
SPECS: Secure and Privacy Enhancing

Communications Schemes for VANETs

T.W. Chim1, S.M. Yiu1, L.C.K. Hui1, Zoe L. Jiang1, and Victor O.K. Li2

1 Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong

{twchim,smyiu,hui,ljiang}@cs.hku.hk
2 Department of Electrical and Electronic Engineering,

The University of Hong Kong, Pokfulam Road, Hong Kong
vli@eee.hku.hk

Abstract. Vehicular ad hoc network (VANET) is an emerging type of
networks which facilitates vehicles on roads to communicate for driving
safety. The basic idea is to allow arbitrary vehicles to broadcast ad hoc
messages (e.g. traffic accidents) to other vehicles. However, this raises the
concern of security and privacy. Messages should be signed and verified
before they are trusted while the real identity of vehicles should not be
revealed, but traceable by authorized party. Existing solutions either rely
heavily on a tamper-proof hardware device, or cannot satisfy the privacy
requirement and do not have an effective message verification scheme.
In this paper, we provide a software-based solution which makes use of
only two shared secrets to satisfy the privacy requirement and gives lower
message overhead and at least 45% higher successful rate than previous
solutions in the message verification phase using the bloom filter and the
binary search techniques. We also provide the first group communication
protocol to allow vehicles to authenticate and securely communicate with
others in a group of known vehicles.

Keywords: Secure vehicular sensor network, authentication, batch
verification, bloom filter, group communications.

1 Introduction

A vehicular ad hoc network (VANET) is also known as a vehicular sensor net-
work by which driving safety is enhanced through inter-vehicle communications
or communications with roadside infrastructure. It is an important element of
the Intelligent Transportation Systems (ITSs) [1]. In a typical VANET, each ve-
hicle is assumed to have an on-board unit (OBU) and there are road-side units
(RSU) installed along the roads. A trusted authority (TA) and maybe some other
application servers are installed in the backend. The OBUs and RSUs commu-
nicate using the Dedicated Short Range Communications (DSRC) protocol [2]
over the wireless channel while the RSUs, TA, and the application servers com-
municate using a secure fixed network (e.g. the Internet). The basic application
of a VANET is to allow arbitrary vehicles to broadcast safety messages (e.g.

J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 160–175, 2010.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

SPECS: Secure and Privacy Enhancing Communications Schemes 161

road condition, traffic accident information) to other nearby vehicles and RSU
such that other vehicles may adjust their travelling routes and RSU may in-
form the traffic control center to adjust traffic lights for avoiding possible traffic
congestion. This paper focuses on inter-vehicle communications.

Like other communication networks, security issues have to be well-addressed.
For example, the message from an OBU has to be integrity-checked and authen-
ticated before it can be relied on. Otherwise, an attacker can replace the safety
message from a vehicle or even impersonate a vehicle to transmit a fake safety
message. For example, an attacker may impersonate an ambulance to request
other vehicles to give way to it or request nearby RSUs to change traffic lights to
green. Besides, privacy is another important issue in recent years. A driver may
not want others to know its driving routes by tracing messages sent by its OBU.
Thus an anonymous communications protocol is needed. While being anony-
mous, a vehicle’s real identity should be able to be revealed by a trusted party
when necessary. For example, the driver who sent out fake messages causing an
accident should not be able to escape by using an anonymous identity.

In terms of integrity-checking and authentication, digital signature in con-
ventional public key infrastructure (PKI) [3] is a well accepted choice. However,
requiring a vehicle to verify the signatures of other vehicles by itself as in works
like [4] induces two problems as mentioned in [5]. First, the computation power
of an OBU is not strong enough to handle all verifications in a short time, espe-
cially in places where the traffic density is high. Second, to verify a message from
an unknown vehicle involves the transmission of a public key certificate which
causes heavy message overhead. Therefore, the general approach is to let the
nearby RSU to help a vehicle to verify the message of another. The volume of
signatures to be verified can be very huge (every vehicle is expected to broadcast
a safety message every few hundred ms [6]). An efficient method for verifying a
batch of signatures within a short period of time is desirable.

Related problems have been addressed in two recent works [5, 7]. In [7], the
IBV protocol was proposed for vehicle-to-RSU communications. The RSU can
verify a large number of signatures as a batch using just three pairing operations
(see the Preliminaries Section for what a pairing operation is). However, their
work has some limitations. First, their protocol relies heavily on a tamper-proof
hardware device, installed in each vehicle, which preloads the system-wide secret
key. Once one of these devices is cracked, the whole system will be compromised.
Second, a vehicle’s real identity can be traced by anyone, thus the protocol does
not satisfy the privacy requirement. Third, their protocol has a flaw such that
a vehicle can use a fake identity to avoid being traced (anti-traceability attack)
or even impersonate another vehicle (impersonation attack 1). Forth, in their
batch verification scheme, if any of the signatures is erroneous, the whole batch
will be dropped. This is inefficient because most signatures in the batch may
actually be valid, thus may imply a not satisfactory successful rate. Finally, the
IBV protocol is not designed for vehicle-to-vehicle communications.

1 Refer to [8] for the attacks.

162 T.W. Chim et al.

In a more recent work [5], the RAISE protocol was proposed for vehicle-to-
vehicle communications. The protocol is software-based. It allows a vehicle to
verify the signature of another with the aid of a nearby RSU. However, no batch
verification can be done and the RSU has to verify signatures one after another.
On the other hand, to notify other vehicles whether a message from a certain
vehicle is valid, a hash value of 128 bytes needs to be broadcasted. There can
be tens up to thousands of signatures within a short period of time, thus the
notification messages induce a heavy message overhead.

Although the basic idea in an VANET is to allow unknown vehicles to broad-
cast safety message to one another, like other ad hoc network applications, there
are scenarios (e.g. car racing, police patrolling, and tour travelling) which should
allow a group of known vehicles to communicate securely among themselves.
None of the existing solutions provide such a protocol.

In this paper, we propose two Secure and Privacy Enhancing Communications
Schemes for vehicular sensor networks (SPECS). Our schemes can handle “ad
hoc messages” (those sent out by arbitrary vehicles) as well as allow vehicles
that know one another in advance to form a group and send “group messages”
securely among themselves. In summary, our schemes have the following features:
1) Our schemes are software based and do not rely on any special hardware. 2)
By establishing shared secrets with RSU and TA on the handshaking phase, a
vehicle is allowed to use a different pseudo identity for each session (or message)
to protect its privacy while the real identity is traceable only by TA. We also
show that impersonation attack is not feasible in our schemes. 3) We make
use of the techniques of binary search in RSU message verification phase and
bloom filter to replace hash values in notification messages to reduce the message
overhead substantially and enhance the effectiveness of the verification phase.
4) Any vehicle can form a group with other vehicles after an initial handshaking
phase with a nearby RSU and then can authenticate and communicate with one
another securely without the intervention of RSU even after moving into the
region of another RSU.

We provide a security analysis on our schemes and an anlysis on the effec-
tiveness of using bloom filter to replace hash values in the notification messages.
Through the analysis and extensive simulation, we show that our schemes can
reduce the message overhead and increase the successful rate by at least 45%
while the additional overhead is insignificant when compared to the existing
solutions.

2 Problem Statement

System model and assumptions: Recall that a vehicular network consists of on-
board units (OBUs) installed on vehicles, road-side units (RSUs) along the roads,
and a trusted authority (TA). We focus on the inter-vehicle communications over
the wireless channel. We assume the followings: (1) The TA is always online
and trusted. RSUs and TA communicate through a secure fixed network. To
avoid being a single point of failure or a bottleneck, redundant TAs which have

SPECS: Secure and Privacy Enhancing Communications Schemes 163

identical functionalities and databases are installed. (2) The RSUs have higher
computation power than OBUs. (3) The RSU to Vehicle Communication (RVC)
range is at least twice of the Inter-Vehicle Communication (IVC) range to ensure
that if an RSU receives a message, all vehicles receiving the same message are
in the feasible range to receive the notification from the RSU. (4) There exists a
conventional public key infrastructure (PKI) for initial handshaking. The public
key of the TA PKTA is known by everyone. The public key of vehicle Vi PKVi

is known by the TA. Also any RSU R broadcasts its public key PKR with
hello messages periodically to vehicles that are travelling at the RVC range of
it. Thus PKR is known by all vehicles nearby. There is no need for vehicles to
know the public keys of other vehicles to avoid message overhead for exchanging
certificates. (5) The real identity of any vehicle is only known by the TA and
itself but not by others.

Security requirements: We aim at designing schemes to satisfy the following
security requirements: (1) Message integrity and authentication: A vehicle should
be able to verify that a message is indeed sent and signed by another vehicle
without being modified by anyone. (2) Identity privacy preserving: The real
identity of a vehicle should be kept anonymous from other vehicles and a third-
party should not be able to reveal a vehicle’s real identity by analysing multiple
messages sent by it. (3) Traceability: Although a vehicle’s real identity should
be hidden from other vehicles, if necessary, the TA should have the ability to
obtain a vehicle’s real identity.

3 Preliminaries

Our schemes are pairing-based and defined on two cyclic groups with a bilinear
mapping [9]. We briefly introduce what a bilinear map is and will discuss the
basics on bloom filter which we apply in the RSU notification phase.

3.1 Bilinear Maps

Let G be a cyclic additive group and GT be a cyclic multiplicative group. Both
groups G and GT have the same prime order q. The mapping ê : G×G → GT is
called a bilinear map if it satisfies the following properties:

1. Bilinear: ∀P, Q, R ∈ G and ∀a, b ∈ Z, ê(Q, P + R) = ê(P + R, Q) = ê(P, Q) ·
ê(R, Q). Also ê(aP, bP) = ê(P, bP)a = ê(aP, P)b = ê(P, P)ab.

2. Non-degenerate: There exists P, Q ∈ G such that ê(P, Q) �= 1GT
.

3. Computable: There exists an efficient algorithm to compute ê(P, Q) for any
P, Q ∈ G.

The bilinear map ê can be constructed on elliptic curves. Each operation for
computing ê(P, Q) is a pairing operation. Pairing operation is the most expensive
operation in this kind of cryptographic schemes. The fewer the number of pairing
operations, the more efficient the scheme is. The groups G and GT are called
bilinear groups. The security of our schemes relies on the fact that the discrete

164 T.W. Chim et al.

logarithm problem (DLP) on bilinear groups is computationally hard, i.e., given
the point Q = aP , there exists no efficient algorithm to obtain a by given P
and Q. The implication is that we can transfer Q in an open wireless channel
without worrying that a (usually some secret) can be known by the attackers.

3.2 Bloom Filter

A bloom filter is a method for representing a set A = a1, a2, ..., an of n elements
to support membership queries. The idea is to allocate a vector v with m bits,
initially all set to 0, and then choose k independent hash functions, h1, h2, ..., hk,
each with range 1, ..., m. For each element a ∈ A, the bits at the positions h1(a),
h2(a), ..., hk(a) in v are set to 1 (A particular bit might be set to 1 multiple
times). To answer if a value b is in A, we check the bits at positions h1(b), h2(b),
..., hk(b). If any of them is 0, then b is definitely not in the set A. Otherwise
we conjecture that b is in the set although there is a certain probability that we
are wrong (called a false positive). After inserting n keys into the vector with
m bits with k hash functions, the probability that a particular bit is still 0 is
(1 − 1

m)kn ∼ e−
kn
m assuming that on any input value, the hash functions pick

each position with equal probability. Hence the probability of a false positive
is (1 − (1 − 1

m)kn)k ∼ (1 − e−
kn
m)k. Let f(k) = (1 − e−

kn
m)k and let g(k) =

lnf(k) = kln(1−e−
kn
m). By finding dg

dk and making dg
dk = 0, it can be shown that

to minimize the probability of having false positives, k should be set to mln2
n .

4 Our Solutions - SPECS

This section presents our proposed SPECS schemes. There are some initial pa-
rameters to be generated by TA using the following steps. This needs to be done
once for the whole system unless the master key, or the real identity of a vehicle
are believed to be compromised, or TA wants to update the parameters and the
master key periodically to enhance the security level of the system.

(1) TA chooses G and GT that satisfy the bilinear map properties. (2) TA ran-
domly picks s ∈ Zq as its master key and computes Ppub = sP as its public key.
The public parameters {G, GT, q, P , Ppub} are publicly accessible by all RSUs
and vehicles. (3) TA assigns each vehicle a real identity RID ∈ G and a pass-
word PWD. The drivers are informed about them during network deployment
or during vehicle first registration.

The schemes can be divided into the following modules:

(A) Initial handshaking: This module is executed when a vehicle meets a new
RSU. The vehicle authenticates itself with the TA via RSU. Note that TA is the
only authorized party to know the real identity of the vehicle, so TA will pass
information to RSU to allow RSU to verify the vehicle’s signature even if it uses
pseudo identity to sign the message. Also, RSU will generate a shared secret
with the vehicle. If this is the first time the vehicle authenticates itself with the
TA, TA will also pass its master key s and a shared secret to the vehicle. This
only needs to be done once in the whole journey. To increase the security level, s

SPECS: Secure and Privacy Enhancing Communications Schemes 165

is not preloaded into any hardware on the vehicle like [7]. For the shared secret
with RSU, a new secret is generated every time the vehicle moves into the region
of another RSU.

For ad hoc messages, we have the following modules:

(B) Message signing: When a vehicle wants to send out a message, it first
creates a pseudo identity together with the signing key. This can be done per
message to increase the difficulty of attackers to trace its real identity. Then, it
signs the message using the signing key of the pseudo identity.

(C) Batch verification: This module is used by the RSU to verify a set of
messages using only two pairing operations in a batch mode. We also describe
how to generate a notification broadcast message using bloom filter and how to
handle the case in which there are some invalid signatures in the batch (recall
that in [7], once there is an invalid signature in the batch, the whole batch of
signatures are assumed to be invalid and ignored).

(D) Real identity tracking: This module is used by TA to reveal the real identity
of the sender of a given message.

For group messages, we have the following modules:

(E) Group key generation: This module is used when a set of vehicles want to
form a group. A group secret key will be generated by the TA and forwarded by
an RSU.

(F) Group message signing and verification: This module shows how to gener-
ate a group message so that the group members can verify the signature without
the help of an RSU. Note that to reveal the real identity of the sender of a group
message by the TA, we can apply the same procedure as for ad hoc message.

4.1 Initial Handshaking

We use the notations ENCZ(M), DECZ(M) and SIGZ(M) to denote encrypt-
ing, decrypting and signing, respectively, message M using the key Z from now
on. The detailed processes in this module are as follows:

1. When a vehicle Vi meets the first RSU R, it encrypts its RID and PWD
using the TA’s public key PKTA and sends ENCPKT A(RID, PWD) to the
RSU which forwards it to the TA.

2. The TA verifies RID and PWD. If they are valid, it generates a shared
secret ti for Vi and computes Vi’s ID Verification Public Key as V PKi =
ti⊕RID. TA then passes V PKi to the RSU to enable it to verify signatures
from Vi even if Vi uses pseudo identity to sign the message. The TA then
stores the (RID, ti) pair into its repository and forwards PKVi , V PKi and
X = ENCPKVi

(s, V PKi, SIGSKTA(s, V PKi)) to the RSU, where PKR and
PKVi are conventional public keys of the RSU and vehicle Vi respectively.
Note that to let Vi know that s and V PKi are really sent by the TA, the
TA includes its signature on s and V PKi (SIGSKT A(s, V PKi)) into the
encrypted text.

166 T.W. Chim et al.

3. The RSU chooses a random number mi to be the shared secret between
itself and vehicle Vi. It stores the (V PKi, mi) pair into its verification table
for later usage. It then sends Y = ENCPKVi

(mi, SIGSKR(mi)) and X to
vehicle Vi. Again to let vehicle Vi know that mi is really sent by the RSU,
the RSU signs it.

4. Vehicle Vi decrypts Y to obtain mi and verifies the RSU’s signature on
it. Similarly, it decrypts X to obtain s and V PKi and verifies the TA’s
signature on them. It then computes its shared secret with the TA using
t = V PKi ⊕ RID.

This basically completes the initial handshaking phase. The following shows the
procedure when vehicle Vi leaves the range of an RSU and enters the range of
another. It includes a simpler authentication process with the TA so that TA
can pass the information to the new RSU for verifying Vi’s signature and a new
shared secret will be generated by this RSU.

5) Vi sends ENCPKT A(RID) to TA via this new RSU. This time the TA does
not need to verify Vi’s PWD anymore as it has already done that when Vi

first starts up. Instead it directly generates a new ti and a new V PKi for
Vi and sends V PKi to the new RSU. The TA then adds the new ti into
its repository. Next the new RSU chooses a random number mi to be its
shared secret with Vi. After storing (V PKi, mi) into its verification table,
RSU sends Y = ENCPKVi

(mi, SIGSKR(mi)) to Vi which then decrypts it
using its conventional secret key. From now on, vehicle Vi starts to use the
new shared secret with the new RSU for message signing.

4.2 Message Signing

To sign a message, a vehicle generates a pseudo identity and the corresponding
signing key. A different pseudo identity can be used for a different message.

To generate a pseudo identity, Vi first generates a random nonce r. Its pseudo
identity IDi contains two parts - IDi1 and IDi2 where IDi1 = rPpub and IDi2 =
V PKi ⊕ H(miIDi1). The corresponding signing key is SKi = (SKi1, SKi2)
where SKi1 = smiIDi1 and SKi2 = sH(IDi2). H(.) is a MapToPoint hash
function [10]. Then, to sign a message Mi, Vi computes the signature σi =
SKi1 + h(Mi)SKi2 where h(.) is a one-way hash function such as SHA-1 [11].
Vehicle Vi then sends < IDi, Mi, σi > to others.

4.3 Batch Verification

This module allows an RSU to verify a batch of signatures using only two pairing
operations based on the bilinear property of the bilinear map. We require an RSU
to perform batch verification at a frequency higher than that a vehicle broadcasts
safety messages so that a vehicle can verify the safety message of another before it
broadcasts a more updated one. We first show the verification procedure. Then,
we show how to make use of bloom filter to construct a notification message in
order to reduce the message overhead. Lastly, we describe how to handle the
case in which there are invalid signatures in the batch and how to extract valid
ones from the batch instead of dropping the whole batch as in [7].

SPECS: Secure and Privacy Enhancing Communications Schemes 167

Verification procedure. Assume that the RSU wants to verify a batch of sig-
natures σ1, σ2, ..., σn from vehicles V1, V2, ..., Vn on messages M1, M2, ..., Mn.
With the shared secrets and the pseudo identities of the vehicles, the RSU first
finds out their verification public keys V PK1, V PK2, . . . , V PKn and shared se-
crets m1, m2, . . . , mn by checking which of the stored (V PKi, mi) pairs satisfy
IDi2 = V PKi ⊕ H(miIDi1) (A more efficient approach will be presented in
our full paper). It then verifies the signatures by checking if ê(

∑n
i=1 σi, P) =

ê(
∑n

i=1 miIDi1 + h(Mi)H(IDi2), Ppub).
To avoid replay attack, an RSU stores the pseudo identities used by vehicles.

If the pseudo identity in a vehicle’s message matches any stored one, the RSU
reject the message immediately. Note that if a vehicle does not know the shared
secret with the RSU, it cannot produce a valid signature. There may be a very
small chance that the pseudo identities generated by two vehicles are the same.
In that case, RSU will treat the signatures as invalid. The vehicles will sign again
using a different pseudo identity.

Generating notification message. After the RSU verifies vehicle Vi’s signature
σi, it notifies all vehicles within its RVC range the result. We first assume that
all signatures are valid. For each valid message, we store a hash value h(IDi||Mi)
of the message in the bloom filter (the hashing function is known to everyone) to
minimize message overhead. However, as we discussed in Section 3.2, there can
be false positives in a bloom filter. To reduce this impact, we propose to use two
bloom filters which contain opposite information: Positive and Negative Filter.
The positive bloom filter stores the hash value of pseudo identities and messages
of vehicles whose signatures are valid and the negative bloom filter stores the
hash value of pseudo identities and messages of vehicles whose signatures are
invalid.

If vehicle Vi wants to verify vehicle Vj ’s signature σj on message Mj , it first
computes h(IDi||Mi) and then checks the positive filter and the negative filter
as included in the RSU broadcast. There are four possible cases (see Table 1).
For the first two cases, the resulting validity of σj can be confirmed. For the
third case, Vj ’s hash appears in both filters. Then this must be a false positive
in either filter, thus a re-confirmation procedure is needed. For the last case, Vj ’s
hash does not appear in both filters. It means that the RSU still has not yet
verified σj and so Vi has to wait for the RSU’s next broadcasting message.

To facilitate re-confirmation, we require a vehicle to store the signatures of
other vehicles which they are interested in upon receiving them for the first time
for a short period. Also we require the RSU to store the valid signatures that it
has verified together with the sending vehicles’ pseudo identities for at least one
more batch verification period after that signature is lastly requested.

If case 3 occurs, vehicle Vi re-sends σj to the RSU. RSU searches for σj

from those stored signatures. If σj can be found, the RSU adds the hash of
Vj into the positive filter. Otherwise, it adds it into the negative filter. All re-
confirmation results can be embedded into a re-confirmation reply similar to
a normal notification message. In practice, we can use one bit to distinguish
whether the reply is a normal notification message or a re-confirmation reply.

168 T.W. Chim et al.

Table 1. Possible Cases and Their Implications in Bloom Filters

Case Positive Filter Negative Filter Validity of σj

1 True False Valid
2 False True Invalid
3 True True (Re-confirmation needed)
4 False False (Wait for next broadcast)

There is still a chance that case 3 occurs again. Our scheme allows the use of
bloom filters for re-confirmation for K rounds. If after K rounds and case 3 still
occurs, the RSU will send h(IDj ||Mj) of Vj to vehicle Vi as a direct notification.
To facilitate the RSU to know what it should send in the re-confirmation reply,
the RSU stores the number of requests to each of its signature stored. See next
section for the performance of our schemes with different values of K.

Note that the size of each bloom filter m (i.e. the number of bits used) can be
a variable in our schemes to save transmission overhead. To help the receiving
vehicles to interpret the size the filters (so that they can adjust the range of
hash functions accordingly), together with the valid and the invalid filters, the
RSU also transmits a value n to represent the total number of signatures in the
batch (i.e. the number of values being added into any bloom filter cannot exceed
n). To allow vehicles to confirm that a notification message is indeed sent by an
RSU, RSU signs the bloom filters using its private key SKR before broadcasting
them.

Invalid signatures in the batch. A batch may contain tens up to thousands of
signatures depending on the traffic density around the RSU. In the IBV protocol,
if any of the signatures inside the batch is invalid, the whole batch is dropped.
This approach is inefficient in the sense that most of the signatures in the batch
are actually valid and can be used. Thus in our schemes, we propose to adopt
binary search in the verification process to extract those valid ones. Assume that
the batch contains n signatures, we arrange them in a fixed order (say according
to the senders’ pseudo identities). If the batch verification fails, we first find out
the mid-point as mid = � 1+n

2 	. Then we perform batch verification on the first
half (the 1st to midth elements) and the second half (the (mid + 1)th to nth

elements) separately. If any of the two batches causes a failure in the verification
again, we repeat the same process on the invalid batch. If the pairing on any
batch is valid, the RSU notifies all those signatures immediately. The binary
search stops if a batch contains only one signature or when a pre-defined level
of binary search is reached. In Section 6, we evaluate the performance of our
schemes using different number of levels in binary search and it is found that a
full exploration may not be necessary in most cases.

4.4 Real Identity Tracking

To reveal the real identity of the sender of a message, TA is the only authorized
party that can perform the tracing. Given vehicle Vi’s pseudo identity IDi and

SPECS: Secure and Privacy Enhancing Communications Schemes 169

its shared secret with the connecting RSU mi, TA can search through all the
stored (RIDj, tj) pairs from its repository. Vehicle Vi’s real identity is the RIDj

value from the entry that satisfies the expression IDi2⊕tj⊕H(miIDi1) = RIDj

as IDi2⊕ tj ⊕H(miIDi1) = ti ⊕RIDj ⊕H(miIDi1)⊕ ti⊕H(miIDi1) = RIDj .
No other party can obtain vehicle Vi’s real identity since ti is only known by the
TA and Vi itself.

4.5 Group Key Generation

This subsection shows how a group of known vehicles can form a group with any
RSU, then they can communicate securely within the group without any further
help from RSU to verify these group messages.

Assume that vehicles V1, V2, ..., Vn have already registered with an RSU and
their shared secrets with the RSU are m1, m2, ..., mn respectively. Also assume
that these vehicles know pseudo identities of one another already or they can
know others’ pseudo identities by the last message received from one another.

Group request. Vehicle Vi first sends to the RSU message Mi = {GPREQ,
ID1, . . . , IDi−1, IDi+1, ..., IDn} and its signature σi = SKi1 + h(Mi)SKi2 on
it where IDj is the pseudo identity of Vj . Also SKi1 and SKi2 are generated
using the methods in Section 4.2. Note that Vi can be anyone or the leader of
the group

Group agree. Any vehicle Vj receiving Vi’s GPREQ message checks whether
its pseudo identity is included in the GPREQ message. If yes, it sends out
Mj = {GPAGR, IDj} and its signature σj = SKj1 + h(Mj)SKj2.

Group batch verification. The RSU then batch-verifies σ1, ..., σn. For any
vehicle Vx whose signature is found to be valid, it generates its group public key
as GPKx = mxP . Recall that mx is the shared secret between the RSU and
vehicle Vx. Besides group public keys, the RSU also requests the TA to provide
the group of vehicles a common group secret key. Without loss of generality,
assume the signatures from V1, ..., Vx are valid. The RSU sends V PK1, ..., V PKx

to the TA which in turn generates a random number rr and computes the group
secret key as CGS = s×rr. Next the TA sends ENCt1(CGS), ..., ENCtx(CGS)
back to the RSU. Recall that ti is the shared secret between Vi and the TA.
The RSU then broadcasts Mr = {ID1, ..., IDx, GPK1, ..., GPKx, ENCt1(rr), ...,
ENCtx(rr)} and its signature SIGSKR(Mr) to the vehicles concerned. Note that
in case the verification fails due to invalid signatures or vehicles inside the range
have same pseudo identity (although the chance is very small), RSU will stop
the protocol and the group is required to repeat the protocol again for the sake
of security reason.

Group secret establishment. Each vehicle in the group stores all the group
public keys and the decrypted CGS values. Note that the RSU does not know
CGS since the TA encrypts it using its shared secret with each vehicle. Thus
vehicles in the group can communicate with others securely from now on.

170 T.W. Chim et al.

4.6 Group Message Signing and Verification

Next we look at the pseudo identity generation, message signing and signature
verification when group communications take place. When vehicle Vi wants to
send a group message Mi, it generates its pseudo identity IDi and signature σi

in the same way as in Section 4.2. However, its secret signing key is generated
as SKi = (SKi1, SKi2) where SKi1 = miIDi1 and SKi2 = miH(IDi2). Vi

then sends out < IDi, ENCCGS(GPKi||IDi), Mi, σi > where r is the random
nonce used to generate its pseudo identity. Note that GPKi is included so that
the receiving vehicle knows which group public key to use for verification. To
make it impossible for any vehicle outside the group to trace Vi, GPKi is first
concatenated with its per session pseudo identity and then encrypted using the
common group secret CGS.

To verify the signature σi of vehicle Vi on message Mi, the receiving vehicle
first decrypts ENCCGS(GPKi||IDi) using CGS. If it finds that GPKi obtained
does not belong to any group member, it simply ignores the message. Otherwise
it checks whether ê(σi, P) = ê(IDi1 + h(Mi)H(IDi2), GPKi).

5 Analysis

5.1 Security Analysis

We analyse our schemes with respect to the security requirements listed in
section 2. Formal proofs will be given in the full paper.

Message integrity and authentication: For ad hoc messages, the signature σi on
message Mi by vehicle Vi is composed of SKi1 and SKi2. SKi1 is defined as
smiIDi1 where mi is the shared secret between vehicle Vi and the RSU. Due
to the difficulty of solving the discrete logarithm problem, there is no way for
attackers to reveal mi. Thus the attacker cannot forge a signature. Similarly, for
group message, although all vehicles in the group know GPKi = miP of Vi, it is
computationally hard to obtain mi due to the same reason. Thus no other vehicle
knows how to compose SKi1. SKi2, on the other hand, is defined as sH(IDi2).
Recall IDi2 = V PKi ⊕ H(miIDi1). Again, since no other vehicle knows mi

and so only Vi can compute SKi2. Therefore, no other vehicle can forge a valid
signature by vehicle Vi. Note also that RSUs do not know the master secret s,
thus cannot forge a message as well.

In practice, RSUs can be cracked easily and this is unavoidable. However, we
can add in additional measures to our schemes to reduce the impact. For exam-
ple, we can classify messages into different security levels. For critical message,
we can require them to be verified by TA instead of by RSUs. Or we can have
another variation under which a message can only be trusted if it is verified by
multiple consecutive RSUs. We believe with these measures, even if a few RSUs
are cracked, the effect is not a disaster.

Identity privacy preserving: The pseudo identity of any vehicle is an ElGamal-
type ciphertext, which is secure under the chosen plaintext attacks [12]. Also

SPECS: Secure and Privacy Enhancing Communications Schemes 171

the random nonce r makes the pseudo identity of a vehicle different in different
messages. To trace the real identity, one needs to have the shared secret between
the sender and the TA. Thus no one can trace the location of a particular vehicle
over time and the privacy is preserved. Furthermore, since the verification public
key V PKi of a certain vehicle is different as seen by different RSUs, even all
RSUs collude, they have no way to trace a particular vehicle’s travelling route.

Traceability: Section 4.4 shows that TA is able to trace a vehicle’s real identity,
thus traceability is satisfied.

5.2 Analysis on Bloom Filter Approach

This sub-section analyses our newly-proposed bloom filter approach in the ver-
ification notification phase. We first show that the probability of having false
positives is very small if we set the parameters for the bloom filters appropri-
ately, then we show that our message overhead is about 10 times lower than
that under the RAISE protocol. Note that the IBV protocol does not have a
notification phase, so we only compare ours with the RAISE protocol.

The probabily of having a false positive in our bloom filter apporach (i.e., case
3 in Table 1) is equal to the probability that all k bits are set in one bloom filter
while not all k bits are set in another bloom filter. Thus the probability of case
3 is Pr(case3) = 2(1 − (1 − 1

m)kn)k(1 − (1 − (1 − 1
m)kn)k) ∼ 2(1 − e−

kn
m)k(1 −

(1 − e−
kn
m)k). Interestingly we find that the value of k that minimizes the false

positive probability of a single bloom filter (i.e. k = m ln 2
n) also minimizes Pr(case

3) approximately (up to 5 decimal places) based on our empirical results. Hence
we set the number of hash functions to m ln 2

n in our schemes and Pr(case3) ∼
2(0.6185

m
n (1−0.6185

m
n)). It can be shown that when m

n = 5, Pr(case3) is about
0.16. When m

n = 10, Pr(case3) drops to 0.016 only. That is, if there are 100
signatures in a batch, on average only 1 to 2 signatures are affected by bloom
filter false positive and need to be re-confirmed.

Now, we analyze the message overhead. Assume that there are n signatures
in a batch. For the RAISE protocol, the HMAC() value sent by each vehicle is of
16 bytes long while the H() value sent by the RSU in the notification phase is 16
bytes long per message. After that the RSU signs the notification message using
an ECDSA signature which is 56 bytes long. Together with a message header of
2 bytes long, the total message overhead for verifying a batch of n signatures is
16n + 16n + 56 + 2 = 32n + 58 bytes.

For our schemes, the ECC signature sent by each vehicle is of 21 bytes long.
In the notification phase, we use two bloom filters. To lower the false positive
rate in any bloom filter, the total number of bits used in each bloom filter is
set to 10 times the number of signatures in the batch (i.e. m

n = 10). We have
two bloom filters and so a total of 20n

8 = 2.5n bytes are needed. We also use 2
bytes to represent the number of signatures in a batch. Together with a message
header of 2 bytes long, the total message overhead for verifying a batch of n
signatures is 21n + 2.5n + 2 + 56 + 2 = 23.5n + 60 bytes.

Note that when case 3 occurs, additional message overhead is required for
the re-confirmation procedures. If case 3 only occurs in the first trial and does

172 T.W. Chim et al.

not occur in the second trial, the total message overhead for verifying a batch
of n signatures becomes 23.5n + 60 + P (23.5n + 60) = (1 + P)(23.5n + 60)
bytes where P = Pr(case3). Hence, if case 3 occurs in all the first K trials
and we switch to the hash approach after that, the total message overhead
becomes

∑k
i=1 P i(23.5n+60)+P k(37n+58) bytes. The component P k(37n+58)

represents the message overhead used for the hash approach after K trials. That
is, 21 bytes for each ECC signature, 16 bytes for each H() value, 56 bytes for
ECDSA signature and 2 bytes for message header. Since P is about 0.016, even
if K is only 2, the overhead of our scheme is much lower than that of RAISE.
And we found that as long as K > 1, the overhead is similar in different values of
K since the probability of case 3 is very low, so re-confirmation is quite unlikely
(refer to the full paper for a more detailed analysis).

6 Simulation Results

In this section, we further compare our schemes with the IBV protocol in terms of
(1) the delay and (2) successful rate through simulations. Note that IBV also uses
a batch verification scheme, so is much faster than the RAISE protocol. Thus, we
compare the delay of our scheme with the IBV [7] protocol. For successful rate,
we expect we will have a similar performance as RAISE as we both will identify
all valid signatures even if there are invalid ones within the same batch. So, we
compare our performance with the IBV protocol. The simulation is performed on
ad hoc messages as both other protocols do not handle group messages. We show
that our scheme can verify more signatures while the additional delay required
is insignificant.

6.1 Simulation Models

Some of the settings of our simulation are adopted from [7, 5]. We assume that
vehicles passes through an RSU (in highway) at speeds varying from 50 km/h to
70 km/h. The RVC and the IVC ranges are set to 600m and 300m respectively.
Inter-vehicle messages are sent every 500 ms from each vehicle. IEEE 802.11a is
used to simulate the medium access control layer. The bandwidth of the chan-
nel is 6 Mb/s and the average length of inter-vehicle message is 200 bytes. We
compute the transmission time based on the bandwidth and the length of the
message. The RSU performs batch verification every 300 ms and each pairing op-
eration takes 4.5 ms [13]. We implement the simulation using C++ language. We
simulate the IEEE 802.11a protocol by generating the time stamps for broadcast-
ing messages of each vehicle. In case two stamps collide, we randomly regenerate
one of them. More details can be found in the full paper.

Our simulation runs for 1000 s. We vary the total number of vehicles that have
ever entered the RSU’s RVC range during the simulation period from 200 to 1000
in steps of 200 to simulate the impact of different traffic densities. We also vary
the inter-vehicle message signature error rate from 1% to 10% to interpret its
impact on the performance of our schemes. For each configuration, we compute
the average of 5 different random scenarios.

SPECS: Secure and Privacy Enhancing Communications Schemes 173

6.2 Simulation Results

We fix the signature error rate (the percentage of invalid signatures) to 5% and
vary the total number of vehicles that have entered the RSU’s range throughout
the simulation. We only consider batches that contain invalid signatures (Invalid
batch). In [5], the expression for successful rate is defined. We extend its defi-

nition to handle invalid batch: IBSR = 1
N

∑N
i=1

Mi
app

Mi
mac

, where M i
app is the total

number of messages that are successfully verified by the RSU and are consumed
by vehicle i in the application layer before vehicle i leaves RSU’s RVC range,
M i

mac is the total number of messages received by both vehicle i and RSU in the
medium access control layer from other vehicles. For our schemes, we can have
different levels of binary search as mentioned in Section 4. We use the notation
SPECS(BSx) to denote our schemes with x levels of binary search.

The successful rates for the schemes are shown in Fig. 1(a). Note that the
successful rates for IBV and SPECS(BS0) are 0% as both will drop the whole
invalid batch. From our simulation, we found that even if we only have 1 level
of binary search, the successful rate of SPECS(BS1) is already raised to about
45%. If we raise the number of levels to 4, the successful rate can be raised to
more than 90%.

While the results are quite obvious, next we will show that the delay incurred
by binary search procedure is minimal. Fig. 1(b) shows the delay performance.
We define the average delay suffered by vehicles as MD = 1

N

∑N
i=1

1
M

∑M
m=1

(T m
verf − T m

recv), where M is the number of messages received by vehicle i, T m
verf

is the time that vehicle i receives the verification notification message of message
m from the RSU and T m

recv is the time that vehicle i receives message m from
its neighboring vehicle.

From Fig. 1(b), we can see that the delay under the IBV protocol and our
schemes are very close to each other. For our schemes, as expected, with higher
levels of binary search, longer delay is induced because more pairing operations
are involved. However, even in the worst case (i.e. using 4 levels of binary search),
our schemes only consume an additional of 10 ms which is roughly equivalent to
the delay caused by 2 pairing operations. This is due to two main reasons. Not
all cases require 4 levels of binary search and the time for each pairing operation
is comparatively smaller than transmission delay, so we can afford to do more
pairing operations. One more interesting point to note is that without binary
search, our schemes consume 5 less ms than the IBV protocol. The reason behind
is that our schemes require 2 pairing operations only while the IBV protocol
requires 3 as mentioned in Section 4.

In the second set of experiments, we fix the number of vehicles that have
entered the RSU’s RVC range during the simulation period to 300 and vary the
signature error rate from 1% to 10% to investigate its impact on the invalid
batch successful rate and the message delay. We only consider batches that con-
tain invalid signatures. Fig. 2(a) shows the results. The IBV and SPECS(BS0)
cases are not interesting as they drop all invalid batches. And it is also quite
obvious that as the level of binary search increases, the successful rate increases.

174 T.W. Chim et al.

Fig. 1. (a) Invalid Batch Successful Rate vs. Number of Vehicles (b) Delay vs. Number
of Vehicles

Fig. 2. (a) Invalid Batch Successful Rate vs. Error Rate (b) Delay vs. Error Rate

The interesting point is that as the error rate increases from 1% to 10%, our
schemes only degrades for less that 10%.

The corresponding delay performance is shown in Fig. 2(b). As discussed
earlier, SPECS(BS0) gives a lower delay than the IBV protocol due to the saving
of one pairing operation. As the error rate increases, more batches contain invalid
signatures. Additional pairing operations are required to locate valid signatures.
This increases the average delay. But the gap between our schemes and the IBV
protocol is only about 10ms even when the error rate is 10%.

7 Conclusions

We proposed two secure and privacy enhancing communications schemes for
VANETs to handle ad hoc messages and group messages for inter-vehicle com-
munications. We follow the approach of letting RSU to aid the signature ver-
ification process. We show that our schemes satisfy the security and privacy
requirements. In terms of effectiveness, we show that our solution gives lower
message overhead and at least 45 % higher successful rate than previous works.
We are also the first to propose a group communications protocol to allow known
vehicles to form a group for secure communications. Note that in the early stage
of VANET deployment, we may not have RSUs in all road sections. However,
our protocols can be completed within the coverage of one RSU, so can still
be applied. Individual vehicles just cannot communicate on those sections of
roads without RSUs, however, vehicles in the same group can still communicate
without RSU. We are extending our group communications protocol to allow
dynamic membership.

SPECS: Secure and Privacy Enhancing Communications Schemes 175

References

1. Wang, F., Zeng, D., Yang, L.: Smart Cars on Smart Roads: an IEEE Intelligent
Transportation Systems Society Update. IEEE Pervasive Computing 5(4), 68–69
(2006)

2. Oh, H., Yae, C., Ahn, D., Cho, H.: 5.8 GHz DSRC Packet Communication System
for ITS Services. In: IEEE Proceedings of the VTC 1999, September 1999, pp.
2223–2227 (1999)

3. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC2459 (1999)

4. Tsang, P.P., Smith, S.W.: PPAA: Peer-to-Peer Anonymous Authentication. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 55–74. Springer, Heidelberg (2008)

5. Zhang, C., Lin, X., Lu, R., Ho, P.H.: RAISE: An Efficient RSU-aided Message Au-
thentication Scheme in Vehicular Communication Networks. In: IEEE Proceedings
of the ICC 2008, May 2008, pp. 1451–1457 (2008)

6. National Highway Traffic Safety Administration U.S. Department of Transporta-
tion, Vehicle Safety Communications Project Report (April 2006)

7. Zhang, C., Lu, R., Lin, X., Ho, P.H., Shen, X.: An Efficient Identity-based Batch
Verification Scheme for Vehicular Sensor Networks. In: IEEE Proceedings of the
INFOCOM 2008, April 2008, pp. 816–824 (2008)

8. Chim, T.W., Yiu, S.M., Hui, C.K., Li, V.O.K.: Security and Privacy Issues for
Inter-vehicle Communications in VANETs. In: IEEE Proceedings of the SECON
2009 (Poster Session) (June 2009)

9. Menezes, A.: An Introduction to Pairing-Based Cryptography. In: 1991 Mathemat-
ics Subject Classification, Primary 94A60 (1991)

10. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

11. Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1). IETF RFC3174
(2001)

12. Baek, J., Lee, B., Kim, K.: Secure Length-Saving ElGamal Encryption under the
Computational Diffie-Hellman Assumption. In: Clark, A., Boyd, C., Dawson, E.P.
(eds.) ACISP 2000. LNCS, vol. 1841, pp. 49–58. Springer, Heidelberg (2000)

13. Scott, M.: Efficient implementation of cryptographic pairings (2007),
http://ecrypt-ss07.rhul.ac.uk/Slides/Thursday/mscott-samos07.pdf

http://ecrypt-ss07.rhul.ac.uk/Slides/Thursday/mscott-samos07.pdf

	SPECS: Secure and Privacy Enhancing Communications Schemes for VANETs
	Introduction
	Problem Statement
	Preliminaries
	Bilinear Maps
	Bloom Filter

	Our Solutions - SPECS
	Initial Handshaking
	Message Signing
	Batch Verification
	Real Identity Tracking
	Group Key Generation
	Group Message Signing and Verification

	Analysis
	Security Analysis
	Analysis on Bloom Filter Approach

	Simulation Results
	Simulation Models
	Simulation Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

