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Abstract. Security and vulnerabilities in wireless ad hoc networks have
been considered at different layers, and many attack strategies have been
proposed, including denial of service (DoS) through the intelligent jam-
ming of the most critical packet types of flows in a network. This paper
investigates the effectiveness of intelligent jamming in wireless ad hoc
networks using the Dynamic Source Routing (DSR) and TCP protocols
and introduces an intelligent classifier to facilitate the jamming of such
networks. Assuming encrypted packet headers and contents, our classi-
fier is based solely on the observable characteristics of size, inter-arrival
timing, and direction and classifies packets with up to 99.4% accuracy
in our experiments. Furthermore, we investigate active analysis, which is
the combination of a classifier and intelligent jammer to invoke specific
responses from a victim network.
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1 Introduction

Wireless ad hoc networks have fundamentally altered today’s battlefield, with
applications ranging from unmanned air vehicles to randomly deployed sen-
sor networks. This, in conjunction with the proliferation of standard and non-
standard architectures and algorithms, has led to the development of countless
protocols to support those applications. Additionally, the widespread use of en-
cryption and other anti-sensing techniques has made it increasingly more difficult
for network researchers to characterize wireless ad hoc networks.

Security and vulnerabilities in wireless ad hoc networks have been considered
at different layers, and many attack strategies and counter-measures have been
proposed. One of the most common types of attacks considered is denial of service
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(DoS), where a jammer may completely or partially prevent communication in
the network. Although ad hoc networks are particularly prone to DoS from
internal attacks, we are interested in DoS from external attackers due to the
assumed use of encryption techniques.

This paper considers the intelligent sensing and jamming problem in a wireless
ad hoc network. In this paper, we interchange the terms jammer and classifier,
as they are the components of the same entity. We assume that all traffic is
encrypted including the headers, and that a jamming node in the vicinity of the
network attempts to classify the traffic (i.e., determine the type of the packets),
and disrupt the operation of the network by selectively jamming the packets
that would inflict the most damage. Throughout this paper, we will assume a
layered sensing architecture [1], where lower layer (physical and MAC layer)
sensors provide the jammer with key information regarding the traffic observed,
such as the packet sizes, packet inter-arrival times, and direction. We define
direction as a function of a received packet, and two packets are said to be
traveling in the same direction if they were emitted from the same source node.
The jamming node can then use these observations, historical traffic data, and
key characteristics of known protocols to classify packets, and possibly engage
in targeted jamming. Our contributions are twofold. First, we investigate the
effectiveness of intelligent jamming of packets in a wireless ad hoc network using
the Dynamic Source Routing (DSR) protocol [4] through a test scenario in ns-2
[6], the canonical network simulator. More specifically, we aim to quantify how
intelligent a classifier should be to properly facilitate a jammer. Secondly, we
develop algorithms for the automatic detection and classification of both DSR
and TCP packets in encrypted wireless ad hoc networks. We assume both packet
contents and header information are encrypted and thus our characterization of
DSR and TCP is based solely on observable packet characteristics of size, inter-
arrival timing, and direction.

The remainder of this paper is organized as follows: Section 2 describes the
motivation for our work, previous research, and our contributions. Section 3
illustrates our network model and related assumptions. In Section 4 we detail
the impact of packet classification accuracy on the effectiveness of intelligent
jamming. We then describe our classifier for the so-called historical analyzer
in Section 5 with the respective simulation results in Section 6. In Section 7
we discuss the utilization of intelligent jamming to actively analyze a network.
Finally we summarize our work and explain future directions in Section 8.

2 Motivation, Previous Work, Contributions

2.1 Motivation

Automatic sensing and classification can, in turn, facilitate jamming of a network
through the selection of the most critical packet types and packet flows, providing
opportunities to perform stealth denial of service attacks by allowing the network
to barely operate. Although it is possible to jam packets in a victim network by
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simply emitting a strong interfering signal, there would be two significant draw-
backs. First, such a strong signal could easily deplete the jammer node’s energy
resources, and second, the victim network could easily detect the signal and take
anti-jamming measures. Alternatively, it has been shown that if a jammer could
first identify the network protocols and jam only packets that could inflict the
most damage, jamming could be significantly more efficient. Additionally, a jam-
mer could adjust the level and frequency of its jamming in order to avoid being
detected by the victim network. Through the use of intelligent sensing and jam-
ming, significant jamming gains could be achieved in an enemy network.

Note that in order to realize these gains, the jammer would need to be able to
classify the packets. In this paper, we first demonstrate the potential of intelligent
jamming in a DSR ad hoc network, and then develop algorithms for historical
analysis (classification of observed packets) in such a network in the presence of
TCP traffic. It is important to note that we do not address the problem of online
classification, which is the classification of the packets in real-time as they are
being transmitted, in this paper. The focus of our historical analysis algorithms
is rather on providing reliable reference data that could later be used as an input
for the online classification algorithms.

DSR was selected as a protocol to be characterized because of its popular-
ity among mobile ad hoc network routing protocols. TCP was selected as the
communication protocol due its ubiquity among a majority of existing commu-
nication networks. Therefore, we believe that TCP traffic with DSR routing
constitutes an important step for our methods, although we plan to expand our
work to include other ad hoc routing protocols and traffic types as well.

2.2 Previous Work

Previous work for the classification of packets in encrypted ad hoc networks has
been done for ad hoc networks using the Ad Hoc On Demand Distance Vector
(AODV) routing protocol and TCP [1].

It has been shown that size plays an important role in identifying packets
in encrypted wireless ad hoc networks. The variability of packet sizes in net-
works allows specific sizes to be correlated with certain packet types. Brown [1]
developed a probabilistic size-only classifier to classify packets in AODV/TCP
networks. The key idea here is that certain packet types tend to be associated
with particular packet sizes, even though there may be some additional variations
from network to network. These size variations can be modeled as probability
distributions with peaks around the most typical values for each packet type.
However, the main disadvantage to using the size-only classifier is the severe
dependence on initial seed values for the probabilistic model. The authors in [1]
attempt to work around this problem by implementing a historical timing and
sequence analyzer that would in turn update the probability distribution for the
size-only classifier. However, this updating mechanism still has partial reliance
on size metrics, posing a recursive dependence on the initial size seed values.
In this paper we present a classification algorithm that can be used to seed an
online size classifier.
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The authors in [1] develop a historical classifier that analyzes a histogram of
packets for specific sequences based on inter-arrival timing of packets and their
respective sizes. The results from their historical classifier are then used to update
their size-only classifier, but are invalid given a more general traffic scenario. To
the best of our knowledge, their algorithms do not explicitly consider networks
utilizing a variable size congestion window for TCP, limiting the senders in their
network model to transmitting only a single data packet a time. We address this
issue in the classification algorithm we present later in this paper.

Additionally, there has also been some work on application layer packet classi-
fication in wired networks [8] using techniques based on Hidden Markov Models.

2.3 Contributions

The contributions of this paper can be summarized as follows. First, we present
the first study of intelligent sensing and jamming in an encrypted DSR/TCP
ad hoc network and quantify the impact of classification accuracy on the effec-
tiveness of intelligent jamming. Our work also develops a classifier (historical
analyzer) for encrypted DSR/TCP wireless ad hoc networks that is capable
of handling a fluctuating congestion window with an accompanying dynamic
DATA-ACK round trip time estimator to seed the classifier. This is accomplished
through a pooling approach in conjunction with the use of direction information
in classifying the observed packet sequences, in addition to the use of size and
inter-arrival times proposed in [1].

3 Network Model

The network described in this section is the network configuration and topology
used in simulations throughout this paper.

We consider a layered view of sensing/jamming as in [1], where each layer
provides services to the layer above and makes use of the services from the layer
below. We are particularly interested in the network and transport layers, where
an external attacker is able to observe packet sizes and inter-arrival times.

We utilize the network simulator ns-2 to run our simulations and use the
ns-2 generated traffic traces as input for our classifier algorithms. Our network
consists of two mobile ad hoc nodes with DSR as the routing protocol to maintain
connectivity. There is a third mobile ad hoc node, denoted as the tap node (or
jamming node), which passively listens to the network and collects information
related to the packets heard in the air, saving the observed packet information
(size, inter-arrival time, and direction) for use by a historical analyzer. All of the
nodes are equipped with standard 802.11 wireless devices and use RTS/CTS to
establish access to the wireless medium. It is also assumed that the tap node
is also capable of jamming packets in the air before they are delivered at the
target.

Because of the layered view of sensing, we are assuming that the MAC layer
is capable of distinguishing between MAC layer control packets (i.e. RTS/CTS)
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and network or transport layer packets, and the MAC layer packets are filtered
so that the only packets recorded are network layer and transport layer packets.
The details of the actual mechanisms for distinguishing MAC level packets in a
completely encrypted wireless network are beyond the scope of this paper.

As with previous work ([1],[8]), we also assume for simplicity that, we are
dealing with one connection at a time in the network. Simultaneous connections
create a situation in which the tap node would be observing packets from one
connection overlapping with packets from another connection. In the presence of
multiple connections, we would first need to demultiplex the traffic flows before
applying our classifier.

4 Intelligent Jamming

Recall that intelligent jamming is the selective jamming of the packets that
could inflict the most damage in a network. In this section, we explore the
effectiveness of such an intelligent jammer under various packet classification
accuracy assumptions. Our goal is to determine how intelligent, or accurate, a
classifier must be to maximize the effectiveness of a jammer for our network.
We intend to present simulation results for various scenarios, where the jammer
utilizes a naive packet classifier with varying degrees of accuracy. The results
will illustrate the effectiveness of the jammer as measured by the delay between
packet transmissions and deliveries.

We will be simulating our network model where a source node attempts to
communicate with a destination node and the tap node attempts to jam com-
munications. To better understand the jamming scenario we intend to use, a
fundamental understanding of the DSR protocol is required. When a source
node A wishes to transmit a packet to a destination node B and A does not
have a route to B, then A will initiate a process known as Route Discovery to
find such a route to B. During this process, A will broadcast a Route Request
(RREQ) to its neighbors and this request will be forwarded until it reaches the
intended destination at B. Node B will then reply with a Route Reply, which
contains the full route from the source at A to the destination at B. However,
in the event that the request does not reach B or the reply does not reach A, A
will timeout, wait a certain back-off period, and then retransmit a RREQ up to
16 total times before giving up and assuming there is no route to B.

Using this knowledge, we intend to jam packets during the Route Discovery
process as the source will attempt to establish a single connection to its des-
tination. Note that we are only interested in jamming packets transmitted by
the source and so replies transmitted by the destination would be successfully
received by the source. Simulating this scenario in ns-2 involved the addition of
a naive probabilistic packet classifier to the mobile nodes in which packets were
either classified correctly or incorrectly based on randomly sampling a proba-
bility distribution consistent with the preset classifier accuracy. Packet jamming
was then simulated by dropping packets at the MAC layer.

Thus, with a perfectly accurate classifier, we expect that all of the 16 DSR
RREQ packets would be jammed and consequently result in connection failure.
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Fig. 1. Percent of connections established during intelligent jamming simulations

However, as the accuracy of the classifier decreases, the chance that a DSR
RREQ packet is allowed to pass greatly increases. The probability that at least
1 DSR RREQ packet is misclassified (and Route Discovery succeeds) is plotted in
Figure 1 as the dashed line. Thus, with a 95% accurate classifier, there is a 60%
chance that at least one RREQ out of the 16 will reach the target. Attempting
to block a DSR Route Discovery with a 90% accurate classifier proves to be
virtually futile, as there is an 81.5% chance that at least one RREQ will reach
the target. We note, however, that it is possible to cause significant delays in the
network even with relatively low classification accuracy.

We ran simulations for classifier settings ranging from 80.0% accurate to
100.0% accurate, incrementing by 0.5% accuracy. 1000 simulations were run
at each interval and the average delay before a connection was established was
recorded in seconds. Each simulation exhibited the same traffic pattern to pro-
vide control over the experiment, where each simulation was ran for 100 seconds
and consisted of an FTP connection starting at time 0.0 seconds and ending at
60.0 seconds. Upon starting the simulation, the source node attempts to estab-
lish connectivity with its destination node. Because the simulation and traffic
both start at time 0.0, the source has no knowledge of any routes and thus has
no route to its destination and must initiate DSR Route Discovery to find such
a route. At this time, the tap node attempts to listen for and jam any perceived
DSR packet that is being transmitted over the wireless medium from the source
to the destination.

The average percentage of overall connections that is allowed to establish a
connection is plotted in Figure 1 as the solid line for accuracy levels from 80.0
to 100.0. Taking into consideration Figures 1 and 2, it can be seen that there is
no tradeoff between delay and accuracy or connections jammed and accuracy.
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Fig. 2. Average number of DSR packets jammed before connection established

While increasing accuracy beyond 95% results in significant expected jammer
performance, actual rate of increase in performance, observed from simulation, is
not as significant. Additionally, significant increase in average connection delay
is only observed with accuracy levels above 99%. At 95% accuracy, we observed
an average connection delay of 36 seconds, no connection 71% of the time, and
80% of the time it took at least 14 DSR packets out of the 16 maximum allowed
before a connection was established. Thus, we believe that a starting threshold
as motivation for our algorithm accuracy of 95% is reasonable, though we intend
to exceed this threshold.

We should note, however, that we are not establishing an absolute threshold
for classifier algorithms in general for many reasons. The first reason being that
our network model is concerned with two nodes, and that classifier algorithms
in a network model consisting of many nodes and hops may operate similarly
with lower accuracy or may require higher accuracy. The second reason is that
it may be sufficient for a jammer to achieve an average connection delay that
correlates with lower classifier accuracy. Thirdly, jammer restrictions may limit
a jammer to jamming only a certain number of packets in a given time frame.
Firm accuracy thresholds should be appropriately considered for other varying
contexts.

5 Classification Algorithm

In this section we describe our method of classifying packets in the network based
on various observable metrics. Due to the assumed encryption, the only available
metrics from the packet characteristics are sizes and inter-arrival times. Addi-
tionally, a node may also distinguish packets from different senders/receivers
based on information such as signal strength or angle of arrival, even though the



630 T. Dempsey, G. Sahin, and Y.T. (Jade) Morton

addresses in the packets are encrypted. Accordingly, we will also introduce the
notion of direction as an input for our classifier.

Because the size-only classifier has heavy dependence on the seeded values,
it has been suggested that no assumptions of the network conditions should
be made and as a result the probability distributions for packet sizes should
be initially flat [3]. Consequently, inter-arrival timing between packets would be
the only metric to identify sequences, and from these results the seed values of
size can be established. The obvious advantage of this classifier is that it allows
packets to claim their distinctive peaks in the probability distributions without
claiming unnecessary sizes and causing the conflict presented in the previous
subsection. The timing-only classifier is typically used only after a sufficient
number of packets have been collected in a histogram of packets. On the other
hand, though, the disadvantage in this scheme is similar to that of the size
classifier as the classifier has heavy dependence on initial seed values for the mean
inter-arrival times for the packet sequences. Additionally, the authors in [1] do
not address the general traffic model that allows a sender to transmit multiple
packets at a time. Their algorithms assume the sender must wait for a data
packet’s ACK before transmitting the next data packet. Though [1] addresses the
possible presence of intermediate packets as the result of co-mingled connections,
intermediate packets in a single-connection environment are the result of a source
node sending multiple data packets before receiving an ACK.

To resolve the issues presented in the previous work, we make no assumption
of network conditions related to packet sizes and encryption levels, [3]. How-
ever, rather than relying on timing alone, we also make use of generic packet
size characteristics. We use the dataline threshold from [1] in addition to other
metrics, termed filters in our classifier. The term dataline simply refers to a size
threshold that separates data packets from control packets, while filters are sim-
ply additional logic to either support or negate possible sequences within the
packet stream.

Another additional filter that we use in our classifier is direction compatibility.
The use of direction as a filter in the classification of packets is critical when
considering a more general traffic model. Though we defer the details of handling
this problem until the later, we illustrate the necessity of direction with the
following observed sequence of packet sizes in bytes: 66, 66, and 66.

Assume for now that the time differences between the three 66-byte packets
exactly match those of the TCP startup sequence while the packet sizes also
match particularly well. The scheme in [1] would then classify these packets as the
TCP startup sequence. However, consider now that we also take into account the
direction of the packets, and observe that all of these consecutive packets actually
originated from the same source node - this would contradict the classification
of the TCP startup sequence, as each packet in the startup sequence travels
in the opposite direction as the previous packet. As it turns out, these three
packets are actually three consecutive ACK packets from previously transmitted
data packets. Considering sequences alone using the proposed algorithms in [1]
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would cause the classifier to perform much worse than the accuracy threshold
previously determined in this paper.

Furthermore, using the knowledge that an ARP (Address Resolution Proto-
col) packet is the smallest packet in the network, we can search the histogram
of packet sizes for the smallest packet size. Also, given that each data packet
has an ACK and we have enough packets, we can search the histogram of the
observed packet sizes for the size underneath the dataline that is most used,
which would represent the most common ACK packet size. Once the ARP and
ACK sizes have been estimated, we can use this information in leveraging se-
quence classifications. For example, if we are certain that the ARP size is correct
then we know a series of packets cannot be an ARP sequence unless their sizes
correspond with the estimated size. Likewise, the same can be done when en-
countering a packet matching the ACK size. In the case that a network utilizes
multiple ACK sizes, extending the algorithm to identify multiple common ACK
sizes is straight-forward.

5.1 Handling Fluctuating Congestion Window Sizes

As mentioned, neither [1], nor [3] explicitly handles varying congestion window
sizes, limiting the sender’s transmission rate. Here, we describe our initial solu-
tion to handling a varying congestion window size for a single-connection. The
operation of the data packet pool, or more simply the pool, is based on TCP’s
behavior of sending data packets only after a connection has been established
and not closing a connection until all ACK have been received at the source.

The pool is similar to a FIFO data structure with a fixed size limit and some
other major differences. Unlike queues, the first element in the pool is pushed
out as new elements are inserted. All elements that reside in the pool are also
subject to being removed based on the amount of time spent in the pool. Both
the pool-size limit and timeout limits are implemented to allow the pool to be
self-maintained during classification.

As the classifier identifies data packets, it inserts those packets into the next
available slot in the pool. Ideally, the first perceived ACK packet the classifier
will now encounter corresponds to the first data packet, which resides in the first
element of the pool. Thus, once the classifier encounters an ACK (based on the
perceived size as described above), it consults the first element in the pool for
its corresponding data packet. The time interval is calculated and then matched
with the DATA-ACK sequence. If the match probability is high enough, then
the packets are classified as the DATA-ACK sequence, and the data packet is
removed from the pool. Otherwise, the data packet remains as the first element
of the pool, and the perceived ACK packet is not classified and left as an ignored
packet.

5.2 Cross-Protocol Detection

We have developed another initial enhancement to the classifier specific to DSR,
which involves cross-protocol sequence detection. Occasionally it is helpful to
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“reset” the network as [1] describes in order to start with fresh packet streams.
If it is the case that the enemy network has been reset to the point where routes
need to be re-established and ARP caches have timed out, then a new cross-
protocol sequence can be detected that is as follows: DSR RREQ, ARP REQ,
ARP REP, and DSR RREP. The impact of the detection and classification of
more cross-protocol sequences should be further investigated.

5.3 Dynamic Mean Delay Calculation

As stated earlier, a major drawback to the size classifier is the potential inaccu-
racy of the seed mean values. Similarly, a major drawback to the time classifier
is the potential inaccuracy of the seed mean delay values. We have developed an
initial round trip time (RTT) estimation algorithm based on the pool concept
to provide a better seed mean delay value for the DATA-ACK sequence. This
enhancement is necessary since we are handling a fluctuating congestion win-
dow size, and longer ACK delays are acceptable. We will see later in this paper
an alternative approach to dynamically calculating this mean using an active
analysis approach.

6 Numerical Results

This section details the numerical results for our classification algorithm. Our
classifier was tested against various packet streams using ns-2 generated traffic
traces from a number of different simulations.

We ran four separate simulations in ns-2 to produce four varying traffic traces
that could be used as input to the classifier algorithms. The goal was to pro-
duce traffic traces with enough packets to properly measure the performance of
our algorithms. The first three simulations consisted of a single FTP connection
between the two DSR nodes of our network model. Each of these three simula-
tions was run for various lengths of time, ranging in duration between 20 and
40 second transfers, using a TCP congestion window of one. The fourth simula-
tion was run, similarly with an FTP connection, with a 20 second transfer, but
was allowed to have a varying TCP congestion window. The role of the fourth
simulation is to determine how well our algorithm performs when faced with
more general network conditions. The tap node plays no role in this simulation
scenario.

Because we are utilizing data that was generated by our simulations, we know
the actual packet types that we will be attempting to classify. Thus, measuring
the performance of our algorithm is simply comparing the actual packet type
with the guessed packet type emitted by our algorithm. A confusion matrix
was constructed to illustrate the performance of our classifier and is shown in
Figure 3.

Recall we developed a classifier that utilized only the metric of packet timing,
as well as additional logic known as filters. These filters provide the capability of
either confirming or negating possible sequences based on either direction and/or
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Fig. 3. Our algorithm results for DSR/TCP

other dynamically calculated thresholds. Additionally, we implement the concept
of a data packet pool to handle more general traffic models. We also implemented
an algorithm to analyze the history of packets and calculate an average round
trip time to seed the DATA-ACK interval and standard deviation. The confusion
matrix in Figure 3 shows the results of our timing with filters classifier. Initial
seed values were pre-calculated from all four ns-2 simulation traces to provide
best possible results.

Of the 2563 total packets, 2468 could be classified while 80 were either ignored
or unclassified. The 80 packets that were ignored or unclassified are simply a
result of the filters and are a good indication that the algorithm is not forcing
infeasible classifications of packets, thus reducing the number of false positives.
Note that not classifying some of the packets is acceptable, even desirable when
the classification may be unreliable, since the function of the historical analyzer
is to provide accurate reference data for the use of online classifiers, rather than
classify all observed packets. Accordingly, excluding the unclassified packets, the
classifier simulations above represent 99.4% accuracy.

Our timing with filters classifier is still vulnerable to failure when the inter-
val seeds are inaccurate, but is more robust than the historical schemes in [1]
since the DATA-ACK round trip time is calculated dynamically. Simulations
that utilize the pool but not the dynamic interval algorithm result in overall
classification of merely 51.4%. Note that even this rating is extremely inflated
due to the high number of easy to classify data packets and is a clear indication
that incorrect seed mean delay values are detrimental to the performance of the
classifier.

Additional filters and metrics should be developed and added to the classifier
to help refine the distinction between known sequences. Further work is being
done to develop such additions.

7 Active Network Analysis

In Section 4 we introduced the concept of an intelligent jammer and discussed
that it could be used to engage in targeted jamming against a victim network.
In Section 5 we focused on developing classification algorithms to determine
packet types based on observable packet metrics. In this section, we combine the
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two concepts of jamming and classification to discuss how to analyze networks
actively, by utilizing a jammer to invoke network behavior that can later be
exploited by the classifier.

7.1 Controlling the Network

For a jammer to control a victim network, it must be able to dictate when
and how the traffic flows between nodes in the network. The ability to control
a network depends on the jammer’s ability to target and jam specific packet
types. Because of TCP congestion control, lost ACK packets will force a sender
to retransmit data packets, severely impacting throughput and round trip times.
Consecutive lost ACK results in the sender timing out, believing the connection
is lost or broken, and relying on higher layers to restore the connection.

Fig. 4. Network behavior - Jamming first 2 of 3 TCP ACK packets

Active analysis can be used to intentionally introduce delay into the network.
To illustrate this concept, we simulated a jamming scenario in which TCP ACK
packets sent back to the sender were being actively jammed. More specifically,
between the time of 5 and 7 seconds, every 1st and 2nd out of 3 ACKs were
jammed. This resulted in a significant delay in the network over the 2 second
jam period as the round trip time increased by 67%, from 150ms to 250ms,
seen in Figure 4. While simply jamming an ACK forces TCP to retransmit a
data packet and shrink its send rate, jamming two consecutive ACKs tricks
TCP into thinking the network is severely congested and further slows the rate
at which a sender can transmit. This results in a situation where the sender
must now wait longer to retransmit the second data packet, causing the round
trip time statistics to increase. Once the targeted jamming ceased, TCP thinks
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Fig. 5. Network behavior - Invoking DSR Route Discovery

congestion has returned to normal and increases the number of packets a sender
can transmit, resulting in faster round trip times than during the jam period.

Active analysis can also be used to invoke specific responses from a network.
To illustrate this concept, we ran a simulation in which the network was sub-
jected to blanketed jamming. Recall that blanketed jamming, or brute-force
jamming, means that all packets in the network are jammed, regardless of size,
source, or time. While this is an inefficient approach and we concentrate on in-
telligent jamming in this paper, blanketed jamming for a small duration of time
can invoke an interesting network response. In this simulation, we setup blan-
keted jamming for a period of 2 seconds. Unlike the targeted jamming scenario
that resulted in increased network delay for a short period of time, the blan-
keted jamming scenario resulted in complete network disruption. Packet type
information was recorded while jamming and we observed that four consecutive
TCP DATA packets from the sender were jammed followed shortly by two DSR
RREQ packets during the two second jam period. This means that TCP conges-
tion control forced the sender into believing the connection was lost because it
never received ACKs for the data packets, and relied upon DSR at the network
layer to discover a new route.

Knowing that TCP gives up after four consecutive ACK time outs in ns-2,
we setup another simulation in which the jammer targets four consecutive data
packets and specifically invokes the DSR Route Discovery mechanism from the
victim network. The jamming period was designated to begin at 5 seconds and
end whenever the four data packets were jammed and the first DSR packet
was sensed. By allowing the DSR Route Discovery mechanism to complete, the
victim network can immediately re-establish communication and we can observe
the delay caused by simply jamming four consecutive data packets. The network
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disruption we observed was approximately 800ms for simply jamming the four
data packets. The network behavior is plotted in Figure 5. From this point, with
the DSR Route Discovery mechanism invoked, the intelligent jammer could even
possibly engage in jamming DSR RREQ packets, similar to the simulations ran
in 4 to introduce even more network delay.

Controlling a victim network is useful because with the ability to invoke the
DSR Route Discovery mechanism, it allows our classifier to start recording pack-
ets from the beginning of a flow and ensure accurate packet and sequence classifi-
cation. Additionally, it also allows the classifier to observe rare packet sequences.
By invoking DSR Route Discovery, we reset the network and were able to ob-
serve both the DSR RREQ-REPLY and TCP Startup sequences, which can
potentially provide an online classifier with more accurate training data.

7.2 Lomb Periodogram

In Section 5 we discussed that our improved classification algorithm was capable
of dynamically estimating the RTT value for the TCP DATA-ACK sequence.
However, there may be traffic scenarios in which the congestion window varies
so much over time that an average estimation over the entire histogram is not
an accurate portrayal of RTT for the DATA-ACK sequence. Thus, our classifier
must be able to change its perception of the TCP DATA-ACK inter-arrival tim-
ing over time. One such solution would be to utilize a sliding window mechanism,
in which the RTT value was constantly updated by only computing the estimate
over say the last 10 packets, for example. A sliding window mechanism could
be implemented using the data pool concept that we already utilize in our algo-
rithm. However, the pool may become unreliable in situations where the window
slides faster than it is able to detect DATA-ACK sequences. As a result, a more
reliable method of obtaining a sliding RTT value needs to be implemented.

Fortunately, we can make use of techniques already developed for other ap-
plications. For example, [7] uses signal processing techniques to analyze traffic
and determine transmission timing intervals and round trip times in wireless net-
works. The author in [7] utilizes a technique known as the Lomb Periodogram [5],
which is a signal processing function capable of identifying significant frequency
patterns within signals whose samples are unequally distributed. The author in
[7] notes that in some experiments, significant peaks that occur in the Lomb
Periodogram result correspond to the transmission intervals for UDP flows and
round trip time for TCP flow. In other experiments, however, the significant
peaks instead correspond to transmission intervals for TCP.

We conducted experiments with the Lomb Periodogram using the network
model for this paper for maximum TCP congestion window sizes ranging from
1 to 5. We found that the Lomb Periodogram actually identified the TCP trans-
mission intervals, as evidenced by the close correlation between the actual trans-
mission intervals and the Lomb Periodogram result from Table 1.

Recall that with a TCP congestion window of one, a source must wait for a
previously sent data packet to arrive before transmitting the next packet. This
forced waiting behavior creates a base case in which the transmission interval
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Table 1. Lomb periodogram experiment results

ns-2 Avg RTT Avg TX Interval Lomb Result Max TCP Congestion Window

5.1ms 5.83ms 5.88ms 1
12.9ms 5.74ms 5.77ms 2
15.8ms 5.72ms 5.85ms 3
23.3ms 5.73ms 5.86ms 4
27.5ms 5.73ms 5.97ms 5

and round trip time converge to similar values. We are particularly interested in
this case because it provides a robust approach to dynamically calculating RTT,
despite the requirement of a single packet congestion window. A single packet
window, however, can be achieved utilizing active analysis. By instructing an
intelligent jammer to jam specific TCP packets and trick senders into reducing
their send rates, the Lomb Periodogram could be very powerful in establishing
an accurate round trip time threshold over time.

8 Conclusion

Automatic sensing and classification of packets is critical for supporting intelli-
gent jamming in wireless ad hoc networks with encrypted traffic. In this paper,
we have studied the impact of the classification accuracy on the performance of
an intelligent jammer in a DSR/TCP ad hoc network. We found that in order to
facilitate such intelligent jamming, we must provide the jammer a classifier that
is at least 95% accurate in the classification of encrypted packets. We then de-
veloped an offline classifier that utilizes the metrics of size, inter-arrival timing,
sequence, and direction in the process of identifying packet types and sequences.
While our classifier is capable of handling a fluctuating congestion window and
does not rely on a seed delay value for the DATA-ACK packet sequence, it still
relies on seed delay values for the other sequences. We also utilize active analysis
to provide our classifier with a robust DATA-ACK delay estimator, the Lomb
Periodogram.

We are currently extending our work in various directions. We are investi-
gating alternative approaches to the probabilistic modeling of the inter-arrival
delays of packet sequences. Furthermore, we are looking into the development
and application of other filters to refine our classification process. Our long-term
goal is to extend our work to include other ad hoc protocols and traffic types.
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