
 

D. Weerasinghe (Ed.): ISDF 2009, LNICST 41, pp. 57–65, 2010. 
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010 

Smart Logic - Preventing Packet Loss in  
High Speed Network Intrusion Detection Systems 

Ahsan Subhan, Monis Akhlaq, Faeiz Alserhani, Irfan U. Awan, John Mellor,  
Andrea J. Cullen, and *Pravin Mirchandani 

Informatics Research Institute, University of Bradford, 
Bradford BD7 1DP, United Kingdom and  

*Syphan Technologies (www.Syphan.com) 
{s.a.subhan,m.akhlaq2,f.m.f.alserhani,i.u.awan,j.e.mellor, 

a.j.cullen}@Bradford.ac.uk, pmirchandani@Syphan.com 

Abstract. Network Intrusion Detection Systems (NIDS) have gained substantial 
importance in today’s network security infrastructure. The performance of these 
devices in modern day traffic conditions is however found limited. It has been 
observed that the systems could hardly stand effective for the bandwidth of few 
hundred mega bits per second. Packet drop has been considered as the major bot-
tleneck in the performance. We have identified a strong performance limitation 
of an open source Intrusion Detection System (IDS), Snort in [1, 2]. Snort was 
found dependent on host machine configuration. The response of Snort under 
heavy traffic conditions has opened a debate on its implementation and usage. 
We have developed the Smart Logic component to reduce the impact of packet 
drop in NIDS when subjected to heavy traffic volume. The proposed architecture 
utilizes packet capturing techniques applied at various processing stages shared 
between NIDS and packet handling applications. The designed architecture re-
gains the lost traffic by a comparison between the analysed packets and the input 
stream using Smart Logic. The recaptured packets are then re-evaluated by a se-
rialized IDS mechanism thus reducing impact of packet loss incurred in the rou-
tine implementation. The designed architecture has been implemented and tested 
on a scalable and sophisticated test bench replicating modern day network traf-
fic. Our effort has shown noticeable improvement in the performance of Snort 
and has significantly improved its detection capacity.  

Keywords: Network intrusion detection systems, network performance, packet 
drop, Snort, serialization. 

1   Introduction 

Intrusion detection in the realm of information security is the technique of identifying 
any hostile attempt into the network. The concept has gained acceptance at all levels 
on account of increasing threats for users/ networks. It has also been complemented 
by various mechanisms to fulfill security requirements. Broadly Intrusion Detection 
systems (IDS) are categorized into two types. Signature based – these are designed to 



58 A. Subhan et al. 

 

detect attacks on basis of well defined threats, these are accounted into system poli-
cies to prevent any future intrusion. Anomaly based - These base their logic on pre 
defined behavioral patterns where any violations from the defined routine generate an 
alert [4]. Both the techniques have inherent advantages and disadvantages. The anom-
aly based systems can detect undiscovered attacks; however they are suffered by large 
number of false positive. On the other hand signature based mechanisms cannot detect 
new attacks thus need continuous updates. We have based our research on signature 
based detection techniques on basis of low false positive, better performance and a 
greater acceptance in the domain of network security.  

In modern day network traffic, the performance of these systems has been found 
debatable. It has been observed that the optimal potential of these systems has not 
been explored. A wide gap still exists between the capability of these systems and 
recent developments in hardware/peripheral devices. For example the systems still 
fails to maximize performance by using multi-core architecture. It also suffers from 
heavy packet loss once used in Giga-bit Ethernet environment. 

Numerous efforts have been made to address the issues related to packet loss in 
high speed networks. Quite few techniques focus on securing a balance between the 
detection capacity of system and input traffic. Few substantially competent techniques 
make use of load balancing concepts. These involve the use of traffic splitting mecha-
nism where input traffic is distributed across the set of detection engines for evalua-
tion and filtering to block the traffic destined to unpublished ports.  

Krugel et al in [5] explored a parallel architecture to increase the system capacity 
by splitting traffic into manageable sized slices; these are then fed to the set of detec-
tion sensor. Each sensor has been made intelligent to respond to set of particular 
threats and has no intercommunication.  Unfortunately, this technique is strongly de-
pendent on few parameters. Firstly, the sliced traffic must be fed to the detection en-
gine capable of responding to the particular threat which in some cases is violated and 
may result in  sensor overloading; thus resulting in packet loss. Secondly, it may fail 
to partition complex stateful signatures since correct partitioning of the traffic is 
known only at runtime. Thus any approach that uses a static partitioning algorithm 
needs to over-approximate the event space associated with the signature resulting in 
improper partitioning [6].   

The parallel architecture for stateful detection described in [6] also based its logics 
on splitting the traffic and distributing it to detection sensors in a round robin fashion. 
It differs from [5] on grounds that sensors are able to communicate each other via 
control node on a high-speed, low-latency, dedicated control plane and all have the 
similar rule matching directory. The feedback allows the sensors to synchronize their 
scanning process. The stateful detection is ensured by replicating the matcher state 
which is same for all sensors at any time. Unfortunately, the concept too suffers from 
performance limitations. Storing already scanned packets in the buffer for a possibly 
pending evaluation in another sensor creates overhead. Response to slow attacks 
would also be an issue where every sensor would be maintaining the state and would 
keep on occupying buffer space. The use of a centralized node for synchronization 
creates overhead and consumes processing power.   

The concept of Early Filtering (EF) applies to the filtering of incoming traffic be-
fore evaluation to handle heavy input as described in [7] is also found limited in per-
formance. The technique uses filtering as a part of sensor functionality. The input is 
first evaluated through EF rule-set. If matched, the packets are discarded; otherwise 



 Smart Logic - Preventing Packet Loss in High Speed Network IDS 59 

 

analyzed. The EF rule-set belongs to the main rule directory and has comparatively a 
less complex analysis, for example, inspection of the header only. This could be eas-
ily evaded by the attempts, concealing payload in initial packets and bypassing the 
evaluation stage. Using locality buffers in the second stage creates performance bot-
tleneck once subjected to heavy input traffic when packets awaiting session comple-
tions cross the buffer limit.  

Our effort adopts a different approach. We base our mechanism on the serialization 
concept where input traffic is being analyzed by normal sensors and later the dropped 
traffic is recovered by our Smart Logic. The technique is distinguished in a way that 
limitation observed in the traffic splitting approaches and drawbacks in early filtering 
are avoided to improve the performance. The Smart Logic takes an approach using 
capture, identify and evaluate cycle with an RDBMS [8] acting as a common data 
repository. Periodic data cleansing has also been applied to ensure optimal perform-
ance of the database. We have implemented our logic on Snort [9], an open source 
NIDS analyzing real world traffic. 

The paper is organized into sections. Section 2 describes the architecture and algo-
rithm of Smart Logic. Section 3 & 4 gives the test-bench and results. Finally in the 
conclusion we analyze our contribution.   

2   Smart Logic 

2.1   Architecture 

The architecture is based on Serialization Concept [1]. This incorporates two in-
stances of IDS evaluation. The instances are separated by Smart Logic which is im-
plemented to recover dropped packets by active comparison as shown in Figure 1. 
The first instance deals with the traffic directly fed from Ethernet interface and carries 
out evaluation. The output of first instance is fed to the data-store where it gets com-
pared with the duplicated input using Smart Logic. The comparison of these two iden-
tifies the lost packets. These lost packets are then fed to the second stage serialized 
evaluation process.   

Snort

PCap Pre-Processor
Detection 

Engine
Alert & Logging 

Mechanism

Input

I
N
P
U
T

Logged 
Traffic

Lost 
Traffic

Packet  
Finder 
Algo

DB 
Cleaner

IDS 
Connector

Second stage 
serialized 
evaluation 

(Snort)

Smart 
Logic

Database

 

Fig. 1. System Architecture 



60 A. Subhan et al. 

 

The system is composed of two components Snort and Smart Logic. Snort, an open 
source NIDS has been selected because of its popularity and status as a de facto IDS 
standard. Snort relies on the packet capturing libraries. The libraries act as packet cap-
turing interfaces to the underlying operating system [10].  

Snort is an open signature based IDS; it uses rules to detect hostile attempts into a 
network. The rules are the set of requirements created to generate an alert and have a 
particular syntax. On successful detection of a hostile intrusion, the detection engine 
sends an alert to a log file/storage resource. The Smart Logic operates by collection of 
network traffic through multiple channels (Snort alert logging mechanism and 
Ethernet span port) and executes comparison logic to identify the lost packets. The 
lost packets are then re-evaluated by Snort based internal detection engine as shown 
in Figure 1. Shared data-store has been employed to act as a bridge between Snort and 
Smart Logic. We have also utilized Sharp PCap [11] wrapper around libpcap [10] for 
managed languages like C# [12], VB.NET [13] and Boo [14] on various frameworks 
such as Microsoft .NET [15] and MONO [16]. Sharp PCap has been installed on 
server and shall ensure the Smart Logic to respond to both open source and proprie-
tary operating systems environments. 

2.2   Operation 

Packet capturing and handling is a vital requirement for a NIDS. A good packet cap-
turing response by the system towards variant traffic reduces the probability of a sys-
tem becoming compromised. Factors that affect the packet capturing performance of 
an NIDS in a Gigabit Ethernet environment include host configuration parameters 
(hardware and software) and application-specific parameters (NIDS). We have devel-
oped comparison logic - Smart Logic to address the issue of packet loss in high speed 
gigabit ethernet environment.  

The designed algorithm – Smart Logic recovers the lost traffic by active compari-
son of input traffic with analyzed packets in the first stage. The operation unfolds in 
two steps, initialization and execution. 

2.2.1   Initialization 
Sharp PCap requires to be present on the server, Smart Logic extracts the current op-
erating system time stamp. Ethernet interface is checked to be functional and status of 
Snort is verified to be active.  The algorithm initializes the logic by setting parameters 
such as packet receipt threshold (example 1000 milliseconds). This delay ensures that 
the component terminates its operation if no traffic is detected at the network interface 
for 1000 milliseconds. 

2.2.2   Execution  
On successful initialization, the logic executes analysis cycles. The procedure iterates 
as long as the Ethernet Interface receives packets or the Snort process is active. The 
concept of Smart Logic is based on re-evaluation of lost traffic.  This has been en-
sured by using a shared data-store for segregating input traffic and analyzed traffic. 
The difference of the input and analyzed traffic identify the dropped packets.  These 
packets are then fed to a Snort based internal detection engine for re-evaluation as 
shown in Figure 2. The execution cycle terminates automatically once Snort process 
made inactive or once the variable packet receiving time out expires. 



 Smart Logic - Preventing Packet Loss in High Speed Network IDS 61 

 

A periodic operational cycle is implemented to perform data purging on the data-
store connected to the system. The data-store plays a vital role in the comparative 
analysis of network traffic. Smart Logic reads the current system time stamp and after 
every selected time period (example 15 minutes) it filters the lost traffic and purges 
the data-store. 

Verify Active Ethernet interface
PcapDeviceList
DevicesSharpPcap.GetAllDevices();
If (Devices.Count !=1) 

Return Error No 
Active Ethernet Devices found
Else
Check if SNORT is running
If ( Get_Pid (“Snort”)< -1) 
Return Error  No active IDS Instance 
Present
Activate Component
Starttime= current time ;
While( (Get_Pid(“Snort”)< -1)&&
((packet=device.PcapGetNextPacket
() !=null ))
{
WriteSrcPacket( packet); [3]
Perform Comparison

FetchLost();
If ( starttime>= Current Time + 

00:15:00 )
{     CleanDump();}

}

FetchLost() 
{
ExecuteQuery
(Select distinct  *  as tbl_Lost from 
tbl_switchwhere (pkt_Session_id, 
pkt_Src_ip) in (Select  
pkt_Session_id, pkt_Src_ip from 
tbl_Log))
}

CleanDump()
{
ExecuteQuery
(“delete from tbl_Switchwhere 
timestamp <= CurrentDate+ 
00:15:00”)
ExecuteQuery
(“delete from tbl_Logwhere 
timestamp <= CurrentDate+ 
00:15:00”
}

 

Fig. 2. Smart Logic Process Flow 

Our algorithm executes a loop that iterates until one or more exit conditions met 
(termination of Snort process or packet receive threshold reached). In each iteration, 
the algorithm stores the input traffic and checks for the expiry of execution interval 
(15 minutes). On expiry of the interval, traffic filtering and purging are executed 
within the iteration. 

The purging facility executes in parallel with the lost packet fetch routine (in a 
producer-consumer paradigm). The multiple delete operations remove the consumed 
input and analyzed packets from their respective tables (Input traffic - tbl_Switch and 
analysed traffic – tbl_Log) at fixed time intervals. 

The traffic filtering component of Smart Logic classifies lost packets on the basis 
of session ID, source and destination IP addresses. The lost packets are identified by 
comparing incoming traffic captured by Sharp PCap to the packets analyzed by Snort 
available in the data-store. Difference of these shall give the dropped packets. 
Mathematically the Smart Logic has implemented as follows: 



62 A. Subhan et al. 

 

      Let DT = T ( DT is the Traffic logged in the database from the network interface 

      Let x be the input traffic fed to first stage Snort instance S1 where x = T 

First stage evaluation          S1(x)    Ta      where Ta  T                  (1) 

Smart Logic   Td = DT / Ta     where Td is the dropped traffic (2) 

Second stage Snort instance           S2 (Td) Tf                         (3) 

Total evaluated traffic (T)           T = Ta+Tf    (4) 

3   Test Bench 

The network is composed of six machines using ProCurve Series 2900 Switch [17] as 
shown in Figure 3. The test bench comprises high performance PCs running open 
source tools to generate background traffic [18, 19] and monitor network perform-
ance. The network is quite similar to that of used in [1 , 2] with the exception of 
Smart Logic component.  

Snort was analyzed by using Smart Logic under different traffic conditions,  
operating system platforms and system configurations. We have selected two impor-
tant parameters (System CPU Usage and Packet handling) to evaluate the proposed 
mechanism.  

4   Results  

We have evaluated the performance of Snort under different scenarios and traffic 
condition in [1, 2]. It was found the Snort barely stands effective in Giga bit Ethernet 
environments. The main factor for the limited system performance relates to the large 
number of packet drop. In order to identify the efficacy of our concept we have com-
pared our results with ones’ obtained in [1, 2]. Performance of the system in context 
of CPU usage and packet handling capability is described in following paragraphs.  

Due to paucity of space we have included the results from Linux 2.6 platform only, 
we have also identified in the previous efforts that performance of Snort is better in 
Linux in comparison to others.   

4.1   CPU Usage 

Application performance largely depends upon CPU usage, higher the usage com-
promised would be the performance. In [1, 2] we have identified that a single instance 
of Snort consumes 20 – 40 % of the CPU once subjected to input traffic volume rang-
ing from 200 Mbps – 2.0 Gbps as shown in Figure 4.   

Implementation of Smart Logic and executing second stage serialized Snort in-
creased the CPU usage upto 70 % for traffic volume of upto 1.2 Gbps as shown in 
Figure 4. Above 1.2 Gbps, CPU usage increased to 100% (2.0 Gbps input traffic) as 



 Smart Logic - Preventing Packet Loss in High Speed Network IDS 63 

 

shown in Figure 4. The increase in CPU usage affects the performance of system and 
cause packet drop.   

 

Fig. 4. Comparison – CPU Usage 

4.2   Packet Handling 

We have achieved a 100% processing response with no packet drop using Smart 
Logic. This is a significant improvement from a standard Snort which can barely han-
dle input traffic reaching 500 Mbps as shown in Figure 5. Snort start dropping packets 
once bandwidth increased from 200 Mbps and at 2.0 Gbps it dropped more than 70% 
of the input traffic.  

Our serialized implementation of evaluation process runs two instances of Snort. 
This has improved the overall evaluation process and successfully able to analyse 
traffic upto 1.2 Gbps as shown in Figure 5. The system start dropping packets above 
1.2 Gbps, the basic cause of packet loss incurred in the evaluation is the bottleneck 
caused by a low disk data transfer rate.  

\ 

Fig. 5. Comparison – Packets Analyzed 



64 A. Subhan et al. 

 

5   Conclusion 

We have proposed a serialized IDS evaluation concept to utilize system resource and 
mitigate the packet loss. Smart Logic designed to recover lost packets has shown  
considerable improvement in the packet handling capability of the system. The intro-
duced concept manages two instances of Snort and still operates within system capa-
bility. The technique also fulfills the requirements of real time traffic analysis.   

The multi-threaded approach of design has improved the network utilization, this 
has also influenced on the processing capability of the system. The IDS implemented 
in the proposed algorithm can analyze greater volume traffic and reduce processing 
delays. 

The data purging concept used in the Smart Logic would execute multiple delete 
operation to clean the data-store at specified interval. This ensures managed depth of 
data-tables thus allowing optimized data access.  

In order to handle traffic above 1.2 Gbps, we suggest running of second Snort in-
stance on a different machine. We have performed few tests on this configuration and 
have found system responsive for input traffic volume up to 5.0 Gbps.    

We have managed to eliminate the performance limitations relative to the use of 
load balancing concepts in traffic splitting mechanisms. This has been achieved by 
monitored duplication and multistage analysis of network traffic. The use of a shared 
data repository ensures minimal packet loss and detection efficiency while simultane-
ously reducing performance overhead. 

Acknowledgment 

We would like to thank Dr. D. R. W. Holton and Dr. R. J. Fretwell of University of 
Bradford for their guidance and support during the course of this research. We would 
also appreciate Syphan Technologies for providing us the opportunity to work on the 
SINBIN Test Lab and their assistance throughout. 

References 

1. Alserhani, F., Akhlaq, M., Awan, I., Cullen, A., Mellor, J., Mirchandani, P.: Evaluating In-
trusion Detection Systems in High Speed Networks. In: Fifth International Conference of 
Information Assurance and Security (IAS 2009), August 18-20. IEEE Computer Society, 
Xian (in press, 2009) 

2. Alserhani, F., Akhlaq, M., et al.: Snort Performance Evaluation. In: Proceedings of Twenty 
Fifth UK Performance Engineering Workshop (UKPEW 2009), Leeds, UK, July 6-7 
(2009) 

3. Kazienko, P., Dorosz, P.: Intrusion detection systems (IDS) Part 2 - Classification; meth-
ods; techniques (2004) 

4. Tessel, J.D., Young, S., Linder, F.: The Hackers Handbook. Auerbach Publications, New 
York (2004) 

5. Krugel, C., Valeur, F., vigna, G., Kemmerer, R.: Stateful Intrusion Detection for High 
Speed Networks. In: Proceedings of IEEE Symposium on Security and Privacy, Oakland, 
CA, May 2002, pp. 285–293 (2002) 



 Smart Logic - Preventing Packet Loss in High Speed Network IDS 65 

 

6. Fischini, L., Thapial, A.V., Cavallaro, L., Kruegel, C., Vigna, G.: A Parallel Architecture 
for Stateful, High-Speed Intrusion Detection. In: Proceedings of fourth International Con-
ference on Information system security, Hyderabad, India, pp. 203–220 (2008) 

7. Xinidis, K., Charitakis, I., Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: An Active 
Splitter Architecture for Intrusion Detection and Prevention. IEEE Trans. Dependable Sec. 
Computer 3(1), 31–44 (2006) 

8. RDBMS, http://www.databasedir.com/what-is-rdbms 
9. Snort, http://www.Snort.org 

10. Baker, A.R., Esler, J.: Snort IDS and IPS Toolkit, Syngress, Canada (2007) 
11. Sharp PCap, http://www.chrishowie.com/pcap-sharp 
12. C Sharp, http://en.wikipedia.org/wiki/C_Sharp  
13. VB.net, http://vb.net  
14. Boo, http://boo.codehaus.org 
15. Microsoft.Net, http://www.microsoft.com/NET 
16. MONO, http://mono-project.com/Main_Page 
17. VMware Server, http://www.vmware.com/products/server 
18. LAN Traffic V 2,  

  http://www.topshareware.com/lan-traffic-v2/downloads/1.html  
19. D-ITG V 2.6, http://www.grid.unina.it/Traffic/index.php  

 


	Smart Logic - Preventing Packet Loss in High Speed Network Intrusion Detection Systems
	Introduction
	Smart Logic
	Architecture
	Operation

	Test Bench
	Results
	CPU Usage
	Packet Handling

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




