
Security Flaws in an Efficient Pseudo-Random

Number Generator for Low-Power Environments

Pedro Peris-Lopez1, Julio C. Hernandez-Castro2, Juan M.E. Tapiador3,
Enrique San Millán4, and Jan C.A. van der Lubbe1

1 Department of Information and Communication, Delft University of Technology,
The Netherlands

2 School of Computing, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE,
United Kingdom

3 Department of Computer Science, University of York, Heslington, York, YO10
5DD, United Kingdom

4 Department of Electrical Engineering, University Carlos III of Madrid, 28911
Leganés, Spain

p.perislopez@tudelft.nl, julio.hernandez-castro@port.ac.uk,

jet@cs.york.ac.uk, quique@ing.uc3m.es, j.c.a.vanderlubbe@tudelft.nl

Abstract. In 2004, Settharam and Rhee tackled the design of a
lightweight Pseudo-Random Number Generator (PRNG) suitable for low-
power environments (e.g. sensor networks, low-cost RFIDtags). First, they
explicitly fixed a set of requirements for this primitive.Then, they proposed
a PRNG conforming to these requirements and using a free-running timer
[9]. We analyze this primitive discovering important security faults. The
proposed algorithm fails to pass even relatively non-stringent batteries of
randomness such as ENT (i.e. a pseudorandom number sequence test pro-
gram). We prove that their recommended PRNG has a very short period
due to the flawed design of its core. The internal state can be easily re-
vealed, compromising its backward and forward security. Additionally, the
rekeying algorithm is defectively designed mainly related to the unpracti-
cal value proposed for this purpose.

Keywords: Sensor networks, RFID, PRNG, security, cryptanalysis.

1 Settharam and Rhee PRNG

In 2003, Rhee et al. designed an ultra-low power sensor networking platform,
named i-Bean Network [7]. In this platform, sensors must support a Pseudo-
Random Number Generator (PRNG) on-board for various purposes such as
random transmissions delays or the generation of random packet sequence num-
bers. The use of Linear Congruential Generators (LCGs) or Lineal Feedback
Shift Registers (LFSRs) could be appropriate due to their low hardware require-
ments (circuitry, memory and power consumption), but these generators are
completely insecure. An alternative can be the use of a Cryptographically Se-
cure Pseudorandom Number Generators (CSPRNG), but they are very exigent
in terms of hardware demands, being unpractical in this kind of environments.

Q. Gu, W. Zang, and M. Yu (Eds.): SEWCN 2009, LNICST 42, pp. 25–35, 2010.
� Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

26 P. Peris-Lopez et al.

Finally, standard cryptographic primitives such as a block cipher with a secret
key working in counter mode or a hash function with a secret key operating in
output feedback mode, can be used to build a PRNG. The problem here is again
that these kind of constructions also exceed by far the capabilities of constrained
devices. Motivated by this necessity, Seetharam and Rhee proposed an ad hoc
simple PRNG based on a free-running timer [9]. This PRNG not only can be
used for the i-Bean network, but it is suitable for other low-power environments.
Prior to their design of the PRNG, the authors fixed a set of requirements that
should be satisfied by their proposed generator, or any other design, for being
useful within the i-Bean network environment:

– The generator must be efficient. Efficiency is defined in terms of resources,
temporary requirements and memory. This property is translated into the
following requirements: 1) It does not require any multiplication or division
operations. It would be desirable if the generation could be achieved using
just the logical operations; 2) The number of steps required for generating a
single random number must be less than 10; 3) The amount of code memory
used must be less than 50 bytes.

– The generator must produce a uniform distribution of random bytes (num-
bers in the interval [0,255]).

– The generator must not use specific features of any microcontroller, in this
way being easily portable to other hardware platforms.

Upon establishing the above requirements, the authors proposed an 8-bit PRNG
based on a free running timer (SR-PRNG in short). To obtain a fresh random
number an XOR between the current value of the timer and the key is computed
(rv = tv ⊕ key). Next, the key and the timer values are updated. Specifically,
one’s complement of the timer becomes the new key (key =∼ tv) and the one’s
complement of the new random number becomes the next time value (tv =∼ rv).
Additionally, the key is updated after the generation of K consecutive random
numbers. To accomplish this task, the checksum of the received/transmited pack-
ets is used. The C-code of the proposed PRNG is included below. Exclusive-OR
operation and one’s complement are symbolized by “ˆ” and “∼” respectively.

/* Initialize Key to the ID of the node */

unsigned char key = nodeID;

/* Seetharam et al.’s PRNG */

unsigned char SR-PRNG()

{ unsigned char rv = 0;

unsigned char tv = 0;

tv = get_timer();

rv = tv ^ key;

key = ~tv;

Security Flaws in SR-PRNG 27

tv = ~rv;

set_timer(tv);

return rv;

}

2 Statistical Analysis of SR-PRNG

To get any evidence of the security of a PRNG, it should be subjected to a variety
of statistical tests designed to detect the specific characteristics expected from
random sequences. In fact, there are different battery of tests for the evaluation
of randomness. In 1995, Marsaglia introduced the Diehard tests which are a
battery of stringent statistical tests for measuring the quality of a set of random
numbers [5]. ENT is also another test battery, which includes the chi-square test
[10]. A dedicated suite of randomness tests suitable for the evaluation of PRNG
used in cryptography was proposed by the National Institute of Standards and
Technology (NIST) in 2001 [8]. Recently, Sexton proposed a new series of tests
[1], whose interpretation is similar to that of Diehard. Passing these battery tests
is a necessary but not a sufficient condition for a generator to be secure. On the
other hand, systematically passing the NIST and Diehard batteries provides
strong evidence in favor of a good degree of output randomness.

In [9], authors used ENT for the evaluation of their PRNG. Specifically, ENT
performs a variety of tests to the stream of bytes stored in a file. The entropy,
chi-square test, arithmetic mean, Monte Carlo value for Pi, and serial correlation
are the values computed. We have implemented the proposed PRNG in order to
analyze its output.

There is a relevant point that is unclear in the original paper. Authors specified
that the key is updated with the 8-bit Cyclic Redundancy Check (CRC) values
of the transmitted and received packets. However, they do not describe any
property of the messages transmitted and received in the network. In other
words, we do not know the exact entropy introduced by this source.

Additionally, authors neither describe the rekeying algorithm in the paper nor
facilitate us this information by personal communication. We do not know if, for
example, the new key is simply the CRC of the messages passed to the channel,
or instead the new key is the result of computing an XOR between the old key
and the CRC.

Finally, the authors do not specify how frequently is necessary to apply the
rekeying. This is a crucial point, as we demonstrate in Section 3.1. For evaluation
purposes, the authors fixed this value to 10, but no justification for this number
appears on the paper. In order to be able to analyze the output provided by this
PRNG, we first describe the rekeying algorithm used in our experimentation
(Python code is available in Appendix A).

Rekeying algorithm: In the initialization phase, we initialize a string variable
A to a random value. Once the generator computes K random values (rk = K),
the key is updated. We randomly changed the 3 most significant bits of the

28 P. Peris-Lopez et al.

Table 1. ENT Statistical Tests

Test rk = 10 rk = 100
Entropy 7.707212 7.310092
Chi-square Test 477179.13 (0.01%) 477179.13 (0.01%)
Arithmetic Mean 126.1655 113.1528
Monte Carlo Value for Pi 2.940398806 (6.40%) 3.094900134 (1.49%)
Serial Correlation Test -0.026964 -0.150160

variable A and compute its CRC. The key is finally updated by computing the
XOR between the actual key and the result obtained from the CRC.

Once the rekeying algorithm is defined, we generate two files of 300MBytes,
in the first of these files the rekeying is fixed to 10 (rk = 10) and in the second
to 100 (rk = 100). If rk > 100, the results are catastrophic and are laking in
interest. We analyze each of these files with the ENT battery as Seetharam and
Rhee did. The results obtained are presented in Table 1.

First we focus on the results obtained when the rekeying factor is fixed to 10.
There are many output values that offer a strong evidence of the non-randomness
of the analyzed output:

– The arithmetic mean should be around 127.5 if the data were close to ran-
dom. The obtained value points out that the output has a strong bias.

– The error in the Monte Carlo estimation of Pi value is huge.
– The serial correlation test evidences a slight dependence between each output

byte and the previous output byte. This dependence is higher (in absolute
value) as the rekeying value is incremented (see Section 3.1).

– The chi-square test is specially revealing: the percentage should be inter-
preted as the likelihood of the tested sequence coming from a uniform dis-
tribution. As the percentage obtained is inferior to 1% (around 1 in 10000),
we can safely conclude that the studied sequence is almost certainly not ran-
dom. Additionally, the measured chi-square statistic is astronomically larger
than that expected (477179.1 against 255.3).

The results obtained with the rekeying factor fixed to 100 are indisputable:

– The density of information (entropy) is further reduced in comparison with
the above case (rk = 10). Additionally, the value obtained is significantly
far from the optimal value (8.0).

– The arithmetic mean indicates that the output has a very strong bias. In
other words, the probabilities of ones and zeros are significantly different.

– The high value of the serial correlation coefficient points out the absolute
necessity of a low rekeying factor. This factor would have to be fixed to an ex-
tremely low value, as we will see in Section 3.1. This fact evince that the core
of the PRNG proposed by Seetharam and Rhee was not properly designed.
Additionally, the highly negative correlation shows that the computation of
complements in the PRNG is still easily observable in its output.

We have also analyzed the above two files with the Diehard battery. We will
omit the results here due to their limited interest and just mention the main

Security Flaws in SR-PRNG 29

conclusions. In summary, the generator dramatically fails to pass each of the tests
included in Diehard, even when the rekeying factor is fixed to an unpractically
low value (rk = 10). The two sequences (rk = 10 or rk = 100) do not pass a
single test, obtaining 0.0 or 1.0 for all the test p-values, and an overall p-value
of 0. From all of the above, we can safely conclude that the analyzed sequences
(and their generators) consistently failed the Diehard battery of tests at the 0.05
significance level.

3 Cryptanalysis of SR-PRNG

In this section we present the cryptanalysis of the PRNG proposed by Seetharam
and Rhee. First, we show that their PRNG has an extraordinarily short period.
Then, we demonstrate how the internal state of the generator can be easily
disclosed. The above mentioned properties are extremely bad for, respectively,
randomness and security reasons.

3.1 Period Evaluation

We show in the following that the period of this generator is extremely short.
Specifically, every three executions the same value is generated again. In other
words, if the PRNG is in the state (tv[n], k[n]), the following sequence is gener-
ated: {rv[n + 1], rv[n + 2], rv[n + 3]}, {rv[n + 1], rv[n + 2], rv[n + 3]}, etc. This
can be generalized as: rv[n + r] = rv[n + (r mod 3)] for any r.

Theorem 1. SR-PRNG returns to the same internal value each 3 iterations:

key[n] = key[n + 3 ∗ m]
tv[n] = tv[n + 3 ∗ m]

⎫
⎬

⎭
For any integer m (1)

Proof. We start observing the output and the internal state of three consecutive
executions:

Iteration n (2)
rv[n] = tv[n] ⊕ key[n]

key[n + 1] = ∼ (tv[n])
tv[n + 1] = ∼ (rv[n])

Iteration n + 1 (3)
rv[n + 1] = tv[n + 1] ⊕ key[n + 1]

key[n + 2] = ∼ (tv[n + 1])
tv[n + 2] = ∼ (rv[n + 1])

30 P. Peris-Lopez et al.

Iteration n + 2 (4)
rv[n + 2] = tv[n + 2] ⊕ key[n + 2]

key[n + 3] = ∼ (tv[n + 2])
tv[n + 3] = ∼ (rv[n + 2])

Employing the above 3 equations recursively, it easy to find that

key[n + 3] = ∼ (tv[n + 2]) (5)
= ∼ (∼ (rv[n + 1])) = rv[n + 1]
= tv[n + 1] ⊕ key[n + 1]
= ∼ (rv[n])⊕ ∼ (tv[n])
= rv[n] ⊕ tv[n]
= key[n]

and that

tv[n + 3] = ∼ (rv[n + 2]) (6)
= ∼ (tv[n + 2] ⊕ key[n + 2])
= ∼ (∼ (rv[n + 1])⊕ ∼ (tv[n + 1])
= ∼ (rv[n + 1] ⊕ tv[n + 1])
= ∼ (key[n + 1])
= ∼ (∼ (tv[n]))
= tv[n] ��

This proves that after 3 iterations the generator returns to the same internal
values. Therefore, the same sequence is generated again.

The authors proposed that the key have to be changed after the generation of
K random values. If the rekeying is performed each K iterations (rk = K), the
Equation 1 can be rewritten as

key[n] = key[n + 3 ∗ m]
tv[n] = tv[n + 3 ∗ m]

⎫
⎬

⎭
If n + 3 ∗ m < K (7)

But the very short period is not mitigated by rekeying unless this is performed
every 3 iterations. This value is unpractical and would overload the random
number generation. The authors do not seem to be aware of this design problem,
as they suggest the rekeying factor to be 10.

Rekeying is generally used in cryptography to limit the amount of data en-
crypted under the same key. A key exchange protocol is usually employed to
negotiate the new key. In our case, the rekeying is used to update one of the
internal values of the PRNG state. This process should introduce enough ran-
domness in the new key, but the authors proposed the CRC of the transmit-
ted/received packets, and as source of randomness it is not good enough. This

Security Flaws in SR-PRNG 31

choice presents three main problems: 1) The CRC is not a good source of ran-
domness, as revealed by the statistical properties of the sequences analyzed; 2)
The rekeying process increments both the computational load and the power
consumption, and significantly reduces the throughput. To avoid these draw-
backs, a high rekeying factor is usually used [3], exactly the opposite approach
than the extremely low value suggested by the authors; 3) Initially, the key
is set with the identification number of the node. In applications where this
identification number might change (e.g. RFID systems), if this value is up-
dated, the central back-end database and the reader get into a desynchronized
state.

3.2 Disclosure of the Internal State

In this section we show how the internal secret state of the PRNG can be recov-
ered under the very realistic assumption that only two consecutive outputs are
eavesdropped. We demonstrate that SR-PRNG does not provide neither soft-
forward nor soft-backward security.

Definition 1. Soft-Forward security is the property that guarantees that an
adversary listening the outputs provided by a PRNG (i.e. rv[n + 1], rv[n + 2])
is not able to predict the next outputs (i.e. rv[n + 3], rv[n + 4], etc). In general
terms,

PAdv(rv[n + k + m]|{rv[n + i]}k
i=1) = ε (8)

for m = 1, 2, . . . and ε some negligible value and where PAdv is the probability.

Definition 2. Soft-Backward security is the property that guarantees that
an attacker listening the outputs provided by the PRNG (i.e. rv[n+1], rv[n+2])
is not able to determinate the previous state (s[n + 1] = (tv[n + 1], key[n + 1]))
after a new state (sv[n + 2] = (tv[n + 2], key[n + 2])) has been reached:

PAdv(sv[n + 1]|sv[n + 2], rv[n + 1], rv[n + 2]) = ε (9)

where sv[n + 2] means that sv[n + 2] state has been reached by the PRNG but
its unknown to the attacker, and ε is a negligible value.

Theorem 2. An adversary can recover the internat state of SR-PRNG after the
eavesdropping of two consecutive outputs {rv[n], rv[n + 1]}:

tv[n] = rv[n] ⊕ rv[n + 1]
k[n] = rv[n + 1]

⎫
⎬

⎭
For any integer n (10)

Proof. We start observing the output and the internal state of two consecutive
executions.

32 P. Peris-Lopez et al.

Iteration n (11)
rv[n] = tv[n] ⊕ key[n]

key[n + 1] = ∼ (tv[n])
tv[n + 1] = ∼ (rv[n])

Iteration n + 1 (12)
rv[n + 1] = tv[n + 1] ⊕ key[n + 1]

key[n + 2] = ∼ (tv[n + 1])
tv[n + 2] = ∼ (rv[n + 1])

Next, we show how an attacker is able to obtain the actual state of the generator.
Once the state is known, future outputs can be computed, compromising the
soft-forward security. Applying the above equations,

key[n + 2] = ∼ (tv[n + 1]) (13)
= ∼ (∼ rv[n])
= rv[n]

tv[n + 2] = ∼ (rv[n + 1]) (14)

Finally, we demonstrate how the attacker is also able to acquire the previous
state of the generator compromising the soft-backward security:

rv[n + 1] = tv[n + 1] ⊕ key[n + 1] (15)
= ∼ (rv[n])⊕ ∼ (tv[n])
= rv[n] ⊕ tv[n]

From Equation 15,
tv[n] = rv[n] ⊕ rv[n + 1] (16)

After the previous timer value is obtained, the last key value is easily obtained
applying Equation 16:

k[n] = rv[n] ⊕ tv[n] (17)
= rv[n] ⊕ rv[n] ⊕ rv[n + 1]
= rv[n + 1]

Equations 16 and 17 can be used with n = 0, thus revealing the secret seed:

k[0] = rv[1] (18)
tv[0] = rv[0] ⊕ rv[1] (19)

��
Barak and Halevi proposed a formal model and a simple architecture for robust
pseudorandom generators [2]. In this model backward/forward means that fu-
ture/past output is secure. We switched this notation to be consistent with the
conventional one. Three properties are demanded to these kind of architectures:

Security Flaws in SR-PRNG 33

– Resilience: the output should look random to an observer with no knowledge
of the internal state. This should hold even if the observer has complete
control over the data used to refresh the internal state.

– Backward security: past output of the generator should look random to an
observer, even if he knows the internal state at a later time.

– Forward security: future generator output should look random, even to an
observer with knowledge of the current state, provided that the generator is
refreshed with data with enough entropy.

As shown in Section 2, the output provided by SR-PRNG does not look like
random at all. Backward security is compromised even if the internal state of the
PRNG is not revealed (soft-backward security is not guaranteed). Therefore, SR-
PRNG is not a robust PRNG, which might be necessary for designing protocols
with forward and backward untraceability. In fact, this it is a sufficient but not
necessary condition as Phan et al. showed in [6].

4 Conclusions

In this paper, we present the cryptanalysis of a lightweight PRNG suitable for
low-power environments (e.g. sensor networks). We discover important security
faults concerning both its core function and rekeying algorithm.

To design the core function, the authors limited the set of operations sup-
ported on-chip (i.e. PRNG) to bitwise operations (i.e. addition modulo 2 or
one’s complement). The bad property from the point of view of security is that
all of these operations are triangular functions [4]. That is, the bit in position i
in the output only depends on bits j = 0, ... , i of the input words, instead of all
input bits. Furthermore, the composition of triangular operations always results
in a triangular function. These undesirable characteristics greatly facilitates their
successful analysis.

According to the rekeying algorithm two unfortunate decisions were taken.
First of all, the CRC of the transmitted packets has a very low entropy, and
additionally, these packets are really easy to alter by an active attacker. Secondly,
a refreshment period of 10 iterations makes not sense; it would imply rekeying
each 50 milliseconds, which computationally is too demanding.

Our next logical step is the great challenge of designing a secure lightweight
PRNG under the requirements stated by Settharam and Rhee. Some require-
ments may be redefined because its specification needs further clarification (e.g.
the definition of a single step).

References

1. David Sexton’s battery (2005), http://www.geocities.com/da5id65536
2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with

applications to /dev/random. In: ACM Conference on Computer and Communi-
cations Security, pp. 203–212 (2005)

http://www.geocities.com/da5id65536

34 P. Peris-Lopez et al.

3. Bernstein, D.J.: Salsa20 specifications (2005),
http://www.ecrypt.eu.org/stream/

4. Klimov, A., Shamir, A.: Cryptographic applications of T-functions. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,
Heidelberg (2004)

5. Marsaglia, G.: The Marsaglia Random Number CDROM Including the DIEHARD
Battery of Tests of Randomness (1996), http://stat.fsu.edu/pub/diehard

6. Phan, R.C.-W., Wu, J., Ouafi, K., Stinson, D.R.: Privacy Analysis of
Forward and Backward Untraceable RFID Authentication Schemes (2008),
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/bfrfid-2.pdf

7. Rhee, S., Seetharam, D., Liu, S., Wang, N., Xiao, J.: i-Bean Network: An Ultra-Low
Power Wireless Sensor Network. In: Proceedings of UBICOMP 2003 (2003)

8. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
NIST special publication 800-22 (2001), http://csrc.nist.gov/rng/

9. Seetharam, D., Rhee, S.: An Efficient Pseudo Random Number Generator for Low-
Power Sensor Networks. In: Proceedings of LCN 2004, pp. 560–562. IEEE Com-
puter Society, Los Alamitos (2004)

10. Walker, J.: Randomness Battery (1998), http://www.fourmilab.ch/random/

http://www.ecrypt.eu.org/stream/
http://stat.fsu.edu/pub/diehard
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/bfrfid-2.pdf
http://csrc.nist.gov/rng/
http://www.fourmilab.ch/random/

Security Flaws in SR-PRNG 35

Appendix A

This is the source code of our implementation in Python.

from random import *

from scipy import *

#define the CRC

from crc_algorithms import Crc

crc = Crc(width = 8, poly = 0x7, reflect_in = False ,

xor_in = 0x0, reflect_out = False , xor_out = 0x0)

- Begin Program -

f=open (�output.dat�, �wb�)

#Initialization

a is used in the rekeying phase

a = randint (0,2**8-1)

key = randint (0,2**8-1)

tv = randint (0,2**8-1)

for sim in range(2**22):

Rekeying (rk =10 or 100)

for rk in range(100):

rv = tv ^ key

key = (~tv)%255

tv = (~rv)%255

#store rv in a file

rvs = "%c" % (rv)

f.write(rvs)

#rekeying

b = randint(0,2**8-1)

c = (b & 0xe0) | (a & 0x1f)

cs = "%c" % (c)

nrk= crc.table_driven (cs)

key = nrk ^ key

- End Program -

	Security Flaws in an Efficient Pseudo-RandomNumber Generator for Low-Power Environments
	Settharam and Rhee PRNG
	Statistical Analysis of SR-PRNG
	Cryptanalysis of SR-PRNG
	Period Evaluation
	Disclosure of the Internal State

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

