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Abstract. We focus on application of abstract network protocols towards pro-
totyping sensor networks. Such abstract programs exist for several applications,
e.g., routing, tracking, dissemination, etc. These programs are often specified in
terms of event-driven actions where the program responds to actions in the en-
vironment or previous actions taken by the program. Hence, they are easy to
specify, verify and manipulate. However, they cannot be applied directly in sen-
sor networks as the computation model in sensor networks (write all with colli-
sion) differs from that (read/write or shared memory) used in abstract programs.
Towards this end, we propose ProSe, a programming tool that enables the de-
signers to (1) specify protocols in simple, abstract models, (2) reuse existing
fault-tolerant/self-stabilizing protocols from the literature, and (3) automatically
generate and deploy code. ProSe hides the deficiencies of existing programming
platforms that require the designers to explicitly deal with buffer management,
stack management, and flow control. As a result, we expect that ProSe will en-
able rapid prototyping and quick deployment of protocols.

Keywords: Programming Tool, Network Protocols, Sensor Networks.

1 Introduction

Sensor networks have become popular due to their applications in border patrolling,
critical infrastructure protection, habitat monitoring, structural health monitoring, and
hazard detection. Furthermore, due to the development in MEMS technology, tiny low-
power sensors can now be manufactured and deployed in large numbers. They have
been successfully used in large scale deployments of several applications.

One of the important challenges in deploying sensor network applications is pro-
gramming. Most of the existing platforms (e.g., nesC/TinyOS [2]) for developing sen-
sor network programs use event-driven programming model [3]. As identified in [3–5],
while an event-driven programming platform has the potential to simplify concurrency
by reducing race conditions and deadlocks, the programmer is responsible for stack
management and flow control. For example, in nesC/TinyOS platform, the state of an
operation does not persist over the duration of entire operation. As a result, program-
mers need to manually maintain the stack for the operation. Moreover, the state of the
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operation is shared across several functions. Hence, the designer has to manually con-
trol the execution flow. As the program size grows, such manual management becomes
complex and is often the source of programming errors.

In addition, typical sensor network platforms require the programmers to manage
buffers, contend for access to radio channel, and deal with faults. Hence, as mentioned
in [6], programming in nesC/TinyOS platform is “somewhat tricky.” In [6], the authors
motivate the need for a simpler model that allows one to specify applications in terms
of event-driven model (that hides several programming level issues).

To simplify programming sensor networks, several approaches are proposed (e.g.,
[6–24]). These approaches hide most of the low-level details of the network. (We refer
the reader to Section 2 for more details on these approaches.) Existing work on macro-
programming primitives require implementation of such primitives in a target platform
(e.g., nesC/TinyOS). Moreover, most of these primitives still require the designer to
specify protocols in a target platform (though some intricate details are hidden).

Contributions of the paper. With this motivation, in this paper, we propose ProSe, a
programming platform for sensor networks that allows designers to concisely specify
sensor network protocols. ProSe is based on the theoretical foundation on computa-
tional model in sensor networks [25, 26]. In [25, 26], the authors model the computa-
tions in sensor networks as a write all with collision (WAC) model. In this model, in
one atomic step, a sensor can write its own state as well as the state of all its neighbors.
However, if two sensors try to update the state of a common neighbor (say, k) simultane-
ously then, due to collision, the state of k remains unchanged. Thus, this model captures
the nature of communication in sensor networks. Moreover, in [25, 26], the authors pro-
posed transformation algorithms that allow the designers to specify programs in abstract
models (e.g., read/write model, shared-memory model) and transform them into WAC
model (cf. Section 3.1 for a brief introduction to these models).

ProSe enables the designers to (1) specify sensor network protocols and macropro-
gramming primitives in simple, abstract models, (2) transform the programs into WAC
model while preserving properties such as fault-tolerance and self-stabilization [27] of
the original programs, and (3) automatically generate and deploy code. An advantage
of ProSe is that it will facilitate the designer to use existing algorithms for automating
the addition of fault-tolerance to existing programs. Moreover, since abstract models
are used to specify protocols, ProSe allows the designer to gain assurance about the
programs deployed in the network using tools such as model checkers [28].

Additionally, we observe that the work on distributed computing and traditional net-
working has focused on problems such as consensus, agreement in the presence of
faulty/malicious sensors, reliable broadcast, routing, leader election, synchronization,
and tracking. These problems (or variations thereof) also need to be solved in the con-
text of sensor networks, either in the design of sensor network protocols or in the design
of macroprogramming primitives. However, existing solutions to these problems are
written in abstract models such as read/write model and shared-memory model. Since
it is desirable to utilize the vast literature in this area, to speed up the development and
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deployment of sensor networks, ProSe enables the designers to reuse existing algorithms
by automatically transforming them into WAC model.

Organization of the paper. In Section 2, we discuss the related work. In Section 3, we
provide a detailed discussion on ProSe. Then, in Section 4, we discuss two case studies.
Finally, in Section 5, we make the concluding remarks.

2 Background on Programming Platforms for Sensor Networks

Related work that deals with programming platforms include [6–24].

Macroprogramming. In [7], collaboration groups are proposed that hides the de-
signer from issues such as communication protocols, event handling, etc. In [8–10],
macroprogramming primitives that abstract communication, data sharing and gathering
operations are proposed. These primitives are exposed in a high-level language. How-
ever, these primitives are application-specific (e.g., abstract regions for tracking and
gathering [8] and region streams for aggregation [9]). And, in [11], semantic services
programming model is proposed where each service provides semantic interpretation
of the raw sensor data or data provided by other semantic services. In this model, users
only specify the end goal on what semantic data to collect.

In [12], macroprogramming model, called Kairos, that hides the details of code-
generation and instantiation, data management, and control is proposed. Kairos
provides three abstractions; (1) node-level abstraction, (2) one-hop neighbor list ab-
straction for performing operations on the neighbor list, and (3) remote data access. In
[13], programming language called Pleiades is proposed that extends C language with
constructs for addressing nodes in a network and accessing local data from individual
nodes. In [14], virtual node abstraction is proposed where the physical nodes in the net-
work emulate the virtual node application (specified by the designer). The emulation is
divided among three main components: (1) to elect a region leader in each region of the
network, (2) to retrieve the current state of virtual node application, and (3) to keep the
virtual node state synchronized with the physical nodes in the region.

While [7–14] are designed for simplifying programming application services such
as tracking, aggregation, etc, ProSe is designed to simplify programming both network
services (e.g., routing, clustering, leader election, distributed reset, etc) and application
services. Furthermore, ProSe hides low-level details such as message collisions, corrup-
tion, sensor failures, etc. Moreover, unlike Kairos and Pleiades, ProSe does not require
any runtime support. Additionally, ProSe enables reuse of existing algorithms while
preserving properties such as self-stabilization of the input program.

Rule-based programming. In [15–18], rule based programming approaches are
proposed. These approaches allow designers to specify programs similar to guarded
commands format. However, unlike ProSe, approaches proposed in [15, 16] require de-
signers to explicitly specify send/receive message actions of the sensors. As a result,
the designers have to decide what messages to transmit (e.g., raw data vs. some inter-
pretation of data), when message transmissions are scheduled (e.g., backoff based vs.
timeslot based), and when to listen to the medium for new messages (e.g, always on
radio vs. schedule based). In [18], a declarative sensor network programming paradigm
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called DSN is proposed. DSN uses Snlog, a high-level specification language based on
facts and rules, for specifying programs. DSN provides an easy mechanism for inter-
acting with the lower layers of the stack and components written in systems languages.

The approaches proposed in [15–18] do not facilitate the reuse of abstract proto-
cols from the literature. Moreover, dynamic embedded sensing and actuation language
(DESAL) proposed in [17] does not provide a mechanism for preserving properties of
interest (e.g., fault-tolerance, self-stabilization) in the transformed programs. Addition-
ally, unlike [18], ProSe does not require any runtime support.

Transaction-based programming. In [19], a transactional framework, called TRANS-
ACT, is proposed for programming wireless sensor/actor networks. In this approach, an
execution of a non-local method is of the form: read[write-all]. In other words, a non-
local method consists of: (1) a read operation that reads the state of the neighbors and (2)
a write-all operation that updates the state of all the neighbors. This model differs from
WAC model as follows. Specifically, read action is modeled in [25] as a write-all action
that updates the state of a sensor at all its neighbors. Therefore, expect for the write-all
action, each method accesses only local variables. On the other hand, in TRASACT,
designers have to specify what variables to read and what variables to update at the
neigbhors in every method. As a result, TRASACT introduces unnecessary overheads
in the implementation of read and write-all operations (e.g., read request, read reply,
write-all, acknowledgment, conflict detection, cancellation, and c ancel acks).

Programming tools. Techniques like virtual machine (e.g., Maté [6]), middleware
(e.g., EnviroTrack [20]), library (e.g., SNACK [21], TASK [22]), and database (e.g.,
TinyDB [23]) are proposed for simplifying programming sensor network applications.
Another interesting approach for development of mobile sensor network applications
is CarTel [24]. CarTel provides a simple querying infrastructure. However, these so-
lutions are (i) application-specific, and/or (ii) restrict the designer to what is available
in the virtual machine, middleware, library, or network. By contrast, ProSe provides a
simple abstraction while allowing the designer to specify wide variety of protocols.

3 ProSe: Overview, Architecture, and Features

In this section, we present: (1) the theoretical background of ProSe, (2) the architecture
of ProSe, (3) the internals of ProSe, and (4) the features of ProSe that simplify sensor
network programming.

3.1 Preliminaries and Theoretical Background

Programs are specified in terms of guarded commands [29]; each guarded command
(respectively, action) is of the form:

guard −→ statement,

where guard is a predicate over program variables, and statement updates program
variables. An action g −→ st is enabled when g evaluates to true and to execute that
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action, st is executed. A computation of this program consists of a sequence s0,s1, . . . ,
where s j+1 is obtained from s j by executing actions in the program (0 ≤ j).

A computation model limits the variables that an action can read and write. Pro-
gram actions are split into a set of processes. Each action is associated with one of the
processes. (Note that in this paper, the terms process and sensor are synonymous.)

Shared-memory model. In this model, in one atomic step, a sensor can read its state as
well as the state of its neighbors and write its own variables.

Read/Write model. In this model, in one atomic step, a sensor can either (1) read the
state of one of its neighbors and update its private variables, or (2) write its own state.

Write all with collision (WAC) model. In this model, each sensor consists of write-all
actions. In one atomic step, a sensor can update its own state and the state of all its
neighbors. However, if two or more sensors simultaneously try to update the state of
a sensor, say k, then the state of k remains unchanged. Thus, this model captures the
nature of communication in sensor networks (i.e., local broadcast with collision).

Transformations for WAC model. Recently, approaches have been proposed for trans-
forming programs into WAC model. They can be classified as: (a) TDMA based deter-
ministic transformation [25] and (b) CSMA based probabilistic transformation [26].

TDMA based deterministic transformation. In [25], Kulkarni and Arumugam proposed
algorithms for transforming programs written in read/write model into programs in
WAC model. In [25], the action by which a process (say, j) reads the state of process k
in read/write model is modeled in WAC model by requiring process k to write the ap-
propriate value at process j. However, if another neighbor of j is trying to write the state
of j at the same time then, due to collision, none of the write actions succeed. In order
to deal with this problem, in [25], time division multiple access (TDMA) is used to en-
sure that collisions do not occur during write actions. Specifically, in WAC model, each
process executes the enabled actions and writes (broadcasts) its state to all its neighbors
in its TDMA slots. Note that with TDMA based transformation, the model of compu-
tation does not change. Rather, TDMA avoids collisions during execution. However, if
the slots are corrupted then collisions may occur during execution.

If the transformation uses a deterministic TDMA service (e.g., [30–32]) to imple-
ment the write-all action, the resulting program in WAC model is also deterministic.
Additionally, in [25], the authors propose extensions for transforming programs written
in shared-memory model into programs in WAC model.

TDMA based transformation algorithms proposed in [25] preserve self-stabilization
property of the original programs. A program is self-stabilizing if starting from arbitrary
initial states the program (eventually) recovers to states from where the computation pro-
ceeds in accordance with its specification. In [25], it has been shown that for every com-
putation of the transformed program in WAC model there is an equivalent computation
of the given program. Therefore, if the transformed program transitions into arbitrary
states then there is a corresponding transition in the given program. Now, if the given
program is self-stabilizing then it will recover to legitimate states. In the transformed pro-
gram, if the TDMA slots are not corrupted then the transformed program will recover to
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legitimate states. Hence, if the TDMA algorithm is self-stabilizing (e.g., [30, 32]) then
the transformation preserves self-stabilizing property.

CSMA based probabilistic transformation. In [26], Herman proposed cached sensor
transform (CST) that allows one to correctly simulate a program written for shared-
memory model in sensor networks. CST uses CSMA to broadcast the state of a sensor
and, hence, the transformed program is randomized.

Dealing with lossy channels. The WAC model captures the nature of communication
in sensor networks. However, in practice, messages may be lost due to various factors
including corruption and varying signal-to-noise ratio. We argue that the transforma-
tions proposed for WAC model is valid in the presence of lossy channels.

Towards this end, first, we note that a message loss can be treated as a write action
of a sensor did not update one or more its neighbors. This is equivalent to the com-
putation of original program, say, in read/write model, where the sensor did not read
the corresponding neighbor(s). Therefore, it follows that, for every computation of the
transformed program in WAC model, there is an equivalent computation of the original
program in read/write model.

In the presence of lossy channels, if a sensor executes the write-all action infinitely
often then the state of the sensor is updated at all its neighbors infinitely often. In case of
CSMA based transformation, thus, only probabilistic gurantees about the transformed
programs can be provided in the presence of lossy channels. Likewise, in case of TDMA
based transformation, although collisions are not a concern, the presence of lossy chan-
nels enable only probabilistic guarantees about the transformed programs. Additionally,
since the transformation preserves the stabilization property of the original program,
eventually, the transformed program in WAC model also self-stabilizes to states where
each sensor correctly captures the state of all its neighbors.

3.2 Programming Architecture

The programming architecture of ProSe is shown in Figure 1. ProSe transforms the in-
put guarded commands program into a program in WAC model. Subsequently, ProSe
generates the corresponding nesC code (targeted for TinyOS). Furthermore, ProSe wires
the generated code with a MAC layer to implement the write-all action in the WAC
model. The MAC layer provides an interface for broadcasting (i.e., writing all neigh-
bors) and receiving WAC messages. ProSe also wires the generated code with Neigh-
borStateM.nc that maintains the state of the neighbors of each sensor. The designer can
then use the nesC/TinyOS platform to build the binary of the nesC code that can subse-
quently be disseminated across the network using a network programming service.

Input guarded commands program. In the input program, the designer has to specify
whether a variable is public or private. Also, the designer has to identify the sensor to
which the variable belongs. For example, if sensor j accesses its local variable x, it is
specified as x. j. Consider the MAX program (cf. Program 1). Each sensor maintains a
public variable x. The goal of MAX is to eventually identify the maximum value of x
across the network. Whenever x. j is less than x.k, j copies x.k to x. j. This allows j to
update x. j and, eventually, x. j holds the maximum value of x.
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ProSe

ProSe input program in 
guarded commands 
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program p
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const <>
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end
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makefilenesC 
compiler

Other nesC 
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(with NeighborState)
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Physical layer and Radio

Transformation to 
WAC model and nesC 

code generation

Program image with MAC layer 
to implement the write-all action

Fig. 1. Programming architecture of ProSe

Program 1. MAX program in shared-memory model
1program max
2sensor j;
3var public int x.j;
4begin
5 (x.k > x.j) -> x.j = x.k;
6end
7init state x.j = j;

Initial states. The designer also specifies zero or more initial states in the program. If
initial states are not specified then the variables are initialized to arbitrary values. And,
if the program contains more than one initial state then the variables are initialized to a
randomly selected state. In the MAX program example, x. j is initialized to j.

Topology information. ProSe wires a component (NeighborStateM) that maintains the
state of the neighbors at each sensor, with the generated code. Each sensor should iden-
tify its neighborhood either dynamically using a neighborhood abstraction layer (e.g.,
[33]) or statically using a topology file which specifies the communication topology
[34]. Then, ProSe configures the MAC layer and NeighborStateM.

3.3 Implementation

In the generated program, each sensor maintains a copy vector for each public variable
of its neighbor (in NeighborStateM, the module that implements NeighborState inter-
face to get/set copy vectors). Each copy vector captures the value of the corresponding
variable at its neighbors. The size of this vector is determined using the neighborhood
information of each sensor.
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The actions of the input program are executed whenever a timer fires. Then, it mar-
shals all the public variables as a message wacMsg and schedules it for transmission
(broadcast). Depending on the transformation algorithm and the MAC layer selected
by the user, ProSe configures when the timer fires and how wacMsg is transmitted. In
case of a TDMA based transformation (e.g., [25]), ProSe configures the timer to fire in
every TDMA slot assigned to the sensor and broadcasts wacMsg using a TDMA service
(e.g., [30–32]). In case of a CSMA based transformation (e.g., [26]), it configures the
timer to fire in a random interval whenever the sensor receives a message. And, it uses
a CSMA service to broadcast wacMsg. Thus, as identified in Figure 1, ProSe generates
the following nesC files: a configuration file, an interface file, and 2 module files.

Configuration file. Configurations wire components together, connecting interfaces
used by components to interfaces provided by others [2]. ProSe generates pC.nc, given
the input program p. pC.nc wires pM.nc, NeighborStateM.nc, network services (e.g.,
TDMA, CSMA, etc), and other interfaces required by the module.

Interface and module files. Modules provide the application code and implement one
or more interfaces [2]. ProSe generates pM.nc (given the input program p) and (2)
NeighborStateM.nc as outlined below. (For reasons of space, we refer the reader to [34]
for the steps involved in the generation of these files.)

– Initializing nesC modules. ProSe generates NeighborState.nc that provides get/set
functions for public variables of the program. For each public variable, ProSe gen-
erates a copy vector in NeighborStateM (with entries for all neighbors of a sensor).
NeighborStateM.nc implements NeighborState.nc. In pM.nc, ProSe generates code
to (1) initialize components (e.g., TDMA, CSMA, Timer, NeighborStateM) and (2)
start network/middleware services (e.g., TDMA, CSMA, Timer).

– Implementing the guarded commands. ProSe generates the nesC code for the ac-
tions specified in the input program in Timer.fired() event. For each action g −→ st,
it generates the corresponding nesC code of the form if(g){st;}. And, ProSe gener-
ates code for implementing the write-all action.

– Updating the neighbor state. ProSe generates code for updating NeighborStateM
whenever it receives a message. The values of the public variables of the sender are
updated in the corresponding copy vectors (in NeighborStateM).

Once code is generated, the designer can use the nesC/TinyOS platform to build the
binary image. This image can then be deployed across the network.

3.4 Additional Features

Dealing with faults in protocol design. The normal operation of a network is af-
fected by (1) failure of sensors, (2) state corruption, and (3) message loss. Regarding
failure of sensors, ProSe provides an abstraction which allows a sensor (say, j) to de-
termine whether its neighbor (say, k) is alive or failed. In the input program, sensor
j can access the public variable up.k; if up.k is TRUE (respectively, FALSE) then k
is alive (respectively, failed). ProSe implements this variable using heartbeat protocol
(e.g., [35]). For example, if j fails to receive update messages (i.e., WAC messages)
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for a pre-determined time interval from its neighbor k then j declares k as failed. Thus,
designers can use this abstract variable to simplify the design of programs. Similarly,
ProSe also models Byzantine sensors through abstract variables (b.k).

Regarding state corruption, ProSe permits arbitrary initial states. This allows the
designer to model systems that are perturbed to an arbitrary state. When used in the
context of a self-stabilization preserving transformation (e.g., [25, 26]), this feature
enables the design of self-stabilizing protocols. Finally, regarding message loss, ProSe
allows the designer to provide probability of transmission on any given link.

Priorities of actions. Consider a routing protocol. The actions in the protocol can be
classified as either heartbeat or protocol actions. Heartbeat actions are responsible for
checking the status of the neighbors and protocol actions are responsible for construc-
tion/maintenance of the routing structure. These two classes of actions may have differ-
ent priorities, i.e., the frequency of execution of heartbeat actions may be different from
protocol actions. Typically, in a network where failures are common, heartbeat actions
have higher priority. To represent such actions, ProSe allows the designer to specify pri-
orities for each action. Priority characterizes the frequency with which an action would
be executed. And, priorities are specified along with the guarded commands.

Local component invocations. ProSe makes protocol design highly intuitive and con-
cise. However, it is not always desirable to use guarded commands. For example, con-
sider the design of a routing protocol, where the sensors maintain a spanning tree rooted
at the base station. In this program, whenever the parent of a sensor fails, it chooses one
of its active neighbors for which the link quality is greater than a certain threshold, as its
parent. Towards this end, the sensor has to compute the link quality of each of its neigh-
bors. Specifying this action in guarded commands is difficult. Moreover, nesC/TinyOS
components may exist that provide the desired functionality.

To enable reuse of existing nesC/TinyOS components, ProSe allows component in-
vocations in guarded commands. For example. in a routing protocol, the designer may
invoke the interface LinkQuality (implemented by LinkEstimatorM) to compute the link
quality. Thus, parent update action in the routing protocol can be specified in guarded
commands as shown in Program 2. Note that LinkEstimatorM should be implemented
in nesC/TinyOS. This component, however, uses only local data (e.g., using Neigh-
borStateM). ProSe wires this component with the generated code.

Program 2. Illustration of local component invocation
1...
2component LinkEstimatorM provides LinkQuality;
3begin
4...
5| (up.(p.j) == FALSE) && (up.k == TRUE) &&
6 (LinkQuality.quality(k) > THRESHOLD)
7 -> p.j = k; quality.j = LinkQuality.quality(k);
8...
9end
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4 ProSe: Case Studies

In this section, we present two case studies: (1) a routing tree maintenance program
and (2) an intruder-interceptor program. (For reasons of space, we refer the reader to
[34, 36] for a case study on prototyping a power management protocol.)

4.1 Routing Tree Maintenance Program (RTMP)

In this section, we specify routing tree program (RTMP) [37] in shared-memory model
as shown in Program 3. In this program, sensors are arranged in a logical grid. The
program constructs a spanning tree with the base station as the root. The base station is
located at 〈0,0〉. Each sensor classifies its neighbors as high or low neighbors depending
on their (logical) distance to the base station. Also, each sensor maintains a variable,
called inversion count. The inversion count of the base station is 0. If a sensor chooses
one of its low neighbors as its parent, then it sets its inversion count to that of its parent.
Otherwise, it sets its inversion count to inversion count of its parent + 1. Furthermore,
to deal with the problem of cycles, if the inversion count exceeds a certain threshold
(CMAX), the sensor removes itself from the tree.

Program 3. Routing tree maintenance program (RTMP)
1program RoutingTreeMaintenance
2sensor j;
3const int CMAX;
4var
5 public int inv.j, dist.j;
6 public boolean up.j;
7 private int p.j;
8begin
9(dist.k < dist.j) && (up.k == TRUE) && (inv.k < CMAX) && (inv.k < inv.j)

10 -> p.j = k; inv.j = inv.k;
11| (dist.k < dist.j) && (up.k == TRUE) && (inv.k+1 < CMAX) &&
12 (inv.k+1 < inv.j)
13 -> p.j = k; inv.j = inv.k+1;
14| (p.j != NULL) && ((up.(p.j) == FALSE) || (inv.(p.j) >= CMAX) ||
15 ((dist.(p.j) < dist.j) && (inv.j != inv.(p.j))) ||
16 ((dist.(p.j) > dist.j) && (inv.j != inv.(p.j)+1)))
17 -> p.j = NULL; inv.j = CMAX;
18| (p.j == NULL) && (inv.j < CMAX)
19 -> inv.j = CMAX;
20end

In this program, each sensor (say, j) maintains three public variables: (i) inv. j, the
inversion count of j, (ii) dist. j, the (logical) distance of j to the base station, and (iii)
up. j, the status variable for j (indicates whether j has failed or not). ProSe provides
implementation of up. j using heartbeat protocol, as discussed in Section 3.4. Whenever
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Table 1. Memory footprint of the generated RTMP program

Program ROM RAM
(in bytes) (in bytes)

routingM + NeighborStateM 42 106
SS-TDMA 108 586
other components (Timer, FramerM, LedsC, etc) 15934 404
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Fig. 2. Simulations results of the generated program. With 90% link reliability: (a) initial latency
and (b) convergence time. Note that the black bars in the convergence time graph shows the active
radio time during the convergence period. (The result was similar for simulations with 95% link
reliability.

j finds a low/high neighbor that provides a better path (in terms of inversion count) to
the base station, it updates its private variable, p. j, the parent of j, and inversion count
inv. j. Whenever a sensor fails or inversion count is not consistent with its parent, the
sensor sets its parent to NULL and its inversion count to CMAX (i.e., it removes itself
from the routing tree). Subsequently, when it finds a neighbor with a better inversion
count value, it rejoins the tree.

We used ProSe to transform the program and integrated SS-TDMA [32] with the
generated program (cf. Table 1 for memory footprint of the generated program).

Simulation results. We simulated the generated program (ProSe-RTMP) and MintRoute
[38] using TOSSIM [39]. (For experimental results, we refer the reader to [34].) In our
simulations, the base station is located at 〈0,0〉 (i.e., sensor 0) and the inter-sensor
separation is 10 ft. In the absence of any interference, we have observed that probability
of successful communication is more than 98% among the neighbors. However, random
channel errors can cause the reliability to go down. Hence, we choose conservative
estimate of 90% link reliability (that correspond to the analysis in [40, 41]).

In our simulation, each sensor executes the write-all action of the program once in
every 2 seconds. And, in MintRoute, the sensors exchange routing information every
2 seconds. Once the initial tree is constructed, we simultaneously fail some sensors
and measure the convergence time. The simulation results are shown in Figure 2. The
initial latency to construct the routing tree for ProSe-RTMP and MintRoute are sim-
ilar. MintRoute maintains link estimates of the active links of a sensor and updates
the estimate periodically. As a result, the radio is active all the time. By contrast, with
ProSe-RTMP, the active radio time of the sensors during this period is significantly less
(i.e., around 20% of the initial latency).
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Figure 2(b) presents the convergence time of the protocols in the presence of failed
sensors. MintRoute converges to a new routing tree quickly. By contrast, ProSe-RTMP
converges within 30-50 seconds. We note that this behavior is not because of prototyp-
ing with ProSe. Rather, it is because of the nature of the original protocol specified with
ProSe. More specifically, MintRoute is pessimistic in nature, i.e., it maintains a moving
average of link estimates of all active links of a sensor all the time. Hence, when sensors
fail, it converges to a new tree quickly. By contrast, RTMP is optimistic in nature. In
other words, whenever a sensor chooses one of its neighbors as its parent, it does not
change its parent unless the parent has failed or the tree is corrupted. As a result, when
sensors fail, it takes sometime for the protocol to update the tree. On the other hand, the
active radio time during recovery is small with ProSe-RTMP.

4.2 Pursuer-Evader Tracking Program

Sensor networks are often used in intruder-interception games, where the sensors guide
the pursuer (e.g., a robot, a soldier, etc) to track and intercept the evader (e.g., intruder,
hostile vehicle, etc). In this section, we specify the evader-centric program for intruder-
interception from [42] in shared-memory model as shown in Program 4. In this pro-
gram, sensors maintain a tracking structure rooted at the evader. The pursuer follows
this tracking structure to intercept the evader. Whenever the pursuer arrives at a sensor
(say, k), it consults k to determine its next move. Specifically, it moves to the parent of
k. And, since the pursuer is faster than the evader, it eventually intercepts the evader.

Program 4. Pursuer-evader tracking program
1program PursuerEvaderTracking sensor j; var
2 public int dist2Evader.j, detectTimeStamp.j, p.j;
3 private boolean isEvaderHere.j;
4begin (isEvaderHere.j == TRUE)
5 -> p.j = j; dist2Evader.j = 0; detectTimeStamp.j = TIME;
6| (detectTimeStamp.k > detectTimeStamp.j) ||
7 ((detectTimeStamp.k == detectTimeStamp.j) &&
8 (dist2Evader.k+1 < dist2Evader.j))
9 -> p.j = k; detectTimeStamp.j = detectTimeStamp.k;

10 dist2Evader.j = dist2Evader.k+1;
11end

Each sensor (say, j) maintains three public variables: (i) dist2Evader.j, distance to
the root of the tracking structure, (ii) detectTimeStamp.j, the timestamp that j knows
when the evader was detected at the root, and (iii) p. j, the parent of j. Whenever j
detects the evader, it sets detectTimeStamp.j to its current clock value (using the T IME
keyword), dist2Evader.j to 0 and p. j to itself. If it finds one of its neighbors (say, k)
has the latest detection timestamp, then it updates its public variables accordingly and
sets its p. j to k. In Program 4, for simplicity, we do not show the actions of the pursuer.
Since the pursuer can listen to the messages transmitted by the sensors, whenever the
pursuer is near j, it reads the public variable p. j and moves to p. j.
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Table 2. Memory footprint of the generated tracking program

Program ROM RAM
(in bytes) (in bytes)

trackingM + NeighborStateM N/A* 91
SS-TDMA 108 586
other components (Timer, FramerM, LedsC, etc) 14920 404

* The perl script tinyos-1.x/contrib/SystemC/module_memory_usage used to obtain

the breakdown of program ROM and RAM used by various components only provides the

RAM usage data for trackingM; it does not report the ROM usage for trackingM. We expect

this value to be small.
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Fig. 3. Tracking latency of the generated program: (a) with 90% link reliability and (b) with 95%
link reliability

We used ProSe to transform the program and integrated SS-TDMA [32] with the
generated program (cf. Table 2 for memory footprint of the generated program). In this
program, we need to wire components that detect whether the evader is present near
a sensor. For example, if the goal is to intercept vehicles then we need to integrate
components that can signal whether a vehicle is present or moving near a sensor (e.g.,
magnetometer components, accelerometer components). Based on this signal, the vari-
able isEvaderHere.j at sensor j is either set or unset. Such components are independent
of the design of a tracking service.

Simulation results. We simulated the generated program using TOSSIM [39]. The
inter-sensor separation is 10 ft and the TDMA period in SS-TDMA is 0.78 seconds.
Similar to Section 4.1, we choose the link reliability to be 90% and 95%. In our sim-
ulations, we use a virtual pursuer and a virtual evader. The evader moves randomly in
the network. The variable isEvaderHere. j at j is set to T RUE or FALSE depending on
the current location of the evader. The pursuer is twice as fast as the evader. We did two
sets of simulations: (1) the initial location of pursuer is at 〈0,0〉 and (2) initial location
of pursuer is at the center of the network. In both scenarios, the initial location of evader
is at the corner (i.e., 〈N − 1,N − 1〉 on NxN grid). From Figure 3, we observe that the
tracking latency increases as the network size increases. The latency when the pursuer
is initially near the center is significantly less than the case where the pursuer is initially
at 〈0,0〉. And, the active radio time is at most 20% of the time required by the pursuer to
intercept the evader. Thus, these results demonstrate the potential of ProSe to generate
application-level services for sensor networks.

tinyos-1.x/contrib/SystemC/module_memory_usage
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5 Conclusion

We expect that the programs generated by ProSe are competitive to related programs
designed manually for sensor networks. Since ProSe hides low-level details from the
designer, it allows rapid prototyping of sensor network protocols. Therefore, we ex-
pect that the development time of a typical application (composed of several protocols)
is small. Furthermore, since ProSe automatically transforms the program in abstract
model to generate the corresponding nesC/TinyOS code, it enables quick deployment
of applications. We demonstrated this for (1) routing tree maintenance program (cf.
Section 4.1), (2) pursuer-evader tracking service (cf. Section 4.2), and (3) power man-
agement protocol [36].

We note that program analysis of nesC/TinyOS programs is gaining attention re-
cently as it assists in programmer understanding, error detection, and program valida-
tion (e.g., [43]). Specifically, in [43], program analysis is performed on state machines
derived from nesC/TinyOS programs. Such analysis is straight-forward in ProSe as the
programs are specified in a simple guarded commands format and several analysis tools
and model checkers [28] are readily available.

There are several possible future directions to this work. First, we would like to
to combine this work with [44] where the sensor network protocols are proposed in
a model that is similar to the abstract models used in ProSe. Since [44] focuses on
verification aspects of the abstract protocols, combining it with ProSe, will provide
assurance guarantees about the deployed programs. Additionally, we are also focusing
on integrating ProSe with tools that automatically synthesize fault-tolerant programs
from their fault-intolerant versions (e.g., FTSyn [45]).
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