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Abstract. In this paper, we present a technique for a network error correcting 
code using Random Network Coding. We introduce a novel error correction 
scheme that uses the implicit encoding capability of Random Network Coding. 
This scheme does not add redundancy to the data prior to transmission, but ads 
redundancy based on information already contained in the network.  Random 
Network Coding within a large network generates enough redundant 
information to perform error correction on transmitted data.  
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1   Introduction 

The concept of Network Coding was first introduced by Ahlswede et al. in 2000 [1]. 
Instead of simply forwarding data in a network, as in traditional routing, they 
proposed that nodes may recombine several input packets into one or more output 
packets. In [1], the combinations formed by the nodes are based on a specific 
topology.  

The concept of Random Network Coding was introduced by Ho et al. in [2]. Their 
approach provides an improvement in robustness [5] where the success of information 
reception does not depend on receiving packets that contain the specific transmitted 
information, but on receiving enough linearly independent packets [6]. Knowledge of 
the linear combinations of the information contained in each data packet is used to 
solve a set of simultaneous equations to obtain the transmitted data. 

Random Network Coding, described in [2] works as follows: All the nodes in the 
network, except the receiver node, perform independent random linear mappings of 
their inputs. This creates independent linear combinations that are then forwarded to 
the next node, where once again random linear combinations are formed from the 
inputs of the node. The outputs are chosen independently and randomly and must be 
non- zero. The receiver node of the network then obtains a series of independent 
linear combinations which it can use to decode the transmitted data. The receiver has 
to wait a certain amount of time in order to receive a set of equations that can be used 
to decode the transmitted message. The receiver node of the network only needs to 
know the overall linear combination of the source processes in each of the incoming 
packets. This information is provided by a coding vector that is included in each 
message overhead [7].  
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A Random Network Coding environment is not necessarily error free. This 
disadvantage means that the network can be very sensitive to errors [3]. A single error 
packet has the potential to infect the whole network and corrupt other packets used by 
the receiver for decoding. When a corrupted packet is linearly combined with 
legitimate packets, it can corrupt all the information contained in that packet.  

It is possible to address these shortcomings by implementing error correction in the 
network. An error correction code will be able to correct and detect data packets 
corrupted due to additive errors. This will improve the robustness of the network 
where we will be able to obtain the correct information, even when only partially 
correct information is received. 

Yeung and Cai [8] constructed such a linear network code with error-correcting 
capabilities. In erroneous network channels, Network Error Correction can be applied 
so that errors occurring in the network can be detected and corrected. Lower and 
upper bounds are also defined for the specific error-correcting capability of the code. 
Jaggi et al. [10] addressed the problem of error correction by adding redundancy to 
the source information that satisfies certain constraints and achieves optimal rates. 
This redundancy will enable the receiver node to correct network errors. 

It can be seen that the topic of error correction in Random Network Coding is of 
current interest. However, the construction of the error correcting codes is in a 
concatenated form where error correcting encoding takes place prior to transmission. 
The implicit encoding capabilities of Random Network Coding for error correction 
codes are not considered. This fact opens up possibilities in the field of network error 
detection and correction in Random Network Coding which we aim to exploit. 

In this paper, we aim to exploit the implicit encoding capabilities of a network 
implementing Random Network Coding. This method will encode the information 
sent by the source within the network, instead of transmitting a codeword encoded at 
the source. 

2   Network Model 

We adopt the notation used in [2], [3] of an acyclic network model. The network is 
represented by a directed graph ܩ ൌ ሺܸ, .ሻܧ  ܸ is the set of nodes in the network and ܧ the set of edges in ܩ which represents the communication channels. ܵ א ܸ 
represents the source node and T א V the sink node in the multiple unicast network. 
The source node sends messages selected from a source alphabet, ܼ. Let ܺ be the 
finite set of code alphabet for the network where ܺ א ܼ in a finite field ܨ. Each edge, ሺܽ,  ܾሻ א  in the network has unit capacity; therefore it is able to transmit a single ,ܧ
unit of information per unit time.  
 
Definition 1: Information Rate (R) is a measure of the average amount of information 
that is being carried by a symbol [1]. Information Rate is represented by information 
symbols sent from the source node into the network, and channel symbols received by 
the receiver from the network. 
 ܴ ൌ ݊݅ݐܽ݉ݎ݂݊݅ ݈݄݁݊݊ܽܿݏ݈ܾ݉ݕݏ ݏ݈ܾ݉ݕݏ   
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Theorem 1: Min-Cut Max-Flow: A network with a single source, ܵ, and receiver, ܶ, 

is given. This connection can be described as ܿ ൌ  ቀܵ,  ܶ,  ܺ൫ܵ,  ܶ൯ቁ. This network 

problem can only be solved if and only if the rate of the connection R(c) is less than 
or equal to the minimum value of all the cuts between S and T [3]  ݉ܽݓ݈݂ݔሺܶሻ  ܴሺܿሻ. (1) 

Fragouli et al. stated in [11] that when a network ܩ ൌ ൫ܸ, ൯ with node Sܧ  א V and 
any non-source node ܶ א ܸ has a min-cut between S and T of K and a connection of c; 
then the information can be sent from ܵ to ܶ at a maximum rate ܴሺܿሻ of ܭ. They 
prove that there exist exactly ܭ edge-disjoint paths between S and T when the min-cut 
between them is ܭ, therefore:  ܴሺܿሻ ൌ  (2) ܭ

and ݉ܽݓ݈݂ݔሺܶሻ   (3) .ܭ

By the min-cut max-flow theorem, it can be seen that equation (3) is a required 
condition for any node ܶ to solve the message sent from the source node. This means 
that for ܭ independent information packets to be sent successfully to the receiver, ܭ 
edge-disjoint paths must exist in the network that connects the source to the receiver. 

According to [7], if ܭ linearly independent packets are sent into the network, the 
min-cut between the source and the receiver in the network must be large enough to 
support their transmission. This means that the rate of information transmission 
between the source node and the receiver node is upper-bounded by the min-cut 
between the nodes in the network [10]. 

2.1   Random Network Coding 

Assume that a packet contains a sequence of n symbols from the finite field ܨ. Let ݔଵ, ,ଶݔ … , ݔ  be the ܭ information packets (vectors of length n over finite field ܨ) 
transmitted by the source node ܵ into the network with a ݉݅݊ െ ݐݑܿ  ,ଵݕ Let .ܭ ,ଶݕ … ,   .ᇱ channel packets received by the receiver node [4]ܭ ᇱ be theݕ

Random Network Coding is implemented where each network node randomly and 
independently selects coefficients from a finite field ܨ. As described in [12], each 
information packet ݕ  in the network formed are random linear combinations of ݔଵ, ,ଶݔ … , ݔ ,  

ݕ ൌ  ࢞ߙ
ୀଵ  (4) 

where ߙ is called the global encoding vector of ݔ. References [12] as well as [7] 
assume that this vector is sent along with x in its header. We will adopt the same 
assumption and send the global encoding vector inside the information packet.  
 

Example 1: Suppose that the source node, ܵ, sends ܭ information packets into the 
network with a ݉݅݊ െ ݐݑܿ  ,ݔ Each information packet .ܭ ݅ ൌ 1,2, … ,   has a ܭ
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Fig. 1. Information Packets sent from the source through the network 

 
length n that consists of a information message (length ݇) along with the header 
(length ݊ െ ݇ሻ, as can be seen in Fig 1. 

The overhead (header) sent with the information packet has a size ݊ െ ݇ ൌ ܭ ଶ݈݃  .bits. This is negligibly small if the packet size, ݊, is sufficiently large [12] ݍ
Let the receiver obtain ܭԢ channel packets:  ݕଵ ൌ ଶݕଵݔଵߙ ൌ ᇱݕڭଶݔଶߙ ൌ ݔଷߙ  (5) 

where ݔ, ݅ ൌ 1,2, … ,   areߙ are the K information packets sent from the source and ܭ
random coefficients. Equation (5) can also be written as ݕ ൌ  (6) ,ݔߙ

where ݔ ൌ ሾݔሿ is the ܭ ൈ ݊ transmitted array formed by stacking the information 
packets ݔଵ, ,ଶݔ … , ݔ  as the rows of x, where the subscript of ݔ  indicates the j’th 
entry of packet ݔ, ݅ ൌ 1,2, … , ݕ ,Also .ܭ ൌ ሾݕሿ is the ܭԢ ൈ ݊ received array formed 
by stacking the received channel packets ݕଵ, ,ଶݕ … ,  ᇱ as the rows of y where theݕ
subscript of  y୧୨ indicates the j’th entry of packet ݕ, ݅ ൌ 1,2, … , Ԣܭ Ԣ. α is aܭ ൈ  ܭ
matrix over ܨ corresponding to the overall transfer function of the network from the 
source to the receiver [4].   

Linearly dependent packets (packets with linearly dependent global encoding 
vectors) are useless for the decoding of the channel messages at the receiver. The 
min-cut between the source node and receiver nodes must therefore be large enough 
to support the transmission of the ܭ linearly independent packets. When the receiver 
receives ܭ channel packets with linearly independent global encoding vectors, it will 
be able to decode the ܭ message packets [12]. 

It can be clearly seen that the information rate of this network is  ܴ ൌ  ൌ 1,  

where K information symbols are sent into the network ሺ݉݅݊ െ  ݐݑܿ  ܭ ሻ andܭ 
channel symbols are received. 

. . .    

n – packet size

x K – batch size

k – message size header

I

I

Ixi
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3   Error Correction in Random Network Coding: Traditional 
Method  

We now assume that errors occur in the network. We assume that packet errors occur 
on the edge of the network. If ܭ information packets are sent over the network, let ݖ denote error packets applied to the packet ݇ א ሼ1, … ,  ሽ. Equation (6) thenܭ
becomes 

ݕ ൌ  ݔߙ 
ୀଵ  ݖߚ

ୀଵ  (7) 

or ݕ ൌ ݔߙ   (8) ,ݖߚ

where ݖ ൌ  ሾݖଵ் , ଶ்ݖ  ,  . . . ,  ்ሿ is an array consisting of all the erroneous packetsݖ 
introduced in the network and ߚ is the overall transfer matrix of these packets from 
the source to destination. If ݖ ൌ 0, no errors were applied to message packet ݅ א ሼ1, … ,  .ሽܭ

3.1   Redundant Symbols 

Jaggi et al. described in [10] that the errors that occur in the network can be thought 
of as a second source. The information received at the receiver is linear combinations 
of the information of the source as well the error information. This can be seen in (7). 

Reference [10] addressed the topic of extracting the source information from the 
received mixture of channel information and errors. He addressed this problem by 
adding redundancy to the source information that satisfies certain constraints. This 
information packet is constructed as in Fig. 2 [10]: 

 
Fig. 2. Information Packet with redundancy symbols 

Each packet contains a sequence of ݊ symbols from the finite field ܨ. Out of the ݊ 
symbols in the information packet; ݊ߜ symbols are redundancy added by the source. 
The ݊ߜ redundant symbols are chosen as parity symbols in order for the receiver to 
decode the channel packet. Also included in the packet is the identity matrix, ܫ, that 
acts as the global encoding vector by reflecting the linear combinations formed on the 
channel packet. 

n – packet size

k – message size

x I

δn – redundant symbols

header
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3.2   Redundant Packets 

Definition 2: A network code is t-error-correcting if it can correct all ߛ-errors for ߛ   i.e., if the total number of errors in the network are at most t, then the source ,ݐ 
message can be recovered by the sink node ܶ א ܸ [8].  
 

Definition 3: A block code is a rule for converting a sequence of source symbols of 
length ܭ into a transmitted sequence of length ܰ symbols [13]. 
 

Yeung and Cai [9] correct errors in network coding not by adding redundancy to each 
information packet sent, but by adding redundant packets at the source to be sent over 
the network. They use ሺܰ,  ሻ linear block codes and consider these as a linearܭ
network code. The source node takes ܭ information packets as its input and outputs ܰ 
coded message packets, basically adding packets as parity. 

We describe this process as follows: Let the information packets ࢞ଵ, ,ଶ࢞ … ,  ࢞
(vectors of length ݊ over finite field ܨ) be the ܭ message packets of ࢞ ൌ ሾ࢞ሿ that 
must be transmitted over the network. The source node uses a ሺܰ,  ሻ block code toܭ
encode these ܭ information packets into ܰ outgoing coded packets, denoted as ࢞Ԣଵ, ,Ԣଶ࢞ … , ܰ Ԣே, where࢞   and ܭ

Ԣݔ ൌ  ݃࢞
ୀଵ  (9) 

These redundant packets are generated by using randomly generated coefficients ݃ 
from a finite field ܨଶ. The set of coefficients ݃ଵ, ݃ଶ, … , ݃ can be referred to as the 
encoding vector for ࢞ [6] and are sent in the information packet as the overhead.  

This method can be represented by Fig. 3. 
 

 
Fig. 3. Information packets with redundancy (parity) packets 

 
Example 2: Assume in this example that the global encoding vector is sent along 
with the information packet, ࢞, in its header. This overhead, however, is negligible 
because the information packets are sufficiently large, therefore ݊ ൎ ݇.  
 

. . .    

n – packet size

k – message size header

N–batc
h 

si
ze

redundancy packet

I

I

redundancy packet I

I

K
2t



710 S. von Solms, M.J. Grobler and A.S.J. Helberg 

Let ࢞ ൌ ,ଵ࢞ ,ଶ࢞ … ,  information packets that must be transmitted over the network. The source node ܭ be the (ܨ vectors with the length of ݇ symbols over finite field) ࢞
applies a ሺܰ,  ܭ ሻ forward error correcting block code to linearly combine theseܭ
information packets into ܰ coded packets, as can be seen in Fig. 3. 

These packets are then transmitted by the source node, ܵ, into the network with a ݉݅݊ െ ݐݑܿ  ܰ. Let ࢟ ൌ ,ଵ࢟ ,ଶ࢟ … ,  ே be the ܰ channel packets received by the࢟
receiver node, where  

ݕ ൌ  ݔߙ ே
ୀଵ  ேݖߚ

ୀଵ  (10) 

The receiver only has to decode the ሺܰ,  ሻ block code to successfully regenerate theܭ
sent data. The receiver can decode the message correctly when at most t errors occur, 
where ݐ ൌ ሺܰ െ  ሻ/2. This means that x is a classical error correcting code that canܭ
detect ሺܰ, ,ሻ and correct ሺܰܭ   .ሻ/2 errorsܭ

For Example 2, the information rate of the network (݉݅݊ െ ݐݑܿ  ܰ) is ܴ ൌ ேே ൌ 1,  

where ܰ information symbols are sent into the network and ܰ channel symbols are 
received. 

4   Error Correction in Random Network Coding: Proposed 
Method 

Our proposed scheme for network error correction aims to eliminate: 

1. the redundancy added to the source packet, or 
2. the redundant packets added at the source. 

By waiting for more channel packets, the receiver obtains additional information for 
decoding that may be used for error correction. Thus, the network acts as an error 
correction encoder. The coded information packets obtained by the receiver provides 
the redundancy required for error correction. This method differs from that in Section 
3, because no redundant information is added at the source node. 

4.1   Network Configurations  

We introduce a method where the min-cut between the source and the receiver nodes 
in the network must be large enough to support the transmission of ܭ linearly 
independent information packets, although ܰ channel packets will be used by the 
receiver node.  

According to [7], the receiver node would normally collect as many channel 
packets as possible in order to decode the source message. Because of network 
properties, such as the min-cut between source and receiver node, more than ܭ 
linearly independent equations are redundant information.  
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We propose to use this redundant information received by the receiver node to 
apply error correction to the source message. This means that redundant information 
transmitted by the source node will no longer be necessary, because the network will 
transmit sufficient redundancy to the receiver for error correction.  ܭ independent information packets are sent from the source node where the 
packets propagate through the network. The min-cut of the network remains ܭ, 
therefore there exist ܭ edge-disjoint paths. The receiver then obtains ܰ channel 
packets. The extra ሺܰ െ  ሻ received packets are what we intend to use in order toܭ
correct any possible errors. The values of ܰ and ܭ are determined by the specific ሺܰ,  ሻ  linear block code used. These ܰ channel packets must consist of two sets ofܭ
linearly independent packets, of size ܭ and ሺܰ,   .ሻ, respectivelyܭ

The first set of linearly independent packets is the traditional ܭ packets needed to 
decode the sent message packets. ࢟ ൌ ࢟࢞ଵߙ ൌ ࡷ࢟ڭ࢞ଶߙ ൌ  (11) ࡷ࢞ଷߙ

or 

ௗ௧ݕ ൌ  ,ݔࢻ
ୀଵ  (12) 

where ݕௗ௧ ൌ ሾݕሿ is a ݔ ܭ ݊ array formed by stacking the received message packets ࢟ଵ, ,ଶ࢟ … , ௗ௧ݕ   as the rows of࢟ , where the subscript of ݕ indicates the j’th entry 

of packet ݕ  , ݅ ൌ  1,  2,  . . . ,  .ܭ 
The other set of linearly independent packets must be of size ሺܰ െ  ሻ and will beܭ

used for error correction. ࢟ାࡷ ൌ ࡷା࢟ࡷା࢞ଵߙ ൌ ࡺ࢟ڭࡷା࢞ଶߙ ൌ ࡺ࢞ଷߙ  (13) 

or 

௧௬ݕ ൌ  ேݔߙ
ୀଵା , (14) 

where ݕ௧௬ ൌ ൧ is a ሺܰݕൣ െ ሻܭ ൈ ݊array formed by stacking the received message 

packets ࢟ଵା, ,ଶା࢟ … , ௧௬ݕ ே as the rows of࢟  where the subscript of ݕ indicates 

the j’th entry of packet ݕ  , ݅ ൌ  1  ,ܭ  2  ,ܭ  . . . ,  ܰ. 
These redundant ሺܰ െ  message ܭ ሻ  symbols are linear functions of the originalܭ

packets and will act as the parity symbols providing the platform for error detection 
and correction. When the receiver obtains both sets of channel packets, it decodes the 
messages as a ሺܰ െ  ሻ block code. The receiver can decode the message correctlyܭ
when at most t errors occur, where ݐ ൌ ሺܰ,    .ሻ/2ܭ
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4.2   Example 3 

Example 2 revisited: Assume in this example that the global encoding vector is sent 
along with information packet, ࢞, in its header. This overhead, however, is negligible 
because the packets are sufficiently large, therefore ݊ ൎ ݇.  

 

Fig. 4. Information packets without redundancy packets 

Let ࢞ ൌ ,ଵ࢞ ,ଶ࢞ … ,  be (ܨ vectors with the length of ݇ symbols over finite field)  ࢞
the ܭ information packets that must be transmitted over the network. The source node 
does not apply a ሺܰ,  information ܭ ሻ forward error correcting block code to theܭ
packets. The ܭ information packets are transmitted by the source node, S, into the 
network with a ݉݅݊ െ ݐݑܿ   information packets propagate through the ܭ The .ܭ
network; linear combinations are formed from them by intermediate nodes and the 
receiver waits until it receives ܰ or more channel packets.  

Let ࢟ ൌ ,ଵ࢟ ,ଶ࢟ … ,  ,ே be the ܰ message packets received by the receiver node࢟
where 

ݕ ൌ  ݔߙ ே
ୀଵ  ேݖߚ

ୀଵ  (15) 

The receiver then only has to decode the ሺܰ,  ሻ block code to successfully regenerateܭ
the sent data. The receiver can decode the message correctly when at most ݐ errors 
occur, where ݐ ൌ ሺܰ െ  ሻ/2. This means that x is an error correcting code that canܭ
detect ሺܰ െ ሻ  and correct ሺܰܭ െ    .ሻ/2  errorsܭ

It can be seen that exactly the same decoding process is used at the receiver end. 
The difference is that less information is injected into the network. The min-cut of the 
network is smaller and the information rate is  ܴ ൌ ܭܰ ൏ 1 , ܭ ൏ ܰ 

 

This method offers benefits in terms of energy efficiency, because less information is 
injected into the network: the source node transmits ܭ packets instead of ܰ, into a 
network with a ݉݅݊ െ ݐݑܿ  ݊݅݉ instead of ,ܭ െ ݐݑܿ  ܰ. Example 3 can by 
summarized by Fig. 5: 

. . .    

n – packet size

k – message size header

K–batc
h 

si
zeI

I

I
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Fig. 5. Sent information messages for (a) concatenated and (b) Implicit Error Correction scheme 

5   Analysis 

In order to analyze the performance of the proposed and existing schemes, we 
investigate four aspects of the methods: 

1. Probability of receiving enough valid parity packets for decoding 
2. Complexity of the decoding algorithms 
3. Time delay of the decoding algorithms 
4. The error correction capability of the methods in a network with a specific min-cut. 

For the proposed method, the possibility exists that the channel packets obtained by 
the receiver may not contain valid parity packets. This will prevent the receiver from 
decoding the information successfully. We investigate the probability of receiving a 
set of valid parity packets from a network so that this Implicit Error Correction 
method can be applied effectively.  

We assume that the network under consideration is a non-cyclic, generic, random 
network as illustrated in Fig. 6. This network contains a single source node ܵ א ܸ, and 
a single sink node, T א ܸ. The source node sends the ܭ data packets to the network, 
which consist of  intermediate nodes. The nodes in the network can send multiple 
encoded packets to other nodes in the network, but only a selection of ݍ   nodes 
are connected to the receiver. The receiver node only receives a single encoded packet 
from each of the ݍ nodes. 

We generated a set of 1000 randomly generated networks in order to analyze the 
Implicit Error Correction capabilities of it. These networks have the following 
properties: 

1. Finite field,  ܨ. 
2. Network size (number of nodes). 
݊݅ܯ .3 െ ݐݑܿ   .ܭ
4. Intermediate nodes consisting of   nodes, where q is connected to the receiver, ݍ   .
5. Each node in the network randomly and independently generates a linear 

combination of its inputs.  

. . .    

n – packet size

k – message size header
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Fig 6. Random Network which contains K source nodes, p + q intermediate nodes 
(layer 1 and 2) and a single receiver 

5.1   Probability of Decoding 

The linear equations obtained by the receiver are evaluated to determine if the 
received combinations are valid sets of parity packets. The average percentage of 
valid sets received in each size network can be viewed in Fig. 7. 

 
Fig. 6. Valid sets of Parity packets received in the network 

It is clear that one can only expect to receive a guaranteed set of parity packets 
with a network containing about 30 nodes. We have chosen a 30-node network for all 
the following calculations and simulations, because a valid set of parity packets will 
be guaranteed, under the parameters for network size and complexity as discussed. 
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5.2   Discussion of Complexity 

In the Error Correction method proposed in Section III, the time complexity of the 
decoding method is estimated to be ܱሺܰሻ, where all operations are in ܨ. As discussed 
in Section IV.A, the receiver of the Implicit Error Correction method obtains ܰ 
packets from the network. From these, data packets and valid parity packets must first 
be calculated, and then decoded. The estimated complexity of this decoding algorithm 
is ܱሺܰଶ െ  .ଶሻܭ

It can be seen that the computing complexity of this method is higher than that of 
the existing decoding method.  

5.3   Time Delay 

The cost of the higher computing complexity is an extended waiting period for 
decoding. Fig. 8 shows the time of the decoding algorithm of the Implicit Error 
Correcting method relative to the time for traditional decoding. 

It is clearly visible that the time consumption of the implicit method is higher for 
decoding. However, for very large block codes ሺ݊ ൏ 2000ሻ, the time consumption for 
the Implicit Error Correcting method approaches that of the existing method. 

 
Fig. 7. Time of decoding algorithm of implicit error correcting scheme relative to the time for 
decoding described in Section 3 

5.4   Error Correcting Capability 

One advantage of the Implicit Error Correcting method is the fact that a t-error-
correcting code can be applied successfully to a network with ݉݅݊ െ ݐݑܿ   instead ܭ
of a network with ݉݅݊ െ ݐݑܿ  ܰ, where ݐ ൌ ሺܰ െ  ሻ/2. This advantage can beܭ
seen in Fig. 9.  
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Fig. 8. Error correcting capability of the Implicit and Existing methods for a specified t- error 
correcting code 

6   Advantages  

We have introduced a novel scheme that makes effective use of information implicitly 
generated in the network to perform error correction. The redundant information 
needed for error correction is generated in the network, and not sent from the source 
node. This forward error correction method maps a set of information symbols to a set 
of code symbols resulting in an information rate of less than 1. 

The biggest advantage achieved by using the implicit encoding capabilities of 
Random Network Coding is the fact that the source does not implement error 
correction. Only the receiver applies error correction codes. This means that the 
receiver can apply any error correction code it chooses (example: Hamming, Reed 
Solomon etc.) without informing the source. The receiver bases the decision purely on 
the information it receives. Another advantage of the Implicit Error Correcting 
method is that the scheme allows greater error correcting capability than the existing 
scheme for a network with the same min-cut, or vice versa. The requirements of the 
network are reduced, both in connectivity (min-cut) and bandwidth required. 

The time consumption due to decoding complexity concerning this method is the 
biggest trade-off for the advantage of effective error correction in this scheme.  

6   Conclusion  

Encoding the information within the network, instead of transmitting the already 
encoded codeword over the network leads to a saving in network bandwidth. This 
method leads to an improvement in the network’s information rate. The saving of 
energy may be of interest to energy constraint networks such as wireless sensor 
networks.   
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