
A Code Generator for Distributing Sensor Data

Models

Urs Hunkeler and Paolo Scotton

IBM Zurich Research Laboratory,
Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{hun,psc}@zurich.ibm.com

Abstract. As wireless sensor networks mature, it becomes clear that
the raw data collected by this technology can only be used in a mean-
ingful way if it can be analyzed automatically. Describing the behavior
of the data with a model, and then looking at the parameters of the
model, or detecting differences between the model and the real data, is
how experimental data is typically used in other fields. The work pre-
sented here aims at facilitating the use of sensor data models to describe
the expected behavior of the sensor observations. The processing of such
models can be pushed into the wireless sensor network to eliminate re-
dundant information as early in the data collection chain as possible,
thus minimizing both bandwidth requirements and energy consumption.

1 Introduction

Wireless sensor networks (WSNs) promise cheap sensor deployment to monitor
an area of interest in great detail. WSNs are, for instance, being used to measure
seismic activity at volcanoes [17] or the micro-climate of glaciers [3]. Such sensor
network deployments generate data at a much greater spatial resolution than
more traditional observation techniques such as wired networks or data loggers.
In addition, the data generated by these networks is available for immediate
use. However, the huge amount of data has to be processed. Nobody will look at
every single sensor reading. Instead, the data is used to evaluate physical models
of the observed phenomena, and to detect situations where such models do not
represent the observed behavior accurately.

To illustrate this, let us consider a hypothetical sensor network deployment
(partially based on a real case [2]). In this hypothetical deployment a moun-
tain village experiences sporadic floods caused by a glacier. To predict floods
and alert the population, climatologists install a sensor network to monitor the
micro-climate of the glacier by observing the surface temperature of the ice, the
duration and intensity of sunshine, the amount of precipitation, and other simi-
lar factors. Based on a model of the glacier’s behavior the data from the WSN
is used to predict floods. The model could describe how water accumulates, and
under what conditions the ice barrier breaks and releases the water. The model
will not accurately predict the behavior of the glacier if an unexpected event oc-
curs. For instance, a nearby dirt avalanche could cause the glacier to be covered

S. Hailes, S. Sicari, and G. Roussos (Eds.): S-Cube 2009, LNICST 24, pp. 127–143, 2009.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

128 U. Hunkeler and P. Scotton

with a small layer of dust. The dust could completely change the heat absorp-
tion rate of the glacier, and thus how much water is melted on a sunny day. This
model rupture might be detected because the measured surface temperature of
the glacier differs from the expected surface temperature.

To deal with the large amount of data generated by a WSN, it is necessary
to use data models to simplify the analysis of this data. Currently, data models
are processed on back-end systems. Many data models, especially if based on
complex physical models, are computationally expensive and therefore cannot be
processed efficiently on the low-power devices typically used for sensor networks.
It is, however, possible to do a first part of the processing already within the
WSN. In this way, only the data necessary for the model processing rather
than every single sensor reading is transmitted. This helps both to reduce the
power consumption and to resolve bandwidth bottlenecks. In addition, some
data models are able to exploit redundancy in sensor readings to make the data
assimilation of a sensor network more robust to transmission errors.

When using data models it is important to be clear about quality-of-
information (QoI) needs. QoI has been defined [4] as a collection of attributes
including timeliness, accuracy, reliability, throughput, and cost. A WSN has
some obvious QoI characteristics, such as the amount of data to be transmit-
ted and the measurement accuracy and frequency. Data models can increase the
confidence in the data by combining information from multiple sensors. On the
other hand, it is possible to increase the life-time of a WSN by allowing the QoI
to be reduced.

We propose a framework that facilitates using data models to process sensor
data, and that enables us to push part of the model processing into the WSN.
The concepts behind this framework have been introduced in the positioning pa-
per [11], which presented a model processing mechanism running entirely on the
back-end system. In this paper we present a first implementation of a distributed
model processing mechanism running partially inside the senor network, and in
particular show how model descriptions can be compiled into a distributed pro-
gram and how optimization techniques can be applied. The key contributions
presented in this paper are: (1) the description of a framework to automatically
process generic sensor data models, which also pushes part of the data processing
into the WSN, (2) the presentation of the implementation of a concrete model
called distributed linear regression, and (3) the lessons we learned by imple-
menting this framework. Section 2 presents related work. Section 3 presents a
data model based on linear regression that will be used throughout this paper
to explain the concepts of the framework. Section 4 describes the network con-
cept of WSNs and presents a concrete network topology that will be used in
the examples. Section 5 introduces our model description language. Section 6
discusses distributed aggregation of linear functions. Section 7 explains how the
distributed model-processing algorithm is generated. Section 8 describes the sup-
porting services that are needed to run the model-processing algorithm. Section 9
presents the experience we gained by implementing the framework. Section 10
concludes the paper.

A Code Generator for Distributing Sensor Data Models 129

2 Related Work

TinyDB [14] is a framework based on TinyOS that lets users see the WSN as
a database. Querying sensors results in data being acquired by the network.
In some cases, queries using aggregation functions are calculated partially in-
side the network. TinyDB supports aggregation, energy-aware query constraints,
and continuously running queries. However, TinyDB was never aimed at model-
processing. The language is based on SQL and might not be intuitive for users of
WSNs without a computer-science background. TinyDB is no longer maintained.

MauveDB [6] is an extension of Apache Derby, an open source relational
database implemented in JavaTM1. MauveDB offers the user a novel kind of
view that calculates its data based on a sensor data model. Currently, supported
models are based on either linear regression or correlated Gaussian random vari-
ables. Model processing is done entirely on the back-end system.

In Distributed Regression [9], a model based on linear regression has been
implemented to run entirely within the WSN. The observations are approximated
with a base function that linearly combines model coefficients with functions of
the query parameters. The network transmits the model coefficients describing
the observations in the network to the sink. An application on the sink can
then approximate values of the observations anywhere within the network. Using
this linear regression model enables a significant reduction of the amount of
data being transmitted in the network. The implementation is specific to and
optimized for this type of models.

BBQ [5] implements a model based on multivariate Gaussian random variables
that runs entirely on the back-end system. Sensor readings and correlations
among the readings of different sensors are used to determine a query plan that
uses the least amount of energy to gather just enough new information from the
network to answer a query while respecting the error bounds given.

3 Linear Regression

The framework is designed to be applicable to a wide range of different sensor
data models and processing algorithms. Throughout the remainder of this paper
we will focus on linear regression [9] as our example to explain different concepts.
In this section we introduce the model and show in detail how it can be applied
to sensor data.

Linear regression is a method for finding a set of dependent variables such
that the regression function best fits the data. Let f() be the regression func-
tion, x1, . . . , xp the function arguments, a1 . . . ac the dependent variables, and
g1() . . . gc() a set of functions that combine the arguments of the outer function.
The linear regression function then has the basic form:

f(x1, . . . , xp) = a1g1(x1, . . . , xn) + · · · + acgc(x1, . . . , xn) . (1)
1 Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both. Other company, product, or
service names may be trademarks or service marks of others.

130 U. Hunkeler and P. Scotton

Let a data set D be composed of tuples, and let a tuple di ∈ D be composed of
the actual value vi and a set of meta-data xi,1, . . . , xi,p:

di = {vi, xi,1, . . . xi,p} . (2)

Linear regression finds the dependent variables a1 . . . ac such that the sum of the
squared difference between the values in vi and the corresponding values from
the regression function f(xi,1, . . . xi,p) is minimized. If D consist of k tuples
d1 . . . dk, linear regression finds

argmin
a1,...,ac

k∑

i=1

(vi − f(xi,1, . . . xi,p))
2 . (3)

Let us use linear regression to model the temperature measured in a WSN as a
function of the physical sensor locations and the measurement time. Let x and
y be the Cartesian coordinates of the sensor’s location (measured for instance
in meters), and let t be the time of the measurement (for instance expressed in
seconds since the start of the experiment). Throughout this paper, we will use
the following function to model the temperature readings:

f(x, y, t) = a1 + a2x + a3y + a4t + a5t
2 . (4)

We call the linear regression function model function, as we use it to model
the sensor data. Similarly, we call the dependent parameters a0 . . . a4 linear co-
efficients or model parameters. The model function and the model parameters
together fully define the model for a particular set of data. In our model, the
functions g0(), . . . , gc() are

g1(x, y, t) = 1 (5a)
g2(x, y, t) = x (5b)
g3(x, y, t) = y (5c)
g4(x, y, t) = t (5d)
g5(x, y, t) = t2 . (5e)

We define a query on the model to be equivalent to the evaluation of a model
function with a set of arguments, and the set of arguments used in the query
is called query arguments. In our example, the query arguments are x, y, and t.
In most cases the model will not be perfect and will produce results that differ
from the measured values. This modeling error is a measure of the ability of the
model function to represent the data accurately.

Before the model can be used to answer queries, its parameters a1 . . . a5 need
to be determined. We call functions that determine the values of model param-
eters learning functions. To determine a1 . . . a5 in our example, let S be a set of
n sensors and for each sensor si ∈ S let us consider a set of measurement values
at times t1 . . . tr noted {vi,1 . . . vi,r}. In addition, for each sensor si ∈ S, let xi

A Code Generator for Distributing Sensor Data Models 131

and yi be its Cartesian coordinates. The model function and the measurements
form the following equation system:

v1,1 = u1 + u2x1 + u3y1 + u4t1 + u5t
2
1

v1,2 = u1 + u2x1 + u3y1 + u4t2 + u5t
2
2

...
v2,1 = u1 + u2x2 + u3y2 + u4t1 + u5t

2
1

...
vn,r = u1 + u2xn + u3yn + u4tr + u5t

2
r . (6)

This linear equation system can be written in matrix form:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 t1 t21
1 x1 y1 t2 t22
...

...
...

...
...

1 x2 y2 t1 t21
...

...
...

...
...

1 xn yn tr t2r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

...

...
uc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
u

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1

v1,2

...
v2,1

...
vn,r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
v

. (7)

The factors of the linear equation system can be represented as a matrix H . The
coefficients we would like to determine form the vector u. The sensor readings
are grouped into vector v. The linear coefficients should be determined such as
to minimize the overall error (see Equation 3). We can do this with the following
equation:

(HT H)û = HTv , (8)

where û represents the estimate of the linear coefficients minimizing the er-
ror. The matrix Ĥ = HT H has the dimensions c × c, where c is the number
of unknowns in the equation system. This equation can easily be solved using
Gaussian elimination.

The matrix Ĥ = HT H and the vector v̂ = HTv have interesting properties
that enable a distributed determination of their values. To simplify notations,
let ĝk(i, j) = gk(xi, yi, tj). Then the elements of Ĥ and v̂ are calculated with the
following formulas:

Ĥl,m =
n∑

i=1

r∑

j=1

ĝl(i, j)ĝm(i, j) ∀l, m ∈ {1, . . . , c}2 (9)

v̂l =
n∑

i=1

r∑

j=1

ĝl(i, j)vi,j ∀l ∈ {1, . . . , c} . (10)

From Equation 9 it is clear that Ĥ is symmetric and thus only has
∑c

i=1 i =
c(c+1)

2 unique elements. Consequently, the total number of unique elements from
both Ĥ and v̂ that need to be known to solve the linear equation systems is

132 U. Hunkeler and P. Scotton

Ntx =
c(c + 1)

2︸ ︷︷ ︸
for Ĥ

+ c︸︷︷︸
for v̂

=
c(c + 3)

2
. (11)

Both Ĥ and v̂ are sums of elements only depending on information provided by a
single sensor node. As we will see, sums are easy to aggregate, and breaking linear
regression down in the way shown here is key to distributing the calculation of
linear regression across nodes in the WSN.

4 Network Setup

To illustrate the concepts in this paper we will use a sample network setup,
which is defined and described next.

A WSN consists of sensor nodes, which have as basic components a number of
sensors, a processing unit, a wireless transceiver, and some form of power supply.
Sensor nodes are sometimes called motes. In our work, we use the Tmote Sky
nodes (also known as TelosB) equipped with sensors measuring temperature,
humidity and light. As software environment we use TinyOS [10]. Programs are
written in NesC, which is a C-like programming language with WSN-specific ex-
tensions to easily modularize programming. TinyOS itself is an operating system
for embedded sensor devices. As it is available in source code, users can modify
every aspect of the system.

A WSN is a set of sensor nodes organized as a meshed network. If a radio con-
nection can be established between two sensor nodes of the network, these two
nodes are said to be directly connected. In the remainder of this paper, we will as-
sume that connections between nodes are always bidirectional. This assumption
is based on link quality measurements in [16] and on our own observations. For
a given sensor node, we will call neighbors the set of sensor nodes to which this
node is directly connected. We will assume that the sensor network is not parti-
tioned and that it provides a routing mechanism: if two arbitrary sensor nodes
are not directly connected, then they can communicate through other nodes in
the network.

A complete system consists of the WSN and a back-end system connected
through gateways. The back-end system might consist of several computers and
software components that can communicate over a network different from the
WSN, for example over a company’s local area network (LAN). As a gateway is
present in both the WSN and the back-end system, it needs to be able to com-
municate with both networks. This is typically solved by connecting a gateway
sensor node to a gateway computer over a serial or USB cable. In this paper
we will assume that only one gateway exists and that all components of the
back-end system run on the gateway computer.

Typically, most communications in a WSN send observation data from every
sensor to a data sink. The collection tree protocol (CTP) [7] in TinyOS is an
example of a routing protocol that lets any node in the WSN send data to a sink.
For the purpose of this paper, we only consider the case of a single sink in the

A Code Generator for Distributing Sensor Data Models 133

s5

s0

s6

s4

s3

s7

s1

s8

s11

s9

s2

s10

(a) A WSN topology. Thick lines are
routes to the sink

s4

s0

s8

s3s10 s11

s1

s7

s6 s2s5

s9

Level 0

Level 1

Level 2

Level 3

Level 4

(b) A hierarchical view of the WSN
topology in Figure 1(a)

Fig. 1. A sample WSN configuration showing 1(a) the geographical distribution of
motes and their connections, and 1(b) a hierarchical view of the routing tree

network. We further assume that the sink is also the gateway node connected to
the back-end system. Routing algorithms based on the CTP principle operate as
follows. The routing protocol establishes a spanning tree rooted at the sink and
connecting all nodes in the network. When a sensor node wants to send data to
the sink, it passes the data to its parent in the spanning tree. This operation
is repeated by all parents of the node until the information reaches the sink.
Therefore, to be able to communicate with the sink, a node only needs to know
its parent in the spanning tree.

Figure 1(a) shows the geographic distribution of the sensor nodes in our sam-
ple WSN setup. The lines between the nodes indicate communication links; thick
lines are links used for sending data towards the sink (s0). Figure 1(b) shows the
same network as a hierarchy of nodes. The top node is the sink. Nodes without
children (s2, s3, s6, s7, s8, and s9) are leaf nodes. All other nodes relay messages
from their children in addition to their own data.

5 Model Description Language

To describe sensor data models in an abstract way, we designed a model de-
scription language, whereby the aim was to design a language that is intuitive
to use by people with little programming experience. For this reason we decided
to develop a language similar to the mathematical languages used, for instance,
in Matlab, SciLab or Octave. We presented this language in [11]. In this section,
we explain the motivation behind these language design points that are specific
to distributed model processing.

A model description essentially consists of the model function and the
parameter-learning functions. In addition, it may contain configuration options

134 U. Hunkeler and P. Scotton

that determine, for instance, the applicable QoI parameters. The basic concept
of the language is the sensor node. As models usually operate on a set of sen-
sors, the model description language has to be able to express sets of sensors.
As a starting point for doing this, let S denote the set of all sensor nodes in the
network. In addition, each sensor node object also has a neighbors set and a
number of associated sensors. The language uses the forall qualifier to apply a
given expression to all elements in a given set. The forall qualifier allows the
specification of additional constraints with an optional where clause.

Sensor readings can be accessed through sensor objects associated to a given
node. For instance, if a sensor node has a temperature sensor, the current tem-
perature value can be read with an expression of the form sn.temp. It is possible
to access the n-th value in the past with the syntax sn.temp[n]. An index of 0
is equivalent to reading the current value. If values of two different sensor nodes
are accessed, then an appropriate synchronization mechanism ensures that the
sensors are sampled at the same time.

Mathematical operations clearly are an essential part of any model descrip-
tion. In addition to the basic mathematical operators, the model description lan-
guage supports a number of special operators often used in model descriptions.
This set of operators will be expanded in the future as need arises. Currently we
have predefined the functions sum, avg and LMS, which are used to calculate the
sum and average over a set of values, and the best fit of a function to a set of
data, respectively. The principle of the LMS operator was discussed in Section 3,
and its implementation is the subject of Section 6.

Model parameters and model functions are declared with an assignment using
the equals sign (=). Model parameters describe the state of the model based on
the measured sensor values. They can be global (the same value is shared in the
entire network) or local (the value is only valid for a particular sensor node). In
addition, a model parameter can be defined for a pair of sensors, for instance, to
express the covariance of their readings. Model functions, in contrast, have a list
of function arguments. The arguments qualify what exactly should be modeled,
e.g., which sensor value should be modeled. As querying the model involves
evaluating a model function, we call the function arguments query parameters.
The model function definition on the right-hand side of the assignment involves
a computation based on the model parameters.

In our sensor data model language, the model (Equation 4) can be expressed
as shown in Listing 1. The learning function for the model parameters (based
on Equation 3) is shown in Listing 2.

The computation of the model function is obvious, but the learning function
does not appear in an explicit form. LMS stands for least mean squares. This op-
erator calculates the coefficients for a linear regression function over a data set.
LMS operates on the sensed values and the factors of the regression coefficients
as expressed in Equation 4. As for this minimization problem we consider all
sensors simultaneously, LMS takes as arguments vectors whose elements corre-
spond to individual sensors. The first element in the vector is the actual value
to be approximated by the linear regression. In this example, the value of the

A Code Generator for Distributing Sensor Data Models 135

Listing 1. Model Function

1 b(f l o a t x , f l o a t y , i n t t) = a [0] + s i . x ∗ a [1] +
2 s i . y ∗ a [2] + t ∗ a [3] + t ˆ2 ∗ a [4] ;

Listing 2. Learning Function

1 a = LMS(f o r a l l s i in S , t = 1 . . 5 : s i . temp [t] ,
2 1 , s i . x , s i . y , t , t ˆ2) ;

first element in the vector, si.temp[t], corresponds to s(x, y, t). The remain-
ing elements are the factors with which the coefficients are to be multiplied. In
this example, the first factor is the numerical constant 1, which means that the
coefficient a0 stands by itself. The second and the third factor, si.x and si.y,
are the x and y coordinates of sensor si. The forth factor is simply the time t,
and the fifth factor is the squared time, t2. In our example each vector contains
six elements, or five factors, which means that the linear regression function has
five coefficients. Thus, the LMS operator will return a five-element vector.

A data set given as argument to the LMS operator usually consists of more than
one vector. In the example above, the data set contains a vector for every sensor
si ∈ S and for every time t ∈ {1, 2, 3, 4, 5}. The actual temperature readings and
the x and y coordinates are associated with si.

The sensor data model language is designed such that it can represent any math-
ematical closed-form expression. As the compiler needs to be able to determine the
cost of calculating a sub-expression on a mote, the language is designed to be de-
terministic and does not support jumps and non-deterministic loops. More com-
plex functionality can be achieved, if needed, by including additional elementary
functions. These additional functions should be implemented such that the cost of
computing them, or at least an upper bound for the cost, is known.

6 Aggregation and Linear Regression

Often an aggregate value over a set of sensor readings is desired, such as aver-
age, minimum and maximum values, and standard deviation. Madden et al. [13]
describe aggregation in three steps: determining a partial state record for indi-
vidual sensor readings by applying an initializer i, then combining these partial
state records using a merging function f , and finally calculating the value of the
aggregation using an evaluator e. Aggregations in which the size of the partial
state record is significantly smaller than the original data set potentially enable
a reduction of the amount of data to be transmitted in the network. Instead
of transmitting and relaying every sensor reading in the network, nodes only
transmit partial state records based on the data from their own sensor readings
and the partial state records of their children. This is particularly interesting

136 U. Hunkeler and P. Scotton

for aggregations in which the size of the partial state record is constant, such as
minimum and maximum values, averages, and sums.

The exact energy savings possible by using aggregation will have to be evalu-
ated experimentally, as they strongly depend on the implementation details. In
TinyOS, the energy consumption for message transmissions depends mainly on
the number of messages sent rather than on the payload length of the messages.
This is due to the default radio stack implementation, which senses the channel
while waiting for a random back-off time prior to sending a message. As basis for
comparing energy consumption, we take a very simple application that transmits
a node’s sensor readings using CTP [7]. CTP uses intermediate nodes to relay
messages and does not alter these messages. For instance, in our network shown
in Figure 1, the readings from sensor node s7 would be relayed by the nodes
s1, s10, and s4 before they reach the sink s0. Sending a message with readings
from node s7 results in a total of four message transmissions. Thus, if all nodes
transmit their sensor readings, 28 messages are sent in the network.

With aggregation, each node only sends a single message that combines its
readings with the readings of its child nodes. In our implementation we succeeded
transmitting the partial state record of the LMS operator in a single message.
Thus, each node waits for the partial state records of all its child nodes, combines
the data, and then transmits a new combined partial state record to its parent.
Sensor node s11, for instance, sends a single message to its parent node s4 instead
of relaying the individual messages from nodes s9, s5, s6, and s2. Aggregating
all the data within the network rather than transmitting every sensor reading
results in only 11 message transmissions in our network. Aggregation thus can
enable significant energy savings, especially in larger networks.

7 Compiling Models

To process a model, a program is generated that takes the sensor readings and
calculates the model parameters. With this, queries from the user can be an-
swered. In our example, a query is a call to the model function with specific
values for the query parameters. The model function depends on the model pa-
rameters, which in this case are combined in a single vector a determined with
the learning function. Once a is known, any query on the model can be answered.
This section presents a method for generating the code to determine the model
parameters in a partially distributed fashion.

A compiler takes a program as input, analyzes and transforms it, and pro-
duces the program in a different form as output. For our framework, the compiler
reads a model description and produces code in the NesC and Java programming
languages as output. To do this, the compiler reads the model description and
forms an internal representation (IR) of the model by splitting the description
into small pieces that each form a meaningful unit. Such units or tokens are,
for instance, numerical constants, variable names, or mathematical operators.
The compiler then analyzes and records the relationship between tokens. For
instance, an operator operates on one or more input values and thus the token

A Code Generator for Distributing Sensor Data Models 137

associated with it has a relationship with the tokens that describe the operator’s
input values. Certain tokens, such as parentheses, only serve to determine the
relationships between other tokens and can be discarded once all relationships
have been established. The resulting representation of the model can be seen
as a tree (shown in Figure 2(a)) in which the root node represents the model
as a whole. The child nodes of the model node represent the different learn-
ing and model functions that together form the model. The nodes representing
these functions in turn have child nodes that represent, in the case of model
functions, the arguments to the functions, and that describe the mathematical
expressions used to calculate the function. The representation of a program, or
in our case a model, in such a tree form is called abstract syntax tree (AST).
We use Java Compiler Compiler (JavaCC [12]) to help us generate the code
for reading and analyzing the model description. Additional information about
compiling in general can be found in [1].

Sensor Data Model

Learning Function

a[] LMS

forall

si t

si.temp[t]

1 si.x si.y t

*

t t

Model Function

Parameters

x y t

+

a0 +

*

a1 x

+

Sensor x y

History(6)

t tttt1

1

temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2

Aggregation

Gaussian elimination

a3 a4
a2a1a0

Sensor x y

History(6)

t tttt1

1

temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2

Sensor x y

History(6)

t tttt1

1

temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2

Sensor x y

History(6)

t tttt1

1

temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2

Sensor x y

History(6)

t tttt1

1

temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2temp[t], 1, x, y, t, t2
For each
sensor
reading

For each sensor node

Fig. 2. (a) The linear regression model with (b) the learning function shown as abstract
syntax trees. Note that because of space constraints not the entire model function is
shown. In (b) the learning function has been arranged such that the multiplicity of the
data sources and paths can be seen.

The basic AST plainly represents the model description. Before being able to
generate distributed code to process this model, the AST must be augmented
to include information related to specific nodes in the tree, such as the data
type of each node. We distinguish between integer and floating point numbers,
sensor nodes, sensors, vectors, and matrices. Vectors and matrices have associ-
ated dimensions and their elements in turn have associated data types. In the
case of sensor nodes, the compiler needs to know which sensors are actually used

138 U. Hunkeler and P. Scotton

and what information needs to be stored on the nodes. In addition, we need to
determine how many sensor readings have to be retained. To do so, we start by
determining the data types of the leaf nodes, and then work our way back up the
tree. For constants and sensors, the data type is clear. Before we can determine
the data type of a variable or model parameter, however, we need to determine
the data type of the expression defining this variable or parameter. The data
type of an expression is typically based on the data types of its arguments. Also,
if all arguments of an operator are constants, the result of the computation rep-
resented by this operator can be calculated at compile time, and the operator
can be replaced by a constant. Similarly, if a variable is assigned a constant, all
of its occurrences can be replaced by this constant. Sometimes, information in
one part of the tree affects a completely different part of the tree, for instance,
when the data type of a variable is determined in one place but the variable
is also used in a different place. It is thus possible that not everything can be
determined in one pass. Therefore, we reiterate the passes for as long as there
still exists information to be determined and new information is still obtained
in every pass. If no new information is obtained, but not everything has been
determined, the compilation process is aborted with an error.

A fundamental aspect of model processing is to get the source data (e.g.,
sensor readings). The compiler determines which sensors are accessed on a node
and then includes the appropriate code to sample the sensors. For instance, the
expression si.temp[t] in the learning function in Listing 2 tells the compiler
that the temperature sensor is accessed. If an element of a sensor node is accessed,
and that element is not a known sensor, the compiler assumes it to be a variable
associated with the sensor node. For instance, the expressions si.x and si.y in
the learning function do not refer to any known sensors. As no method has been
defined to determine the values for x and y, the compiler adds the necessary
code for the execution environment to configure these values (see Section 8).

For every sensor used by the model, the model processing code will reserve
memory for storing a history of the sensor readings. By default, the history
size is 1, which means that only the last (current) sensor reading is stored. The
current sensor reading is accessed from the model either by simply accessing
the sensor object (e.g., si.temp) or by specifying 0 as the time value (e.g.,
si.temp[0]). Older readings are accessed by specifying a time value greater
than 0. To determine the amount of memory to be reserved for storing the sensor
readings’ history, the compiler analyzes how the sensor readings are accessed.
In our learning function (Listing 2), the sensor readings are accessed with the
expression si.temp[t]. The compiler then analyzes the potential values that t
can take. The variable t is defined in the context of a forall statement, which
declares t = 1 .. 5. Thus in the example above the compiler deducts that the
values for t vary between 1 and 5, and therefore reserves memory space for 6
sensor readings2.

With the information we extracted from the model definition so far, it is
straightforward to generate code that takes sensor readings as input and com-

2 The compiler also needs to store the current sensor reading.

A Code Generator for Distributing Sensor Data Models 139

putes the results for a given query. All that needs to be done is to calculate the
expressions and update the model parameters. Our framework can produce code
that reads sensor data from a variety of different sources and answers queries.
We compared two different statistical sensor data models and published our
findings in [11]. The next step is to generate code that can run in a distributed
environment, such as a WSN. To do this, the compiler needs to determine for
each node in the AST whether the node is to be processed in the network or on
the back-end system.

Sensors obviously have to be sampled on the sensor nodes. Currently, our
framework simply stores all sensor readings retained and all node variables on the
sensor nodes themselves. Constants are located in the same place as the operator
accessing them. This reduces the problem to determining where to locate the
operators such that the overall energy consumption in the WSN is minimized.
Once data has reached the back-end system, it makes little sense to send it back
into the WSN to process it further. Thus, operators that are closely associated
with sensor nodes are more likely to minimize overall energy consumption if
they are also located in the WSN. If there is an aggregation operator somewhere
in the data flow, then in most cases the optimal approach is to process all
operators between the sensor readings and the aggregation inside the WSN, to
perform a distributed aggregation, and then to compute the remaining operators
on the back-end system. Therefore, the framework currently focuses on finding
an aggregation operator, and then using it to separate the AST into a part to be
processed in the WSN and a part to be processed on the back-end system. The
operator placement for our model is shown in Figure 2(b). Every sensor node
executes the code in the rectangle in the lower part of the AST (this multiplicity
is indicated by overlapping rectangles). For a specific number of past sensor
readings, a port of this code execution is repeated (again, the multiplicity is
indicated in the graph). The aggregation is distributed among the nodes, and
Gaussian elimination takes place on the back-end system.

Once the elements of the AST that should run in the WSN have been deter-
mined, the corresponding code has to be generated. The framework bases itself
on TinyOS and thus generates code in the NesC programming language [8].
Besides generating the node processing code for the WSN, it also includes the
appropriate modules from the execution framework (see Section 8). In particular,
it includes code to allow the execution framework to configure node variables
(such as the x and y coordinates for the linear regression model presented in
Section 5), and the code to access the communication modules. The communi-
cation methods supported currently allow data to be sent to the sink as-is or
perform distributed aggregation of the data.

The framework generates Java code for that part of the model processing that
is performed on the back-end system. It includes the appropriate interface code
to communicate with the WSN. The code generated offers a dynamic interface to
the application to specify the query and change the configuration of the nodes.
However, at this stage the code is not self-sufficient and needs an appropriate
execution environment.

140 U. Hunkeler and P. Scotton

8 Execution Framework

While testing our framework with the linear regression model, we found that
distributed model processing needs basic support services. Every sensor network
needs to transmit data to a sink. If the network performs aggregation, then nodes
need to know their parents and potentially also their children. For many applica-
tions, the physical position of each node needs to be known. To demonstrate the
proper operation of the linear regression model, we thus implemented a config-
uration mechanism, a tree routing algorithm for aggregation, and a simple time
synchronization method.

We implemented a configuration service that enables the setting of parameters
for a particular node. With this service, we configure the x and y coordinates
of the physical location of a node prior to starting the model processing. An
alternative would be to estimate the physical location during run-time (see, for
example, [15]). We decided to use a configuration service rather than a location-
ing service, as for most locationing algorithms some nodes need to know their
position in advance and therefore still would have to be configured.

When compiling a model, the framework assumes that any variable for which
no explicit means to determine its value exists, is a configuration parameter. It
will then generate a configuration message type with fields for all parameters.
An application can set a configuration parameter for a particular node through
the framework. The framework checks the parameter name against the list of
configuration parameters. If the parameter name specified is valid, the framework
will set the corresponding field, include the identity of the targeted node in the
configuration message, and broadcast the message in the network.

Data collected in a sensor network needs to be routed to a sink. To do this,
WSNs form a collection tree. When processing a model instead of simply col-
lection raw data, the data is often aggregated within the network. The routing
structure for a network that aggregates the data is essentially the same as for a
WSN collecting raw data, as the data still needs to reach the sink. The difference
is that every node, instead of relaying the data of its children as-is, aggregates
its own data with that from its children before sending the data to its parent
(see Section 6). This means that for one data-collection epoch each node sends
exactly one message to its parent. We call this setup an aggregation tree.

We use the collection tree protocol (CTP) [7] in TinyOS to establish the rout-
ing tree. Instead of letting the collection tree forward messages automatically,
we intercept each message and signal that the message should not be forwarded.
We aggregate the information in the message with the node’s own information
and the information received from the other children. The information is then
sent to the node’s parent.

Before sending data to the parent, a node has to receive data from all its
children. To do this, a node could keep track of its children and which ones
already sent data in the current epoch. Once all children have sent their data,
the node in turn sends its data to its parent. The version of CTP provided in
TinyOS does not maintain a list of a node’s children. Also, with this method it
would be difficult for a node to predict when a child node is ready to send data,

A Code Generator for Distributing Sensor Data Models 141

which in turn makes it difficult for nodes to turn their radios off to save energy.
Therefore, we adopted a time-synchronization strategy.

Synchronizing the clock of the nodes can be achieved by a variety of differ-
ent protocols and algorithms. We found that one of the simplest approaches is
also well suited to minimize energy consumption as determining required active
periods for the radio is straight forward. In our implementation the network is
synchronized by broadcasting the time from the sink node to the leaves of the
tree. Based on the common view of the time, all nodes start the epoch at the
same point in time. The nodes furthest down in the tree (level 4 in our sample
network in Figure 1(b)) start by sending their data to their parents. After a
fixed timeout, the nodes in the next higher level in the routing tree assume that
all their children have sent their data, and send their aggregated data to their
parent, until the data finally reaches the sink. This approach is simpler than
explicitly waiting for data from all children, as nodes do not need to maintain
a list of children. As the time period in which a node can expect transmissions
from its children is well defined, nodes can turn off their radio when they do not
expect transmissions, and thus achieve significant energy savings.

The basic services presented here are sufficient to implement the distributed
linear regression model with the help of our framework. Other models might
require additional services. A service can have multiple implementations, for
instance, to optimize for speed, latency, reliability, or energy savings. We cur-
rently implemented very simple services as a proof of concept. Our framework
facilitates uniting contributions from experts in different fields.

9 Results and Future Work

We implemented a framework for distributedly processing generic sensor data
models. In this paper we focused on the model called distributed linear regres-
sion. The framework can be used for other models and we have, for instance,
successfully implemented a model based on multivariate Gaussian random vari-
ables, which was inspired by [5].

The framework consists of the model description language, the compiler to
generate the distributed code, and the execution framework that enables the
code to run. During the implementation and testing process, we refined the
model description language to make it easier to compile and also render it more
intuitive to program. For instance, we removed a separate keyword for specifying
model parameters. Instead, the compiler now recognizes model parameters by
the form of their definition.

The implementation of the compiler also elucidated the key differences be-
tween normal programs and distributed WSN programs. Whereas for traditional
ASTs it is sufficient to show the dependencies of nodes, for the distributed ap-
proach the dependencies themselves have properties that describe how the in-
formation flowing from the child to the parent is communicated and what the
associated cost is. The main challenge in compiling distributed programs lies in
optimizing this communication.

142 U. Hunkeler and P. Scotton

After having generated the distributed code, we realized that prior to running
it we needed an execution framework for configuring the nodes, and for handling
the communication between network and gateway. Especially communicating
floating point values was challenging, as TinyOS does not directly support them.
We solved this issue by copying a memory image of the variables holding floating
point values. The Float class in Java has methods to convert between floating
point numbers and byte arrays. Fortunately, the floating point representation of
the TinyOS devices is compatible with Java’s byte array representation.

Running linear regression as a distributed model in the current execution
framework confirmed that the algorithm was running properly. However, some-
times CTP delayed messages, such that with the staged aggregation not all
messages were received on time. We will have to analyze the exact reasons for
this behavior. We will also implement our own version of a tree-routing algo-
rithm that will enable us to turn off the radio when the mote is not expecting
any messages. This will enable us to experimentally confirm the energy savings
of our approach.

10 Conclusion

In this paper we presented an integrated approach for distributing the calcu-
lation of sensor data model processing. Our framework consists of a model de-
scription language, a compiler for this language that generates distributed code,
and an execution framework needed for running the distributed programs. The
framework is extensible and open for contributions from experts in very diverse
fields. In contrast to previous work, which concentrated on studying a specific
aspect of model processing and then optimizing it, our work is, to the best of
our knowledge, the first holistic approach to generic model processing.

References

1. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge
University Press, New York (2003)

2. Barrenetxea, G., Ingelrest, F., Lu, Y.M., Vetterli, M.: Assessing the challenges
of environmental signal processing through the SensorScope project. In: Proceed-
ings of the 33rd IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2008), pp. 5149–5152 (2008)

3. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., Parlange, M.:
SensorScope: Out-of-the-box environmental monitoring. In: Proceedings of the 7th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works (IPSN 2008), pp. 332–343 (2008)

4. Bisdikian, C.: On sensor sampling and quality of information: A starting point. In:
Proceedings of the Fifth IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOMW 2007), pp. 279–284 (2007)

5. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-
driven data acquisition in sensor networks. In: Proceedings of the Thirtieth Inter-
national Conference on Very Large Data Bases (VLDB 2004), pp. 588–599 (2004)

A Code Generator for Distributing Sensor Data Models 143

6. Deshpande, A., Madden, S.: MauveDB: Supporting model-based user views in
database systems. In: Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2006), pp. 73–84 (2006)

7. Fonseca, R., Gnawali, O., Jamieson, K., Kim, S., Levis, P., Woo, A.: The collection
tree protocol (CTP), version 1.8 (February 2007),
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

8. Gay, D., Welsh, M., Levis, P., Brewer, E., Von Behren, R., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proceedings
of the ACM SIGPLAN 2003 conference on Programming Language Design and
Implementation (PLDI 2003), pp. 1–11 (2003)

9. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed regres-
sion: An efficient framework for modeling sensor network data. In: Proceedings of
the Third International Symposium on Information Processing in Sensor Networks
(IPSN 2004), April 2004, pp. 1–10 (2004)

10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System
architecture directions for networked sensors. ACM SIGPLAN Notices 35(11), 93–
104 (2000)

11. Hunkeler, U., Scotton, P.: A quality-of-information-aware framework for data mod-
els in wireless sensor networks. In: Proceedings of the First International Workshop
on Quality of Information in Sensor Networks (QoISN 2008), September 2008, pp.
742–747 (2008)

12. JavaCC - a parser/scanner generator for Java (November 2008),
https://javacc.dev.java.net/

13. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, 131–146 (2002)

14. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acqui-
sitional query processor for sensor networks. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2003), pp.
491–502 (2003)

15. Savarese, C., Rabaey, J.M., Beutel, J.: Locationing in distributed ad-hoc wireless
sensor networks. In: Proceedings of the 2001 International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2001), May 2001, pp. 2037–2040 (2001)

16. Srinivasan, K., Levis, P.: RSSI is under appreciated. In: Proceedings of the Third
Workshop on Embedded Networked Sensors (EmNets 2006) (May 2006)

17. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield
in a volcano monitoring sensor network. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI 2006), pp. 381–396 (2006)

http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
https://javacc.dev.java.net/

	A Code Generator for Distributing Sensor Data Models
	Introduction
	Related Work
	Linear Regression
	Network Setup
	Model Description Language
	Aggregation and Linear Regression
	Compiling Models
	Execution Framework
	Results and Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

