
D. Weerasinghe (Ed.): ISDF 2009, LNICST 41, pp. 123–134, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Detecting Sybils in Peer-to-Peer File Replication Systems

K. Haribabu1, Chittaranjan Hota2, and Saravana1

1 Computer Sc. & Information Systems Group, Birla Institute of Technology and Science
Pilani, Rajasthan, India

2 Computer Sc. & Information Syst. Group, Birla Institute of Technology and Science, Pilani
Hyderabad Campus, Hyderabad, Andhra Pradesh, India

Khari@bits-pilani.ac.in, hota@bits-hyderabad.ac.in,
saravana87@gmail.com

Abstract. The test of a peer-to-peer file sharing network is how efficiently the
objects are discovered and retrieved. One of the most important factors that
contribute towards this is optimal replication of the objects across the network.
One of the security threats to replication model is Sybil attack. In this paper we
propose an approach that aims at detecting sybil identities in peer-to-peer file
sharing networks. The sybils can corrupt, hide or destroy the replicas in file
sharing network. This approach makes use of the fact that sybil doesn’t scale its
storage to the factor of its identities. The approach safeguards the availability
and accessibility of objects in a peer-to-peer network from sybil attack. Ex-
perimental evaluations have shown that our approach works very efficiently in
detecting sybils. More than 50% of the sybils were detected in first few seconds
of the simulation and loss or damage of objects is reduced to less than .0001%.

Keywords: Peer-to-Peer, Overlay Networks, Sybil Detection, Replication.

1 Introduction

P2P overlay networks are application-level logical networks built on top of the physi-
cal networks. These networks maintain separate addressing and routing mechanisms
to enable efficient search and data exchange between peers. They don’t require any
special administrative or financial arrangement. They are self-organizing and adap-
tive, distributed and decentralized. P2P overlay networks are categorized as unstruc-
tured and structured. An unstructured P2P system is composed of peers joining the
network with some loose rules, without any prior knowledge of the topology.
Gnutella [1], and KaZaA [2] are examples of unstructured P2P overlay networks. In
structured P2P overlay networks, network topology is tightly controlled and content is
placed not at random peers but at specified locations that will make subsequent que-
ries more efficient. Most of the structured P2P overlays are Distributed Hash Table
(DHT) based. Content Addressable Network (CAN) [3], Chord [4], and Pastry [5] are
some examples of structured P2P overlay networks.

When compared to P2P model, client/server model has smaller security risks due
to the presence of centralized authority which can authenticate requesting nodes. P2P
model, due to its decentralized model thus lacking centralized authority to authenti-
cate nodes, faces security challenges such as masquerading, denial of service (DOS),

124 K. Haribabu, C. Hota, and Saravana

and tampering [6]. By masquerading or acting as another node, a node can give misin-
formation to other nodes. This can lead to partitioning the network, DOS attack, and
illegal actions on the network. A malicious node can repeatedly send requests for con-
tent from a particular node and thus preventing it from fulfilling legitimate requests.
Another challenge is to protect content that is replicated on different nodes from al-
terations. Powerful attacks such as Sybil [7], Byzantine agreement disruption [8], and
DOS [8] attacks make the large part of the network fail. Routing in P2P networks
involves passing messages to intermediate nodes which can be malicious. Secure
routing deals with malicious nodes actively trying to disrupt communication. Since
there is no central authority to verify the one to one mapping between identity and
node, a node can masquerade as multiple identities. This way it can control large part
of the network. This is called Sybil Attack [7]. Although this kind of attack is possible
in P2P networks, ad-hoc networks and sensor networks, it can do major damage in
P2P networks because of their large global size and lack of physical constraints as in
ad hoc and sensor networks [9]. It is not very difficult to set up this attack because it
requires one node and many different identities or abstractions.

This attack can disrupt the network message routing for look up process and over-
lay maintenance by controlling large portion of the network. It is necessary to ensure
that a message will be delivered to the intended node despite malicious node activity
such as message corruption or misrouting [10]. A Sybil has the power to actively
monitor and control the ongoing unicast communications or collaborative agreement
tasks. The specific attacks that can be mounted are impersonating different routes and
controlling them, dividing or segmenting a part of the overlay by positioning itself
conveniently, mounting a denial of service attack on a particular node, or disrupting a
Byzantine agreement.

Sybil attack is the attack against identity where an entity in a network can mas-
querade itself as multiple simultaneous identities in the network. This problem is per-
vasive in all distributed systems. In real world election scenario, people can rig the
elections or in other words they represent themselves forcefully on behalf of many
people. Using this attack, companies increase the rank of the web pages in Google
search results[11] and some people associate certain search terms with popular
personalities out of fun[12]. The peer-to-peer systems are used for many purposes;
computational [13-14], messaging [15], file sharing [1]; most popularly used in file
sharing networks. Sybil attack has its affect on file sharing systems especially in rep-
lication of copies of files. By knowing the mechanism of replication which is used in
a particular P2P network, a malicious user (Sybil attacker) can create fake identities in
the network so that the file replication of a particular file happens entirely or partially
happens on the Sybil identities created by this particular user. Once the replica is in
the hands of Sybil identity, it can corrupt, hide or destroy the copy what to speak of
when all copies are replicated on Sybil identities only. Sybil attack goes against main-
taining quality and accessibility of content, and robustness of the network. In this pa-
per, we address this problem by developing a protocol that is capable of detecting
Sybil identities.

The simulation results show that this approach can detect Sybil identities to the de-
gree that loss of file replicas are reduced to less than .0001%. However, this approach
is less efficient when the number of replicas being maintained is less. Having very
few replicas of the objects, which is of course an unlike scenario in today’s peer-to-
peer file sharing systems.

 Detecting Sybils in Peer-to-Peer File Replication Systems 125

2 Related Work

Douceur [7] describes puzzle methods that exploit communication, storage or compu-
tational resource constraints. He proves that computational puzzle methods are not
viable. In these puzzles, the verifier sends a large random value to every other identity
it wants to verify. These identities must then compute the solution within a con-
strained amount of time. If an entity has more than one identity it will fail to compute
the solution within the time. The paper says that this can be circumvented by taking
help of other powerful nodes. Thus he advocates the existence of a central authority to
prevent Sybil attacks. Castro, et al. [10] argue that in a P2P overlay network, if a cen-
tral authority distributes uniform node identifiers (IDs) then it is difficult for attackers
to have any control over this process. They allow multiple node IDs per IP address.
Dinger and Hartenstein [9] proposed an identity registration procedure called self-
registration that is a natural extension of P2P mechanism to safeguard against Sybil
attacks. Their approach clearly distinguishes network nodes from participants. The
results of their self-registration process show that it is able to regulate number of
nodes per participant. It has open-ended questions like within what duration the net-
work becomes free from dominance. Danezis, et al. [16] present a modified DHT
routing using a bootstrap tree for Chord to resist the impact of Sybil attacks. In the
bootstrap tree, two nodes share an edge if one introduced the other into the DHT.
These relationships are established outside the tree off-line. With this logic Sybil
nodes will attach to the tree at limited nodes. Also, a trust metric is used to minimize
the probability of a malicious node being on the routing path of the Chord. Fiat, et al.
[17] proposed S-Chord which is a variant of Chord where a node uses a set of nodes
called Swarm which randomly selects an ID using which the node positions itself at a
critical position in the Chord ring. In Sybilguard [19], the authors have proposed a
distributed algorithm for limiting entry of Sybil identities into a social network. They
have used the principle that in a social network, the trusted edges between honest
group and a Sybil group will be very few. They have designed a protocol in which the
verification of new entry into the network is done by intersection of random routes.

Our approach is based on challenging resources of the Sybil identities. The ap-
proaches [20-21] also fall into the same category. Unlike the other challenge-resource
approaches, this approach is more reliable because the storage is persistent. Here it is
not difficult to simultaneously test the storage capacity of most identities because it
can be done over a period of time.

3 Sybil Detection

In this section we discuss design of our approach.

3.1 Scope

File replication in P2P has many advantages such as reducing traffic congestion; in-
creasing object availability and aiding in fault tolerance. Single node failures, like
crashes of nodes, can be tolerated as faults within the system as a whole facilitated
with the help of the redundancy introduced by replicas. If a host of a replica fails,

126 K. Haribabu, C. Hota, and Saravana

requestors may access another host with a replica. Data replicated at more than one
site facilitate to minimize the number of hops before the data are found. But, large
scale Peer to Peer systems face security threats from faulty or hostile remote comput-
ing elements [7]. Peer-to-Peer (P2P) based file sharing applications have become
highly popular in today's Internet due to the spread of platforms such as Napster,
Gnutella, KaZaa, eDonkey, BitTorrent, and others. The Sybil attack in which a single
user can pose as multiple identities is a serious threat to P2P File Sharing Systems
because the malicious entity can sabotage the P2P file sharing system in whatever
way he likes. The various ways in which a Sybil Node can attack or disrupt the func-
tioning of the file sharing networks are given below:

Content Pollution: The Sybil identities can behave in various ways such as replac-
ing all or part of the content with white noise, cutting the duration, shuffling blocks of
bytes within the digital recording, inserting warnings of the illegality of file sharing in
the recording, and inserting advertisements; the main aim being to render the file un-
usable and thereby reducing its popularity [18]. Now, this polluted content can be
replicated on a large number of honest or Sybil nodes in the P2P Network. A normal
user who is oblivious to all these, downloads these content and thus the polluted con-
tent spreads throughout the file sharing network eventually exceeding the number of
original copies. As the users download more and more polluted copies, it might lead
to frustration among users and subsequently leading them to abandon the file sharing
itself. A situation can happen is that when a recording company is on the verge of
releasing a song that will likely be popular; the rival record company might pay a pol-
lution company to spread bogus copies of the song through one or more P2P network
thereby reducing the popularity of the file.

Content Deletion: Consider the other side of file replication on multiple nodes; it
introduces a new set of challenges. The Sybil identities on which the files are repli-
cated might delete the files that were replicated and be detrimental towards to the file
sharing system. For example, a person X may store his audio or video at a remote
node Y located elsewhere so that persons near that can download the files from that
particular node. If that node was a Sybil node, the file might be deleted and the basic
purpose of replication in file
sharing systems is defeated.

Content Concealment:
The Sybil node can possess
the file and not send it to the
requesting node. By this
way, again the motives of
the P2P file sharing network
reduces because of conges-
tion etc. In this case, the
Sybil Identity might still
possess the data (so that if
the owner node verifies, it
would be able to resend the
data and confirm it) and thus
conceal it from other re-
questing nodes.

Fig. 1. Sybil identities having common storage in Chord
network

 Detecting Sybils in Peer-to-Peer File Replication Systems 127

Therefore, the effects of Sybil Identities can be devastating to a P2P file sharing
network. So, it is advisable that files are not replicated wholly on Sybil Identities.
Towards this SybilGuard [19] mentions that maintain g+1 replicas in case there are g
Sybil groups is wasteful and instead propose a mechanism which bounds the number
of nodes in each Sybil Group. Whereas, in our work we don’t present any restrictions
on the minimum number of replicas that need to be maintained as our theory works
even if all the files are replicated wholly or partially on the Sybil Identities.

In this paper, we attempt to solve this problem, by a two phase method. 1. Detect-
ing Sybil identities in the process of replication 2. Adapting replication process so that
the replicas will not go to already detected Sybil identities

3.2 Algorithm Overview

As we have seen that Sybil attack creates multiple simultaneous virtual identities in
the network. Virtual identities mean that although these identities created by the user
appear to be normal, they don’t have their own computational, memory and storage
resources. But for the nodes in the network, these identities appear to be no different
than normal nodes. Literature describes various ways to detect Sybils. One of the
ways is to detect whether the node is a virtual or just a normal node.

The network is a structured network where the nodes are placed in pre-determined
positions according to the node id. The data is placed in the node whose id is the clos-
est to the key of the object. In most structured networks, the objects are replicated in r
number of successors, r being dependent on individual system. The node where the
object is originally stored is called ‘owner’ of the object. The owner replicates the
copies of the object. The owner of the file has details about to which all nodes the file
has been replicated. For all the Sybil identities created by one particular malicious user
the storage would be done in one particular place i.e., the malicious user’s storage sys-
tem. So, the data that has been replicated in Sybil identities created by that malicious
user will be stored in the storage area of the malicious user. The malicious user has a
limited storage capacity. As the number of Sybil Identities on which file replication
takes place increases, the storage capacity needs to be increased and the cost involved
in increasing storage compared to the benefit in doing that proves ineffective for the
malicious user as the data which is replicated is not a highly confidential data in nor-
mal P2P networks.

The owner of the object replicates a file on a set of nodes. The owner needs to keep
track of the node identities where it has replicated the files. It is assumed that for a
normal node, there will not be a situation where it doesn’t have space to store the file.
This is because the replication placement is done by the consistent hashing [22]. This
will ensure equal distribution of load.

Every owner of the object verifies the existence of the files at regular intervals. The
owner sends a message to each node where the replica is placed asking for a randomly
chosen byte range within the file. The receiver is supposed to send the reply with those
few bytes extracted from the object. When the verifier receives a reply, it verifies the
reply. If either the reply is not received or the reply is not correct then, the owner notes
the node identifier of the node. If the same situation occurs for a more than threshold

128 K. Haribabu, C. Hota, and Saravana

number of times, the owner detects the node to be a Sybil identity. Then it will not
replicate the objects anymore on this node.

The verification message consists of {fileId, fromByteOffset, toByteOffset}. The
verification reply message consists of {fileId, fromByteOffset, toByteOffset, bytes}.
After sending the verification request, the owner waits for the reply. If the reply is not
received in an expected amount of time, the owner takes it to be a no reply. The repli-
cation and verification procedures are outlined in Fig2 and Fig3.

Replicate(File:f)
{
 Successors: S
 SybilDetected: D
 Int: noOfReplica=0
 ReplicaList: L
 for each successor s Є S
 if (s Є D) = false then
 putIntoNetwork(s, f)
 add(L, s, f)
 noOfReplica = noOfReplica+1
 if noOfReplica>REPLICA_LIMIT then
 exit for
}

Fig. 2. Algorithm for replicating a file f

VerifyReplications(ReplicaList:L)
{
 SybilDetected: S
 ReplicaList: L
 VerificationMessage: v
 VerificationReplyMessage: vr

 for each replica r Є L
 v= makeVerificationMessage(r)
 sendVerificationMessage(r.s, v)
 vr = waitForReply()
 if verifyReply(r, v, vr)==false or
vr==null then
 L.noReplyCount = L.noReplyCount
+ 1;
 If L.noReplyCount > THRESHOLD then
 S.add(r.s)
}

Fig. 3. Algorithm for verification of a
copy of file f

 Detecting Sybils in Peer-to-Peer File Replication Systems 129

VerificationMessage
makeVerificationMessage(Replica: r)
{
 Int: fromByte
 Int: toByte
 VerificationMessage: v

 fromByte=getRandomNo() Mod sizeof(r.f)
 toByte= getRandomNo() Mod sizeof(r.f)
 if fromByte>toByte then
 swap(fromByte,toByte)

 v.f = r.f
 v.fromByte = fromByte;
 v.toByte = toByte;
 return v
}

Fig. 4. Procedure for making a verification
message

verifyReply(Replica: r,
VerificationMessage: v,
VerificationReplyMessage: vr)

{
 If byterange(r.f, v.fromByte, v.toByte)
== vr.data then
 return true
 else
 return false;

}

Fig. 5. Procedure for verifying a reply
sent from a node

4 Simulation Results

Simulation was carried out on a 1000-node Chord network. We used PlanetSim [23]
overlay network simulator. Necessary changes were made in the Node classes to
represent the current purpose of simulation. New procedures were written for replica-
tion and verification. The simulator was a step based simulator. Every step, the mes-
sages are transferred from current node to next node. The simulation was carried out
for 45000 steps. The files are replicated in the system throughout the simulation using
a Poisson process with average as 4. The threshold value for terming a node as

130 K. Haribabu, C. Hota, and Saravana

Sybil is 4. The waiting time for a verification reply is set to 10 seconds. The topology
of the Chord network is shown in Fig 6.

In the beginning of the simulation, all the honest and Sybil nodes are created. The
honest nodes are 1000 in number. The Sybil nodes are varied from 50 to 850 i.e. 4.7%
to 46%. We see in graph Fig 7 that all the graphs follow the same pattern. Initially all
the curves are steeply falling, indicating that there is high probability that the objects
are distributed to Sybil identities but since there is no storage space, they could not
hold all the replicas. As the number of Sybil identities reduce in the network, the
probability that a object is replicated in a Sybil node also reduces. That is why the
steepness of the curves reduces. Also we can observe that as the Sybil identities per-
cent in the network is increased, the time taken to detect Sybil identities also in-
creases. In Fig 8, we can observe that, as the percent of Sybil identities increase in the
system, the total number of Sybil identities detected in 45000 steps is reduced. In Fig
9, we see that reducing the number of Sybil identities has direct effect on file losses
incurred in the network. We can see from the Sybil CDF that when it has reached a
slow progress state, accordingly the file losses also have reduced. Normally the file
losses are due to the Sybil identities, since they don’t have the storage space to store
replicas of all the Sybil identities. When they are detected, the files are replicated on a
different set of nodes probably honest nodes. That way the file replicas are safer. In
Fig 10 we can see how the Sybil detection procedure is dependent on the number of
files being replicated in the network. The whole algorithm is dependent on the repli-
cas of files. More the number of files replicated, more will be the detection of the
Sybil identities. In Fig 11, it can be observed that, the waiting time for a verification
reply from a node has no drastic influence of the detection of Sybil identities. This is
because several nodes replicate their objects on a Sybil node. The increase in waiting
time doesn’t delay the detection because there are several other nodes which are veri-
fying meanwhile.

Fig. 6. Chord network topology for 1000 node network

 Detecting Sybils in Peer-to-Peer File Replication Systems 131

Sybil presence w.r.t time

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000
milli seconds

N
o

. o
f S

yb
ils

 P
re

se
n

t

50

150

250

350

450

550

650

750

850

Fig. 7. Detection pattern of Sybils for different % of Sybils in the network

% of Sybils Detected in First Few Minuts of
Simulation

0

20

40

60

80

100

120

5 13 20 26 31 35 39 43 46

Initial Sybil % in the network

%

%Sybils
undetected

% Sybils
Detected

Fig. 8. Effect of % of Sybils on detection algorithm

132 K. Haribabu, C. Hota, and Saravana

Reduction of File Loss by Reducing Sybils

0
50

100
150
200

250
300

350
400
450

500

0 500 1000 1500 2000
Time (Secs)

C
o

un
t

Sybil CDF

File Loss CDF

Fig. 9. Effect of Sybil detection on replica losses

Effect of Number of Files Replicated on Sybil
Detection

0

50

100

150

200

250

300

0 200 400 600

Time (sec)

N
o

.
o

f
S

yb
il

s
P

re
se

n
t

Files Replicated 1000

Files Replicated 500

Fig. 10. Sybil detection depends on number of object copies replicated in the network

Effect of Waiting Time for a Verification Reply

0

50

100

150

200

250

300

0 100000 200000 300000 400000 500000

Time (milli sec)

N
o

.
o

f
S

yb
il

 P
re

se
n

t
in

 t
h

e
n

et
w

o
rk

Waiting Time: 5 Sec

Waiting Time: 1 Sec

Waiting Time: 25 sec

Waiting Time: 0.1 Sec

Fig. 11. The effect of verification waiting time on the Sybil detection is almost nil

 Detecting Sybils in Peer-to-Peer File Replication Systems 133

5 Conclusion

This paper presented a novel decentralized protocol for limiting the corruptive influ-
ence of Sybil attacks on replication system in peer-to-peer networks by detecting
Sybil identities and there by avoiding storing replicas on them. This approach relies
on the principle that Sybil doesn’t scale its storage capacity to the factor of its identi-
ties. Also unlike the other challenge-response approaches, this approach is more reli-
able because the storage is persistent. Here it is not difficult to simultaneously test the
storage capacity of most identities because it can be done over a period of time. Ex-
perimental evaluations on this approach have shown that Sybil identities were de-
tected to the extent of 90% of initial Sybil identities. Also the effect of parameters like
initial percent of Sybil identities, total number of objects replicated in the network,
waiting time for a verification reply is analyzed. Still the approach may suffer if the
Sybil identities chose to store the replicas on another node. Our future work will focus
on a fool proof 100% Sybil detection protocol with simulations on a larger network.

References

1. Gnutella Protocol Specification Version 0.4,
 http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

2. Kazaa, http://www.kazaa.com
3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content Ad-

dressable Network. In: Proceedings of the 2001 ACM Annual Conference of the Special
Interest Group on Data Communication (SIGCOMM), pp. 161–172. ACM Press, New
York (2001)

4. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. IEEE/ACM Transactions on Networking 11, 17–32 (2003)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

6. Haiying, S., Brodie, A.S., Xu, C., Shi, W.: Scalable and Secure P2P Overlay Networks. In:
Wu, J. (ed.) Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-
to-Peer Networks. CRC Press, London (2005)

7. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

8. Wallach, D.S.: A Survey of Peer-to-Peer Security Issues. In: Okada, M., Pierce, B.C.,
Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 253–258.
Springer, Heidelberg (2003)

9. Dinger, J., Hartenstein, H.: Defending the Sybil Attack in P2P Networks: Taxonomy,
Challenges, and a Proposal for Self-Registration. In: Proceedings of the First International
Conference on Availability, Reliability and Security (ARES 2006), pp. 756–763. IEEE
Computer Society, Los Alamitos (2006)

10. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for
structured peer-to-peer overlay networks. In: Proceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation, pp. 299–314. ACM Press, New York
(2003)

134 K. Haribabu, C. Hota, and Saravana

11. Bianchini, M., Gori, M., Scarselli, F.: Inside page rank. ACM Transactions on Internet
Technology 5(1), 92–128 (2005)

12. Viglucci, A., Tanfani, J., Getter, L.: Herald special report: Dubious tactics tilted mayoral
votes. Miami Herald, February 8 (1998)

13. Anderson, D.: SETI@home in Peer-to-Peer: Harnessing the Benefit of a Disruptive Tech-
nology. O’Reilly & Associates, CA (2001)

14. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: FOLDING@home and GE-
NOME@home: Using distributed computing to tackle previously intractable problems in
computational biology. Computational Genomics (2002)

15. Miller, J.: Jabber: Conversational technologies in Peer-to-Peer: Harnessing the Benefits of
a Disruptive Technology. O’Reilly & Associates, CA (2001)

16. Danezis, G., Lesniewski-Laas, C., Kaashoek, M.F., Anderson, R.: Sybil-resistant DHT
routing. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 305–318. Springer, Heidelberg (2005)

17. Fiat, A., Saia, J., Young, M.: Making Chord Robust to Byzantine Attacks. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer, Heidelberg (2005)

18. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in P2P file sharing systems. In: Proceed-
ings of. IEEE INFOCOM 2005, vol. 2, pp. 1174–1185. IEEE Computer Society, Washing-
ton (2005)

19. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: SybilGuard: Defending against sybil
attacks via social networks. In: Proceedings of the 2006 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pp. 267–278. ACM
Press, New York (2006)

20. Borisov, N.: Computational Puzzles as Sybil Defenses. In: Proceedings of the Sixth IEEE
International Conference on Peer-to-Peer Computing, pp. 171–176. IEEE Computer Soci-
ety, Washington (2006)

21. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally challenged Byzan-
tine impostors. Technical Report, Yale University Department of Computer Science (July
2005)

22. Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin, D., Panigrahy, R.: Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pp. 654–663. ACM Press, New York (1997)

23. García, P., Pairot, C., Mondejar, R., Pujol, J., Tejedor, H., Rallo, R.: PlanetSim: A New
Overlay Network Simulation Framework. In: Proceedings of 19th IEEE International Con-
ference on Automated Software Engineering, pp. 123–136. IEEE Computer Society, Los
Alamitos (2004)

	Detecting Sybils in Peer-to-Peer File Replication Systems
	Introduction
	Related Work
	Sybil Detection
	Scope
	Algorithm Overview

	Simulation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

