.

4 Error Correction in Random Network Coding: Proposed
Method

Our proposed scheme for network error correction aims to eliminate:

1. the redundancy added to the source packet, or
2. the redundant packets added at the source.

By waiting for more channel packets, the receiver obtains additional information for
decoding that may be used for error correction. Thus, the network acts as an error
correction encoder. The coded information packets obtained by the receiver provides
the redundancy required for error correction. This method differs from that in Section
3, because no redundant information is added at the source node.

4.1 Network Configurations

We introduce a method where the min-cut between the source and the receiver nodes
in the network must be large enough to support the transmission of ܭ linearly
independent information packets, although ܰ channel packets will be used by the
receiver node.

According to [7], the receiver node would normally collect as many channel
packets as possible in order to decode the source message. Because of network
properties, such as the min-cut between source and receiver node, more than ܭ
linearly independent equations are redundant information.

 Error Correction with the Implicit Encoding Capability of Random Network Coding 711

We propose to use this redundant information received by the receiver node to
apply error correction to the source message. This means that redundant information
transmitted by the source node will no longer be necessary, because the network will
transmit sufficient redundancy to the receiver for error correction. ܭ independent information packets are sent from the source node where the
packets propagate through the network. The min-cut of the network remains ܭ,
therefore there exist ܭ edge-disjoint paths. The receiver then obtains ܰ channel
packets. The extra ሺܰ െ ሻ received packets are what we intend to use in order toܭ
correct any possible errors. The values of ܰ and ܭ are determined by the specific ሺܰ, ሻ linear block code used. These ܰ channel packets must consist of two sets ofܭ
linearly independent packets, of size ܭ and ሺܰ, .ሻ, respectivelyܭ

The first set of linearly independent packets is the traditional ܭ packets needed to
decode the sent message packets. ࢟ ൌ ࢟࢞ଵߙ ൌ ࡷ࢟ڭ࢞ଶߙ ൌ (11) ࡷ࢞ଷߙ

or

ௗ௧ݕ ൌ ,ݔࢻ
ୀଵ (12)

where ݕௗ௧ ൌ ሾݕሿ is a ݔ ܭ ݊ array formed by stacking the received message packets ࢟ଵ, ,ଶ࢟ … , ௗ௧ݕ as the rows of࢟ , where the subscript of ݕ indicates the j’th entry

of packet ݕ , ݅ ൌ 1, 2, . . . , .ܭ
The other set of linearly independent packets must be of size ሺܰ െ ሻ and will beܭ

used for error correction. ࢟ାࡷ ൌ ࡷା࢟ࡷା࢞ଵߙ ൌ ࡺ࢟ڭࡷା࢞ଶߙ ൌ ࡺ࢞ଷߙ (13)

or

௧௬ݕ ൌ ேݔߙ
ୀଵା , (14)

where ݕ௧௬ ൌ ൧ is a ሺܰݕൣ െ ሻܭ ൈ ݊array formed by stacking the received message

packets ࢟ଵା, ,ଶା࢟ … , ௧௬ݕ ே as the rows of࢟ where the subscript of ݕ indicates

the j’th entry of packet ݕ , ݅ ൌ 1 ,ܭ 2 ,ܭ . . . , ܰ.
These redundant ሺܰ െ message ܭ ሻ symbols are linear functions of the originalܭ

packets and will act as the parity symbols providing the platform for error detection
and correction. When the receiver obtains both sets of channel packets, it decodes the
messages as a ሺܰ െ ሻ block code. The receiver can decode the message correctlyܭ
when at most t errors occur, where ݐ ൌ ሺܰ, .ሻ/2ܭ

712 S. von Solms, M.J. Grobler and A.S.J. Helberg

4.2 Example 3

Example 2 revisited: Assume in this example that the global encoding vector is sent
along with information packet, ࢞, in its header. This overhead, however, is negligible
because the packets are sufficiently large, therefore ݊ ൎ ݇.

Fig. 4. Information packets without redundancy packets

Let ࢞ ൌ ,ଵ࢞ ,ଶ࢞ … , be (ܨ vectors with the length of ݇ symbols over finite field) ࢞
the ܭ information packets that must be transmitted over the network. The source node
does not apply a ሺܰ, information ܭ ሻ forward error correcting block code to theܭ
packets. The ܭ information packets are transmitted by the source node, S, into the
network with a ݉݅݊ െ ݐݑܿ information packets propagate through the ܭ The .ܭ
network; linear combinations are formed from them by intermediate nodes and the
receiver waits until it receives ܰ or more channel packets.

Let ࢟ ൌ ,ଵ࢟ ,ଶ࢟ … , ,ே be the ܰ message packets received by the receiver node࢟
where

ݕ ൌ ݔߙ ே
ୀଵ ேݖߚ

ୀଵ (15)

The receiver then only has to decode the ሺܰ, ሻ block code to successfully regenerateܭ
the sent data. The receiver can decode the message correctly when at most ݐ errors
occur, where ݐ ൌ ሺܰ െ ሻ/2. This means that x is an error correcting code that canܭ
detect ሺܰ െ ሻ and correct ሺܰܭ െ .ሻ/2 errorsܭ

It can be seen that exactly the same decoding process is used at the receiver end.
The difference is that less information is injected into the network. The min-cut of the
network is smaller and the information rate is ܴ ൌ ܭܰ ൏ 1 , ܭ ൏ ܰ

This method offers benefits in terms of energy efficiency, because less information is
injected into the network: the source node transmits ܭ packets instead of ܰ, into a
network with a ݉݅݊ െ ݐݑܿ ݊݅݉ instead of ,ܭ െ ݐݑܿ ܰ. Example 3 can by
summarized by Fig. 5:

. . .

n – packet size

k – message size header

K–batc
h

si
zeI

I

I

 Error Correction with the Implicit Encoding Capability of Random Network Coding 713

Fig. 5. Sent information messages for (a) concatenated and (b) Implicit Error Correction scheme

5 Analysis

In order to analyze the performance of the proposed and existing schemes, we
investigate four aspects of the methods:

1. Probability of receiving enough valid parity packets for decoding
2. Complexity of the decoding algorithms
3. Time delay of the decoding algorithms
4. The error correction capability of the methods in a network with a specific min-cut.

For the proposed method, the possibility exists that the channel packets obtained by
the receiver may not contain valid parity packets. This will prevent the receiver from
decoding the information successfully. We investigate the probability of receiving a
set of valid parity packets from a network so that this Implicit Error Correction
method can be applied effectively.

We assume that the network under consideration is a non-cyclic, generic, random
network as illustrated in Fig. 6. This network contains a single source node ܵ א ܸ, and
a single sink node, T א ܸ. The source node sends the ܭ data packets to the network,
which consist of intermediate nodes. The nodes in the network can send multiple
encoded packets to other nodes in the network, but only a selection of ݍ nodes
are connected to the receiver. The receiver node only receives a single encoded packet
from each of the ݍ nodes.

We generated a set of 1000 randomly generated networks in order to analyze the
Implicit Error Correction capabilities of it. These networks have the following
properties:

1. Finite field, ܨ.
2. Network size (number of nodes).
݊݅ܯ .3 െ ݐݑܿ .ܭ
4. Intermediate nodes consisting of nodes, where q is connected to the receiver, ݍ .
5. Each node in the network randomly and independently generates a linear

combination of its inputs.

. . .

n – packet size

k – message size header

K–batc
h

si
ze

. . .

n – packet size

k – message size header

N–batc
h

si
ze

redundancy packet

I

I

I

redundancy packet I

I

K

ba

I

I

2t

714 S. von Solms, M.J. Grobler and A.S.J. Helberg

Fig 6. Random Network which contains K source nodes, p + q intermediate nodes
(layer 1 and 2) and a single receiver

5.1 Probability of Decoding

The linear equations obtained by the receiver are evaluated to determine if the
received combinations are valid sets of parity packets. The average percentage of
valid sets received in each size network can be viewed in Fig. 7.

Fig. 6. Valid sets of Parity packets received in the network

It is clear that one can only expect to receive a guaranteed set of parity packets
with a network containing about 30 nodes. We have chosen a 30-node network for all
the following calculations and simulations, because a valid set of parity packets will
be guaranteed, under the parameters for network size and complexity as discussed.

_ _ _

T

Network

Source nodes

…

n1 np

Receiver node
Receiver connected to q
intermediate nodes

14 16 18 20 22 24 26 28 30
10

20

30

40

50

60

70

80

90

100
Probability of Decoding

Number of Nodes

P
er

ce
nt

ag
e

of
 v

al
id

 s
et

s
of

 p
ar

ity
 p

ac
ke

ts

 Error Correction with the Implicit Encoding Capability of Random Network Coding 715

5.2 Discussion of Complexity

In the Error Correction method proposed in Section III, the time complexity of the
decoding method is estimated to be ܱሺܰሻ, where all operations are in ܨ. As discussed
in Section IV.A, the receiver of the Implicit Error Correction method obtains ܰ
packets from the network. From these, data packets and valid parity packets must first
be calculated, and then decoded. The estimated complexity of this decoding algorithm
is ܱሺܰଶ െ .ଶሻܭ

It can be seen that the computing complexity of this method is higher than that of
the existing decoding method.

5.3 Time Delay

The cost of the higher computing complexity is an extended waiting period for
decoding. Fig. 8 shows the time of the decoding algorithm of the Implicit Error
Correcting method relative to the time for traditional decoding.

It is clearly visible that the time consumption of the implicit method is higher for
decoding. However, for very large block codes ሺ݊ ൏ 2000ሻ, the time consumption for
the Implicit Error Correcting method approaches that of the existing method.

Fig. 7. Time of decoding algorithm of implicit error correcting scheme relative to the time for
decoding described in Section 3

5.4 Error Correcting Capability

One advantage of the Implicit Error Correcting method is the fact that a t-error-
correcting code can be applied successfully to a network with ݉݅݊ െ ݐݑܿ instead ܭ
of a network with ݉݅݊ െ ݐݑܿ ܰ, where ݐ ൌ ሺܰ െ ሻ/2. This advantage can beܭ
seen in Fig. 9.

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 ti

m
e

lo
ng

er

Number of total packets (N)

Time of Implicit decoding relative to Existing Error decoding

716 S. von Solms, M.J. Grobler and A.S.J. Helberg

Fig. 8. Error correcting capability of the Implicit and Existing methods for a specified t- error
correcting code

6 Advantages

We have introduced a novel scheme that makes effective use of information implicitly
generated in the network to perform error correction. The redundant information
needed for error correction is generated in the network, and not sent from the source
node. This forward error correction method maps a set of information symbols to a set
of code symbols resulting in an information rate of less than 1.

The biggest advantage achieved by using the implicit encoding capabilities of
Random Network Coding is the fact that the source does not implement error
correction. Only the receiver applies error correction codes. This means that the
receiver can apply any error correction code it chooses (example: Hamming, Reed
Solomon etc.) without informing the source. The receiver bases the decision purely on
the information it receives. Another advantage of the Implicit Error Correcting
method is that the scheme allows greater error correcting capability than the existing
scheme for a network with the same min-cut, or vice versa. The requirements of the
network are reduced, both in connectivity (min-cut) and bandwidth required.

The time consumption due to decoding complexity concerning this method is the
biggest trade-off for the advantage of effective error correction in this scheme.

6 Conclusion

Encoding the information within the network, instead of transmitting the already
encoded codeword over the network leads to a saving in network bandwidth. This
method leads to an improvement in the network’s information rate. The saving of
energy may be of interest to energy constraint networks such as wireless sensor
networks.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1

2

3

4

5

6

7

8

9

10

Min- Cut

E
rr

or
 c

or
re

ct
in

g
ca

pa
bi

lit
y

(t
)

Error correcting capability of implicit and existing methods for specific Min-cut

Implicit method

Existing method

 Error Correction with the Implicit Encoding Capability of Random Network Coding 717

References

1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans.
on Information Theory 46, 1204–1216 (2000)

2. Ho, T., Koetter, R., Médard, M., Karger, D.R., Effros, M.: The benefits of coding over
routing in a randomized setting. In: Proc. IEEE Int. Symp. Information Theory,
Yokohama, 29 June-4 July 2003, p. 442 (2003)

3. Koetter, R., Médard, M.: Beyond routing: An algebraic approach to network coding.
IEEE/ACM Transaction on Networking 11, 782–796 (2003)

4. Silva, D., Kschischang, F.R., Koetter, R.: A Rank-Metric approach to error control in
random network coding. In: IEEE International Symposium on Information Theory, Nice,
France (June 2007)

5. Ho, T., Koetter, R., Médard, M., Effros, M., Shi, J., Karger, D.: Toward a random
operation of networks. Submitted to IEEE Trans. Inform. Theory (2004)

6. Fragouli, C., Le Boudec, J., Widmer, J.: Network coding: an instant primer. SIGCOMM
Comput. Commun. Rev. 36(1), 63–68 (2006)

7. Koetter, R., Kschischang, F.: Coding for errors and erasures in random network coding. In:
International Symposium on Information Theory (ISIT) (June 2007)

8. Cai, N., Yeung, R.W.: Network coding and error correction. In: Proceedings of IEEE
Information Theory Workshop, October 2002, pp. 119–122 (2002)

9. Yeung, R.W., Cai, N.: Network Coding, Algebraic Coding, and Network Error Correction.
In: Proc. Information Theory and Applications Workshop, La Jolla, CA (February 2006)

10. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M.: Resilient network
coding in the presence of Byzantine adversaries. In: Proc. 26th IEEE Int. Conf. on
Computer Commun., Anchorage, AK, May 2007, pp. 616–624 (2007)

11. Fragouli, C., Soljanin, E.: Network Coding Fundamentals. Foundations and Trends in
Networking 2(1) (2007)

12. Deb, S., Effros, M., Ho, T., Karger, D.R., Koetter, R., Lun, D.S., Médard, M., Ratnakar,
N.: Network Coding for Wireless Applications; A Brief Tutorial. In: International
Workshop on Wireless and Ad-hoc Networks (IWWAN) (May 2005)

13. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge (2003)

	Error Correction with the Implicit Encoding Capability of Random Network Coding
	Introduction
	Network Model
	Random Network Coding

	Error Correction in Random Network Coding: Traditional Method
	Redundant Symbols
	Redundant Packets

	Error Correction in Random Network Coding: Proposed Method
	Network Configurations
	Example 3

	Analysis
	Probability of Decoding
	Discussion of Complexity
	Time Delay
	Error Correcting Capability

	Advantages
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

