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Abstract. In an integrated fiber and wireless (FiWi) access network,
multi-path routing may be applied in the wireless subnetwork to im-
prove throughput. Due to different delays along multiple paths, packets
may arrive out of order, which may cause TCP performance degrada-
tion. Although the effect of packet reordering due to multi-path routing
has been well studied, remedy solutions are either to schedule packets at
the source node to proactively reduce the chance of packet reordering,
or to modify TCP protocol. Resequencing packets arrived out-of-order
has only been considered at the end systems which can cause long de-
lay as packets must be buffered until there is no sequence gap. As all
traffic in a FiWi network is sent to the Optical Line Terminal (OLT),
the OLT serves as a convergence node which naturally makes it possible
to resequence packets at the OLT before they are sent to the Internet.
However, the challenge is that OLT must re-sequence packets effectively
with a very small delay to avoid a performance hit. In this paper, we
propose a scheduling algorithm at the OLT to resequence packets while
providing fairness. Simulation results validate that our packet scheduling
algorithm is effective in improving the performance of TCP flows. Since
resequencing is conducted in the access network which has a much fewer
number of flows compared with those at routers, our proposed work pro-
vides a scalable solution to mitigate the side-effect of packet reordering
caused by multi-path routing.

Keywords: FiWi, PON, WMN, Packet Reordering, Multi-path Rout-
ing, Resequence.

1 Introduction

Recently, the hybrid fiber-wireless (FiWi) [1] access network integrating the pas-
sive optical networks (PONs) and wireless mesh networks (WMNs) has been
proposed to provide cost efficient, high bandwidth and ubiquitous last mile In-
ternet access. A FiWi network consists of a PON subnetwork and a wireless
subnetwork as shown in Fig. 1. In the PON subnetwork of a FiWi network, Op-
tical Line Terminal (OLT) resides in a Central Office (CO) and feeds multiple
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Optical Network Units (ONU). In the wireless subnetwork of a FiWi network,
WMN is deployed for ubiquitous communications at users’ premises. Typically,
the WMN consists of multiple gateways for the Internet access where one or
more gateways can be connected to an ONU through wired line, a group of wire-
less mesh routers that provide multi-hop wireless communications and a group
of wireless mesh clients.

Multi-path routing has been widely considered in the wireless/wired networks
as an approach to achieve load balancing, fault tolerance, and a higher network
throughput [2–5]. In a FiWi network, packets of a flow can be sent through
multiple paths in the wireless subnetwork to the OLT so that network congestion
is alleviated and throughput can be improved. These packets, however, may be
reordered when they arrive at the OLT due to delay variance along different
paths. As a result, the increase of throughput by exploiting multi-path routing
may be affected by packet reordering [6, 7].

In the literature, many efforts have been made to mitigate the effects of packet
reordering caused by multi-path routing. The work can be classified into three
main categories: (1) to determine which path each packet should be sent to so
that packet reordering can be proactively avoided. FLARE is introduced as a
traffic splitting algorithm in [10] where it is shown that it is possible to sys-
tematically slice a TCP flow across multiple paths without causing packet re-
ordering. The work in [8] studied how to route packets efficiently at the sender
side. Two traffic congestion control techniques, namely, flow assignment and
packet scheduling, have been investigated in [8]. (2) to modify the TCP protocol
to improve TCP performance. The work in this category needs to be imple-
mented at TCP clients to generate congestion responses when packet reordering
occurs, and/or at participating routers to report packet dropping information
to TCP clients. Most reordering-tolerant approaches are sender-side solutions
which increase the threshold of fast retransmission. RR-TCP [11] uses the false
fast retransmission avoidance ratio (FA ratio) to adjust dupthresh. The work in
[12] provides receiver-side solutions which delay ACKs for out-of-order segments
and immediately sends ACKs for retransmitted segments. A more comprehensive
survey of reordering-tolerant algorithms can be found in [14]. (3) to resequence
packets at the end systems. Resequencing packets to deliver the arrived packets
to the application in sequence has been well studied in the literature [15, 16]
where resequencing is conducted at the end application. In such work, packets
stay in the resequencing buffer until there is no sequencing gap in the accepted
packets.

All above mentioned works resolve the effects of packet reordering at either the
source node or the destination node. One question arose is whether some work
can be done at the intermediate “nodes” to resequence out-of-order packets.
Resequencing is seldom considered at the routers since a router may forward
packets for many flows. Obviously, if an “intermediate” node which can rese-
quence packets is at the access network where there are relatively fewer number
of flows than routers, resequencing can be considered as one of the effective ap-
proaches to avoid packet reordering at the core network. In a FiWi network,
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the OLT serves as the gateway to the core network. Since there is only a single
path from the OLT to the destination in the core network for each connection,
it can be expected that packets from each flow will arrive at their destination
in almost the same order as they are sent from the OLT. In other words, if the
OLT can resequence the packets, it can mitigate the effects of packet reordering
caused by multi-path routing in the wireless subnetwork. Thus, throughput can
be improved. Compared with resequencing at the end system, resequencing at
the OLT requires negligible resequencing delay as packets may experience un-
predictable delay at the core network and we can not afford long resequencing
delay at the access network. The tight resequencing delay implies that 100%
in-order resequencing is impossible to achieve when resequencing is conducted
at the intermediate node. Thus, a fast resequencing algorithm which can reduce
the out-of-order probability of packets departing from the OLT is desired.

In this paper, given the out-of-order (OOD) packet arrivals at the OLT from
different flows, we propose a packet scheduling algorithm at the OLT which aims
to resequence the packets of each flow to assure possible in-order arrivals at the
destinations. The work proposed in this paper requires that the OLT is capable of
maintaining some information for each flow (as to be introduced shortly, minimum
amount of information for each flow is maintained at the OLT to provide scalabil-
ity). We would like to note that some scheduling algorithms at the E-PON OLT
[17] has been proposed to provide per-flow and per-class forwarding discipline to
satisfy various types of QoS constraints for downstream traffic.

The rest of the paper is organized as follows. In Section 2, we give an example
to demonstrate how resequencing may be able to mitigate the effect of packet
reordering. The problem description is given in Section 3. Section 4 presents
the scheduling algorithm. Section 5 evaluates the proposed algorithm through
simulations, and Section 6 concludes the paper.

OLT

ONU1 ONU2 ONU3 ONU4

RN

Fig. 1. A conceptual architecture of FiWi Networks
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2 Motivation Example

As mentioned earlier, the OLT serves as a convergence node in the FiWi network.
For the upstream traffic, the OLT needs to send packets from different flows to
their destinations where the sending sequence at the OLT will be the last chance
in a FiWi network to ensure in-order packet delivery in the core network. In this
section, we give one motivation example to demonstrate how packet scheduling
algorithm can resequence packets and mitigate the effect of packet reordering.

Suppose that there are two flows sending packets through the OLT to different
destinations as shown in Fig. 2 (a). Seven packets are now in the OLT’s buffer,
and two packets will arrive at the end of time slots 4 and 5 respectively. We
denote Pi,j as the j-th packet of flow i, and Ai,j as the acknowledgment of
Pi,j−1. The service rate of the OLT’s outgoing link is one packet per time slot.

Suppose that Round Robin (RR) scheduling mechanism is applied at the
OLT. Then these packets will arrive at destinations in the order of {P1,1, P1,3,
P1,4, P1,5, P1,2} and {P2,1, P2,2, P2,4, P2,3}, respectively (Fig. 2 (b)). Suppose
that packets from a flow will arrive at their destination following the same order
as they depart from the OLT, then we will get the following ACK sequences:
{A1,2, A1,2, A1,2, A1,2, A1,6} and {A2,2, A2,3, A2,3, A2,5} from the perspective
of the OLT. Thus, it is very likely that the TCP sender of flow 1 will receive
three duplicate ACKs (A1,2), and then will perform fast retransmission and fast
recovery. This will cause multiplicative decrease (and additive increase) in TCP’s
congestion window size. However, this is a spurious segment retransmission and
keeping congestion window small is unnecessary. In fact, the network has not
been in congestion condition yet. Therefore, RR scheduling at the OLT can not
utilize bandwidth efficiently and may reduce throughput significantly.

We observe that if the OLT can estimate the number of duplicate ACKs
(denote by dack′) which may be caused by scheduling the head-of-line (HOL)
packet of each flow and schedule the HOL packet of the flow with the lowest
dack′, it increases the chance for the OLT to resequence packets for flows with
higher dack′. Using such an observation, for the example given in Fig. 2, the OLT
will postpone the departure of packet P1,3 and sends P2,2 instead since flow 2’s
dack′ (0) is lower than flow 1’s dack′(1), as shown in Fig. 2 (c). After sending 4
packets, packet P1,2 has already arrived at the OLT’s buffer (Fig. 2 (d)). Thus,
we transmit P1,2 immediately since flow 1’s dack′ (0) is lower than flow 2’s dack′

(1)(Fig. 2 (e)). After sending all packets according to the order given in Fig. 2
(f)), we expect to receive the following ACK sequences {A1,2, A1,2, A1,4, A1,5,
A1,6} for flow 1 and {A2,2, A2,3, A2,4, A2,5} for flow 2. All packets are sent
out within 9 time slots with only one duplicate ACK (A1,2). It is inadequate
to trigger fast retransmission and fast recovery. This motivation example shows
that a good packet scheduling algorithm at the OLT can resequence packets
to reduce the effect of packet reordering caused by the multi-path routing in
wireless subnetwork and assure possible in-order arrivals at destinations. This
paper focuses on designing such a packet scheduling algorithm at the OLT.
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Assume that two packets (P1,2 and P2,3) will arrive at the OLT 
at the end of 4-th and 5-th time slot respectively.
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P1,3P1,4P1,5
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P2,2P2,4

After sending 4 packets

(c)

P1,2P2,3 Flow1:  dack' = 1
Flow2:  dack' = 0

Flow1:  dack' = 0
Flow2:  dack' = 1

Fig. 2. An illustration of packet scheduling at the OLT and it’s impact on TCP per-
formance

3 Problem Description

Suppose that a pool of packets arrive dynamically from F different flows with
packet reordering at the OLT where the OLT maintains a queue for each flow.
Suppose that the time is partitioned into equal time slots where in each time slot
at most one packet can be sent out from the OLT to the Internet. At each time
slot, the OLT needs to determine which flow (queue)’s packet should be sent and
which packet from that selected flow (queue) should be sent. As duplicate ACKs
(three dupacks) may trigger the fast retransmission and fast recovery, which
will cause multiplicative decrease (and additive increase) in TCP’s congestion
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window size (cwnd), it is important to avoid triggering three dupacks when we
schedule packets. To achieve such a goal, at each time slot, a flow should be
selected for transmission if it will most unlikely reduce the sender’s cwnd and
when a flow is selected for transmission, the packet with the smallest sequence
number in the queue should be scheduled. In other words, we can implement a
min-heap queue for each flow and assure that the HOL packet of each flow has
the smallest sequence number. On the other hand, fairness among flows shall
also been considered when we schedule packets.

In this section, we first analyze the potential change of the sender’s cwnd if a
flow’s HOL packet is scheduled for transmission. Suppose that Pi,j is the head
packet of queue i at time t. Let dack′

i(t) denote the total number of dupacks
which may be caused by sending Pi,j . The impact of dack′

i(t) on the change of
the sender’s cwnd can be summarized as follows:

– In-order delivery,
• case 1: dack′

i(t) = 0 where Pi,j is the expected packet. To transmit
Pi,j will increase the sender’s cwnd and allow the receiver to generate
cumulative ACKs.

– Out-of-order delivery,
• case 2: dack′

i(t) = 1. To transmit Pi,j will cause one dupack to be sent
to the sender, which, however, will not cause any change on the sender’s
cwnd,

• case 3: dack′
i(t) = 2, Same to case 2.

• case 4: dack′
i(t) = 3. To transmit Pi,j will cause one dupack to be sent to

the sender, which will consequently trigger the fast retransmission and
cause the reduction on the sender’s cwnd;

• case 5: dack′
i(t) > 3, TCP sender is now at the stage of fast recovery. To

send Pi,j will cause one dupack to be sent to the sender and increase the
sender’s cwnd.

As the sender’s cwnd in both case 1 and case 5 will be increased, such a flow i
should have the highest priority to be scheduled for transmission at time slot t.
Case 4 will cause the reduction on the sender’s cwnd, thus, such a flow should be
scheduled later with the hope that the expected packet will arrive at the queue.
Case 2 and case 3 will not cause the immediate change of the sender’s cwnd and
can be assigned with the priority between the highest priority and the lowest
priority.

Let pi(t) be the priority of sending Pi,j , which is defined as follows:

pi(t) =

⎧
⎨

⎩

2 if dack′
i(t) = 0 or dack′

i(t) > 3
1 if dack′

i(t) = 1 or dack′
i(t) = 2

0 if dack′
i(t) = 3

(1)

In order to mitigate the effect of packet reordering, the HOL packet of queue i∗

with the maximum pi∗(t) will be scheduled, which enhances the chance of other
queues with lower priority value to be resequenced.

Apart from dupack, we also need to consider fairness among flows. Let swaiti(t)
be the time elapsed since last time when queue i is scheduled for transmission. If
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queue i not backlogged, we set swaiti(t) = 0. Thus, for the sake of fairness, the
queue with highest swaiti(t) should be scheduled.

Let fi(t) be the scheduling weight of flow i at time slot t. Considering both pri-
ority from the perspective of potential change on the sender’s cwnd and fairness,
we define the following total order among flows: fi(t) � fj(t) iff pi(t) > pj(t) or
pi(t) = pj(t) and swaiti(t) > swaitj(t).

At the beginning of scheduling, pi(0) = 2 and swaiti(0) = 0 for i ∈ F (F is
the set of active flows at the OLT), indicating that no dupack is produced and
the OLT doesn’t have any packet waiting for transmission initially. Every time
when a packet is to be transmitted, the scheduler schedules the head packet of
the backlogged flow i∗ with the maximum lexicographical order of fi∗(t), i.e.,

i∗ = argmaxi∈F fi(t) (2)

Suppose that flow i∗ is scheduled for tranmission at time slot t, if pi∗(t) = 0,
to send the HOL packet of flow i∗ may trigger three dupacks, thus the sender’s
cwnd will be reduced. In such a case, we may prefer to delay the transmission
at current time slot and wait for the expected packet. Note that in the next
time slot, with the new arrival packets to each flow, a new flow may be selected
for transmission or the current flow will be selected for transmission again. On
the other hand, if the expected packet is lost, a TCP timeout will eventually be
triggered. In such a case, it is more desirable that we send the packet immediately
to trigger fast retransmission. To resolve such a dilemma, the OLT needs to have
an estimation on whether the expected packet of flow i∗ is lost or not. If enough
time (more than a predefined threshold) has elapsed since flow i∗ is scheduled for
transmission last time, the OLT can regard the expected packet as lost packet
and send the current HOL packet immediately. Such a threshold is denoted as
max holdi for each flow i where max holdi can be determined by the delay
difference of multiple paths in the wireless subnetwork.

4 Data Structure and Packet Scheduling Algorithm

The most challenging part of making the scheduling decision is to maintain the
number of dupacks for each queue. In this section, we first use some examples
to illustrate what information must be maintained for each queue in order to
derive the number of dupacks. We then use a Finite State Machine (FSM) to for-
mally describe the state change at each queue. We finally present our scheduling
algorithm.

Assume that queue i has sent out Pi,1 and dacki(t) = 0. The OLT is now
expecting Pi,2. When packet Pi,3 becomes the HOL packet, suppose queue i is
scheduled for transmission and packet Pi,3 is sent out, dacki(t) becomes 1. In
the next time slot, suppose that packet Pi,5 becomes the head of queue i. In this
case, the current packet’s seqno is even higher than the highest seqno sent so far
for this queue (3 in this case). Suppose that this packet is sent out immediately,
dacki(t) becomes 2. In the next time slot, if the expected packet Pi,2 arrives at
the OLT and is sent out immediately. The expected seqno will be 4 as packet
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e

0

(a)

v: 101

h

1

(b)

v: 101

e h

seqno: 2 543 2 543seqno: 

Fig. 3. A bit vector for recording the OOD packet delivering

Pi,3 has been sent out from the OLT. This situation indicates that in order to
update the expected seqno, we have to record which packets have been sent
among the packets with seqno between current expected seqno and the highest
seqno. We use a bit vector v to record which packets between the expected one
and the highest seqno have been sent out (Fig 3) where v[i] = 0 indicates that
the corresponding packet has not been sent out from the OLT, and vice versa. As
shown in (Fig 3 (a)), the expected packet’s seqno is 2, the highest packet’s seqno
sent so far is 5, packet 3 has been sent out. Thus, when the expected packet Pi,2

arrives, we can immediately obtain that the next expected seqno is 4 (Fig 3 (b)).
This shows that, in order to maintain the number of dupacks, we need the

information of the expected seqno, the highest seqno sent so far, and a vector
for recording information about out-of-order packet delivering.

The above example only shows how to update the number of dupacks after
the HOL packet of a queue is committed for transmission. However, in order to
decide which queue’s HOL packet should be transmitted at a time slot, we need
to compute the number of dupacks if the HOL packet of a queue is scheduled
for transmission. In other words, besides maintaining the number of committed
dupacks from the perspective of sent packets, we also need to estimate the con-
sequence if the current HOL packet is scheduled for transmission, which is the
number of potential dupacks. For instance, as shown in Fig. 2 (c), after P1,1 and
P2,1 were sent out, the number of committed dupacks for both queues is 0. Now,
P1,3 and P2,2 become the head packet of each queue. If P1,3 or P2,2 is scheduled
for transmission, the number of potential dupacks for each queue is 1 and 0,
respectively.

We now formally present how to maintain the expected seqno, the highest
seqno, the number of committed dupacks, and the number of potential dupacks for
each queue. The OLT maintains a quadruplet {e, dack, dack′, h} and a variable
(swait) for each flow i, where e denotes the expected seqno, h denotes the highest
seqno of packet which has been sent, dack denotes the number of committed
dupacks, dack′ denotes the number of potential dupacks, and swait denotes the
time elapsed since flow i is scheduled for transmission last time. Each queue is
maintained as a min-heap queue where the HOL packet has the minimum seqno.

Initially, {e = 0, dack = 0, dack′ = 0, h = −1} and swait = 0 for each queue,
which indicates that no packet has been sent for this flow and the packet with
seqno = 0 is expected to be sent next. Whenever a packet enters a queue, min-
heap insertion operation will be conducted at the queue. If the HOL packet of
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e=0, h=-1, dack’ =0
in order out of order

j=e /  dack’ =0

j<e / 

j>e / dack’:=1

j=e / dack’:=0

j>e / dack’:=dack+1

j<e / 

e=h+1 / dack’:=0

Fig. 4. State change of dack′ at each queue

the queue remains to be the same, no update is necessary. Suppose that the
current packet becomes the HOL packet and its seqno is j. We need to see how
dack′ will be changed if the HOL packet of this queue is scheduled next. We
have the following cases:

– If there is in-order transmission which means e = h + 1,
• if j = e (or equivalently j = h + 1), this is still an in-order packet

transmission, set dack′ = 0;
• if j > e, set dack′ = 1, and bit vector v is initialized for recording the

sending information of OOD packets;
• if j < e, it is a retransmitted packet and no update is necessary.

– If there is out-of-order transmission which means e ≤ h,
• if j = e, this is an in-order packet transmission, set dack′ = 0;
• if j > e, we need to update dack′ by dack′ = dack + 1;
• if j < e, it is a retransmitted packet and no update is necessary.

Such state change can be described using a Finite State Machine (FSM) as shown
in Fig. 4. When a new packet enters a queue and becomes the HOL packet,
state maintenance process will be triggered. When a packet from a queue with
maximum fi(t) is scheduled for departure, we first make necessary update on
e, v, dack and h, then trigger the state maintenance for this queue since a new
packet will become the head of the queue. The algorithm schedules packets so
that the precedence constraint among packets are followed as much as possible.
Such an algorithm is referred to as soft precedence constraint scheduling (SPCS)
algorithm.

5 Performance Evaluation

In this section, we present our simulation results and compare our algorithm
with other scheduling algorithms. Section 5.1 discusses the experimental setup
for our simulation study. Simulation results are presented in Section 5.2.



98 S. Li et al.

S0

Sn

OLT router

D0

Dn

100Mbps
1ms5Mbps

1ms
5Mbps
1ms

5Mbps
1+d ms

5Mbps
1+d ms

50Mbps
2ms

Fig. 5. Simulation Network Topology

5.1 Experimental Setup

We evaluate the performance of our algorithm using ns-2 (version 2.34) [18]
running under ubuntu linux 9.04. Figure 5 shows the simulation topology. There
are 10 wireless clients, each sending packets to the OLT through 2 paths in a
round-robin fashion. Each path from the source to the OLT can provide 5 Mbps
link capacity. The OLT is connected to the Internet through an Ethernet. As
mentioned early, packets of a flow may arrive at the OLT through different paths.
Due to different paths’ delay, OOD packet arrivals will be produced. In order to
simulate the delay difference between paths, for the two paths from each source
to the OLT, one’s delay is 1ms and the other is 1 + d ms where d varies from
0 to 100 ms. A larger d will introduce more variation in the path delay, thus
increasing the degree of packet reordering.

We use TCP/Reno as the agent for TCP connections. TCP/Reno is chosen for
its implementation of fast retransmission and fast recovery. The TCP window is
set to be 50 segments and packet size is fixed to be 1000 bytes. A FTP application
is started at t = 0.05i s and is stopped at t = 10 + 0.05i s at each wireless client
si. In the simulation, max hold is set to d.

5.2 Simulation Results

In this section, we compare the performance of our proposed SPCS algorithm
with classical scheduling algorithms such as FIFO and DRR, and HPCS [19].

We use goodput, which is defined as the number of packets successfully received
and acknowledged by the receiver, excluding retransmissions, as a performance
metric to compare our proposed packet scheduling algorithm with other packet
scheduling algorithms.

Firstly, the buffer size at the OLT is set to be large enough to ensure that no
packet drops at the OLT. Fig. 6 shows the average goodput of all flows when d
varies between 0 ms and 100 ms at intervals of 10 ms. From Fig. 6, we can see
that a larger d does lead to lower goodput. We can also see that both our SPCS
and HPCS outperform the other two classical scheduling algorithms.

Though the goodput metric of HPCS is similar to SPCS, Figure 7 shows that
packets experience much longer queuing delay at the OLT in HPCS than other
schedulers, which is not practical to be used as a resequencing algorithm at the
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intermediate nodes. Our proposed SPCS scheduling algorithm will experience
much less queuing delay at the OLT when the delay difference among multiple
paths are moderate.

To verify fair bandwidth sharing, we use min-max ratio, rmin−max, as our
fairness index, which is defined as follows: given a set of goodput (x1, x2, ..., xn),
the following function assigns a fairness index to the set:

rmin−max =
minj{xi}
maxj{xi} = mini,j{ xi

xj
} (3)
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Fig. 8 shows the achieved min-max ratio of those scheduling algorithms when
d changes from 0 ms to 100 ms. The results show that all compared algorithms
can achieve the goal of providing fair bandwidth sharing. This validate the ef-
fectiveness of our fairness design criterion.

At last, we show the required buffer size at the OLT for each scheduler. We
set d to 50 ms and simulate the goodput when the buffer size varies from 12.5
Kbytes to 250 Kbytes. Here, we adopt the shared buffer scheme, i.e., all flows
share a common buffer pool in the OLT. When overflow happens, we use a
pointer to drop the tail of each queue periodically. With the increase in buffer
size, fewer packets are dropped. Hence, the goodput for upstream TCP traffic
also increases. From Fig. 9, we can see that the goodputs of both SPCS and
HPCS indeed increase with the buffer size while there is no change in FIFO and
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Fig. 9. Goodput vs. buffer size in the OLT
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DRR. Fig. 9 also shows that SPCS only needs 25 Kbytes to behave well while
HPCS requires as much as 225 Kbytes.

6 Conclusion

The integration of a PON and a WMN makes the OLT as a convergence node,
which naturally makes it possible to resequence packets at the OLT before they
are sent to the Internet. In this paper, we propose a scheduling algorithm at
the OLT to resequence packets while providing fairness. Simulation results show
that the proposed packet scheduling algorithm is efficient in reducing the ef-
fect of packet reordering, assuring fairness among different flows and reducing
the required buffer size in the OLT. Compared with other reordering-tolerant
algorithms which need to modify TCP protocol at clients, our proposed work
provides a scalable solution since resequencing is conducted in the access net-
work at the sender’s side. The proposed resequence scheduling can be used not
only at the OLT, but also at edge routers where per-flow packet scheduling is
possible.
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