
Enhanced Access Polynomial Based Self-healing

Key Distribution

Ratna Dutta1, Sourav Mukhopadhyay2, and Tom Dowling1

1 Claude Shannon Institute, Computer Science Department, NUI Maynooth, Co.
Kildare, Ireland

{rdutta,tdowling}@cs.nuim.ie
2 School of Electronic Engineering, Dublin City University, Dublin 9, Ireland

msourav@eeng.dcu.ie

Abstract. A fundamental concern of any secure group communication
system is that of key management. Wireless environments create new key
management problems and requirements to solve these problems. One
such core requirement in these emerging networks is that of self-healing.
In systems where users can be offline and miss updates self healing allows
a user to recover lost keys and get back into the secure communication
without putting extra burden on the group manager. Clearly self heal-
ing must be only available to authorized users and this creates more
challenges in that we must ensure unauthorized or revoked users cannot,
themselves or by means of collusion, avail of self healing. To this end
we enhance the one-way key chain based self-healing key distribution of
Dutta et al. by introducing a collusion resistance property between the
revoked users and the newly joined users. Our scheme is based on the
concept of access polynomials. These can be loosely thought of as white
lists of authorized users as opposed to the more widely used revocation
polynomials or black lists of revoked users. We also allow each user a
pre-arranged life cycle distributed by the group manager. Our scheme
provides better efficiency in terms of storage, and the communication
and computation costs do not increase as the number of sessions grows
as compared to most current schemes. We analyze our scheme in an ap-
propriate security model and prove that the proposed scheme is compu-
tationally secure and not only achieving forward and backward secrecy,
but also resisting collusion between the new joined users and the revoked
users. Unlike most existing schemes the new scheme allows temporary
revocation. Also unlike existing schemes, our construction does not col-
lapse if the number of revoked users crosses a threshold value. This fea-
ture increases resilience against revocation based denial of service (DOS)
attacks and thus improves availability of communication channel.

Keywords: session key distribution, self-healing, computational secu-
rity, forward and backward secrecy.

1 Introduction

In a large and dynamic group communication over an unreliable wireless network,
self-healing means that authorized users can recover the missing session keys by

Q. Gu, W. Zang, and M. Yu (Eds.): SEWCN 2009, LNICST 42, pp. 13–24, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

14 R. Dutta, S. Mukhopadhyay, and T. Dowling

themselves, without requesting additional transmission from the group manager.
This reduces network traffic, the risk of user exposure to traffic analysis, and the
work load on the group manager.

Self-healing property is being widely used for various applications. For exam-
ple, mission critical applications such as in military, content sensitive internet
applications such as broadcast transmission, pay per-view TV, and information
distribution services.

The idea of self-healing key distribution was proposed by Staddon et al. [9].
Following it, a number of self-healing techniques have been proposed. The hash
chain based schemes [3,4] are computationally secure and are highly efficient
compared to the existing unconditionally secure schemes [2,6,8,12]. However,
these hash chain based constructions have the fatal defect of not being col-
lusion resistant in the sense that the collusion between new joined users and
the revoked users are able to recover all the session keys which they are not
entitled to.

Our contribution: In this paper, we provide a solution to the problem of re-
sisting the collusion attack in the one-way hash chain based self-healing key
distributions introduced by Dutta et al. [3,4], coupling it with the pre-arranged
life cycle based approach of Tian et al. [10] that uses the same self-healing mech-
anism introduced in Dutta et al. [3,4]. However, we use the concept of access
polynomial instead of revocation polynomial in our construction. For scalability
of business it is often necessary to design more innovative and flexible busi-
ness strategies in certain business models that allow contractual subscription or
rental, such as subscription of mobile connection or TV channel for a pre-defined
period. The subscribers are not allowed to revoke before their contract periods
(life cycles) are over. Our scheme fits into such business strategies. Our construc-
tion is flexible and robust in the sense that there is no restriction on the number
of revoked users, any number of users can leave/join the group and a user can
join/leave as many times as she wishes. Consequently, the availability of com-
munication channel is increased and revocation based denial of service (DOS)
attacks are reduced. As compared to most existing schemes, our scheme provides
better efficiency in terms of storage, and the communication and computation
costs do not increase as the number of session grows, rather they increase as
the number of authorized users in a session grows. While most of the existing
schemes collapse when the number of revoked users crosses a threshold value, say
t, our scheme is unaffected by this limitation. Moreover, if the number of autho-
rized users remains less than t, the communication and computation cost in our
scheme are significantly less than that in the existing schemes together with less
storage overhead. These are the most important features of our construction.
The proposed scheme is proven to be computationally secure and achieve for-
ward and backward secrecy together with resisting collusion between the newly
joined users and the revoked users. The security analysis is in an appropriate
security model.

Enhanced Access Polynomial Based Self-healing Key Distribution 15

2 Preliminaries

2.1 Notational Convention

The following notations are used throughout the paper.

U : set of all users in the networks
Ui : i-th user
GM : group manager
n : total number of users in the network
m : total number of sessions
Authj : the set of all authorized users in session j
Fq : a field of order q
Si : personal secret of user Ui

SKj : session key generated by the GM in session j
Bj : broadcast message by the GM during session j
Zi,j : the information learned by Ui through Bj and Si

2.2 Our Security Model

We state the following definitions that are aimed to computational security for
session key distribution adopting the security model of [7,9].

Definition 1 (Session Key Distribution with privacy [9]). Let i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}.

1) D is a session key distribution with privacy if
(a) for any user Ui, the session key SKj is efficiently determined from Bj and

Si.
(b) for any set R ⊆ U of revoked users and Ui /∈ R, it is computationally

infeasible for users in R to determine the personal key Si.
(c) If we consider separately either the set of m broadcasts {B1, . . . ,Bm} or

the set of n personal keys {S1, . . . , Sn}, then it is computationally infeasible for
users U1, . . . , Un to compute session key SKj (or other useful information) from
either set. Information from both the sets is required in order to compute SKj or
any useful information.

2) D has revocation capability if given any R ⊆ U of users revoked in and before
session j, the group manager GM can generate a broadcast Bj, such that for all
Ui /∈ R, Ui can efficiently recover the session key SKj, but the revoked users cannot.
i.e. it is computationally infeasible to compute SKj from Bj and {Sl}Ul∈R.

3) D is self-healing if the following is true for any j, 1 ≤ j1 < j < j2 ≤ m:
(a) For any user Ui who is a member in sessions j1 and j2, the key SKj is

efficiently determined by the set {Zi,j1 , Zi,j2}.
(b) Let 1 ≤ j1 < j < j2 ≤ m. For any disjoint subsets L1, L2 ⊂ U , where

the set L1 is a coalition of users removed before and in session j1 and the set
L2 is a coalition of users joined since session j2, the set {Zl,j}Ul∈L1,1≤j≤j1 ∪
{Zl,j}Ul∈L2,j2≤j≤m cannot determine the session key SKj, j1 < j < j2. i.e. SKj

can not be obtained by the coalition L1∪L2. This is collusion resistance property
for self-healing.

16 R. Dutta, S. Mukhopadhyay, and T. Dowling

Definition 2 (Forward and backward secrecy [7]). Let i ∈ {1, . . . , n} and j ∈
{1, . . . , m}.

1) A key distribution scheme D guarantees forward secrecy if for any set
R ⊆ U of users revoked in and before session j, it is computationally infeasible
for the members in R together to get any information about SKj, even with the
knowledge of group keys SK1, . . . , SKj−1 before session j.

2) A session key distribution D guarantees backward secrecy if for any set
J ⊆ U of users joined after session j, it is computationally infeasible for the
members in J together to get any information about SKj, even with the knowledge
of group keys SKj+1, . . . , SKm after session j.

3 Proposed Scheme

For our construction, we consider a setting in which there is a group manager
(GM) and n users U = {U1, . . . , Un}. All operations take place in a finite field, Fq,
where q is a large prime number (q > n). In our setting, we allow a revoked user
to rejoin the group in a later session. Let H : Fq −→ Fq be a cryptographically
secure one-way function. See [5] for a formal definition of one-way function. We
use Cryptographically Secure Pseudo random bit Generators (CSPRBG) in our
construction. An example of CSPRBGs include the RSA PBG [1].

3.1 Key Distribution

• Setup: The group manager randomly picks an initial backward key seed SB ∈
Fq. It repeatedly applies the one-way function H to compute the one-way key
chain of length m: KB

i = H(KB
i−1) = Hi−1(SB) for 1 ≤ i ≤ m. The GM also

selects at random n numbers α1, . . . , αn ∈ Fq and m numbers β1, . . . , βm ∈ Fq

by running a CSPRBG which is cryptographically secure. The j-th session key is
computed as SKj = βj+KB

m−j+1. Unlike the existing self-healing key distribution
schemes, our setting allows a revoked user to rejoin the group in a later session
with a new identity. However, we make the following restriction on the life cycle
of each user as determined by the GM. Each user Ui is first assigned a pre-
arranged life cycle (si, ti), where 1 ≤ si < ti ≤ m, by the GM. i.e. Ui is involved
in ki = ti − si + 1 many sessions and is not allowed to revoke before session ti.
However Ui may go off-line during its life cycle due to power failure. Self-healing
is needed at this point. Each user Ui, for 1 ≤ i ≤ n, receives its personal secret
keys corresponding to the ki = ti − si + 1 sessions Si = {αi; βsi , . . . , βti} from
the group manager via the secure communication channel between them.
• Broadcast: Let Authj be the set of all authorized (active) users in session j.
In the j-th session, the group manager randomly chooses a blind value θj ∈Fq ,
θj /∈ {α1, . . . , αn}, locates the backward key KB

m−j+1 in the backward key chain
and computes the polynomials: Aj(x)=1+(x−θj)

∏
{l:Ul∈Authj}(x−αl), hj(x)=

KB
m−j+1Aj(x). The polynomial Aj(x) is called the access polynomial in session

j. The factor (x − θj) is a blinding term and θj ∈ Fq is randomly selected for
each session j and is different from α1, . . . , αn ∈Fq. The purpose of (x − θj) is

Enhanced Access Polynomial Based Self-healing Key Distribution 17

to make Aj(x) different for different session j even they contain the same α’s
of authorized users. Note that Aj(αi)=1 for Ui ∈Authj . However, it is random
for an unauthorized user. The group manager broadcasts the following message
Bj ={hj(x)}.
• Session Key Recovery: When an authorized (non-revoked) user Ui ∈ Authj

receives the j-th session key distribution message Bj, it recovers KB
m−j+1 =

hj(αi) as Aj(αi) = 1. Finally, Ui ∈ Authj evaluates the current session key
SKj = βj + KB

m−j+1. An unauthorized user cannot construct the polynomial
Aj(x) as it does not know the α-values of the set of authorized users Authj in
session j and the blind value θj used in session j.
• Add Group Members: When a new user wants to join the communication group
starting from session j, the user gets in touch with the GM. The GM in turn picks
an unused identity v ∈ Fq, selects a new αv ∈ Fq, assigns a life cycle (sv, tv) to
the new user with sv = j, computes the personal secret keys corresponding to
kv = tv − sv + 1 sessions Sv = {αv; βsv , . . . , βtv} and gives Sv to this new group
member via the secure communication channel between them.

Complexity

- Storage overhead: Storage complexity of personal key for user Ui with life
cycle (si, ti) is (ti − si + 2) log q bits.

- Communication overhead: Communication bandwidth for key management at
the j-th session is (|Authj |+2) log q bits, where Authj is the set of authorized
users in session j.

- Computation overhead: The computation cost for key management at the j-
th session is (|Authj | + 1), which is the number of multiplication operations
needed to find a point on a |Authj | + 1-degree polynomial.

3.2 Self-healing

We now explain our self-healing mechanism for the construction. Let Ui be a
group member that receives session key distribution messages Bj1 and Bj2 in
sessions j1 and j2 respectively, where 1 ≤ j1 ≤ j2, but not the session key
distribution message Bj for session j, where j1 < j < j2. User Ui can still
recover all the lost session keys Kj for j1 < j < j2 as desired by Definition 1
3(a) using the following steps.

- Ui recovers from the broadcast message Bj2 in session j2, the backward key
KB

m−j2+1 and repeatedly apply the one-way function H on this and computes
the backward keys KB

m−j+1 for all j, j1 ≤ j < j2.
- Ui then recovers all the session keys SKj = βj + KB

m−j+1, for j1 ≤ j ≤ j2.

Note that a user Ui revoked in session j cannot compute the backward keys
KB

m−j1+1 for j1 > j. Moreover, since a user is not allowed to revoke before the
end of its life cycle, Ui revoked in j-th session means its life cycle completes at
the j-th session. Consequently, Ui does not have βj1 for j1 > j. As a result,

18 R. Dutta, S. Mukhopadhyay, and T. Dowling

revoked users cannot compute the subsequent session keys SKj1 for j1 > j, as
desired. This is forward secrecy.

Similarly, a user Ui joined in session j does not have βj2 for j2 < j, although it
can compute the backward keys KB

m−j2+1 for j2 < j. This forbids Ui to compute
the previous session keys as desired. This is backward secrecy.

Now we will show that our construction can resist collusion required by Def-
inition 1 3(b). Let 1 ≤ j1 < j < j2 ≤ m. For any disjoint subsets L1, L2 ⊂ U ,
let the set L1 is a coalition of users removed before and in session j1 and the
set L2 is a coalition of users joined from session j2. Then no information about
the session key SKj , j1 < j < j2 can be obtained by the coalition L1 ∪ L2. Our
construction satisfies this property as illustrated below: Secret information held
by users in L1∪L2 and broadcasts in all the sessions do not get any information
about SKj for j1 < j < j2. This is true because in the worst case, the coalition
knows Si = {αi; β1, . . . , βj1−1} for Ui ∈ L1, Si = {αi; βj2 , . . . , βm} for Ui ∈ L2,
and B1, . . . ,Bm. For each session j, j1 < j ≤ j2 − 1, the coalition can get back-
ward key KB

m−j+1 from L2. However the session key SKj is computed from the
backward key KB

m−j+1 and a random number βj . The coalition L1 ∪ L2 cannot
obtain the random numbers βj for j1 < j < j2. Consequently, all the guess for
SKj with j1 < j < j2 are equi-probable.

4 Security Analysis

Theorem 3. Our construction is secure, self-healing session key distribution
scheme with privacy, revocation capability with respect to Definition 1 in our
security model as described in Section 2.2 and achieves forward and backward
secrecy with respect to Definition 2 in the model.

Proof: Our goal is security against coalition of any size. We will show that our
construction is computationally secure with respect to revoked users assuming
the difficulty of inverting one-way function, i.e. for any session j it is computa-
tionally infeasible for any set of revoked users before and in session j to compute
with non-negligible probability the session key SKj, given the View consisting of
personal keys of revoked users, broadcast messages before, in and after session
j and session keys of revoked users before session j.

Consider a coalition Rj of users revoked in or before the j-th session. The
revoked users are not entitled to know the j-th session key SKj . We can model
this coalition Rj as a polynomial-time algorithm A′ that takes View as input
and outputs its guess for SKj .We say that A′ is successful in breaking the con-
struction if it has a non-negligible advantage in determining the session key SKj .
Then using A′, we can construct a polynomial-time algorithm A for inverting
one-way function H and have the following claim:

Claim: Assuming a cryptographically secure CSPRBG, A inverts one-way func-
tion H with non-negligible probability if A′ is successful.

Enhanced Access Polynomial Based Self-healing Key Distribution 19

Proof: Given any instance y = H(x) of one-way function H, A first generates
an instance View for A′ as follows: A randomly generates n distinct numbers
α1, . . . , αn ∈ Fq and m distinct numbers β1, . . . , βm ∈ Fq by running a cryp-
tographically secure CSPRBG and constructs the following backward key chain
by repeatedly applying H on y: KB

1 = y, KB
2 = H(y), KB

3 = H2(y), . . . , KB
j =

Hj−1(y), . . . , KB
m = Hm−1(y). A computes the j-th session key SKj = βj +

KB
m−j+1. For 1 ≤ i ≤ n, each user Ui ∈ U with life cycle, say (si, ti), 1 ≤ si <

ti ≤ m (which is assigned to Ui by A), receives its personal secret keys corre-
sponding to the ki sessions Si = {αi; βsi , . . . , βti} ∈ F ki+1

q from A via the secure
communication channel between them.

Let Authj be the set of all authorized (active) users in session j. In the j-
th session, A randomly chooses a blind value θj ∈ Fq, θj /∈ {α1, . . . , αn} and
computes the access polynomial

Aj(x) = 1 + (x − θj)
∏

{l:Ul∈Authj}
(x − αl)

and the polynomial hj(x) = KB
m−j+1Aj(x). For 1 ≤ j ≤ m, A computes broad-

cast message Bj as: Bj = {hj(x)}. Then A sets View as

View =

⎧
⎪⎪⎨

⎪⎪⎩

αk for all Uk ∈ Rj ;
Bj for j = 1, . . . , m;
β1, . . . , βj−1;
SK1, . . . , SKj−1

⎫
⎪⎪⎬

⎪⎪⎭

A gives View to A′, which in turn selects X, β′
j ∈ Fq randomly, sets the j-

th session key to be SK′
j = β′

j + X and returns SK′
j to A. A checks whether

SK′
j = SKj . If not, A chooses a random x′ ∈ Fq and outputs x′.
Note that the access polynomial Aj(x) at the j-th session is not publicly

computable from the broadcast message Bj = {hj(x)} as:

- The set of authorized users is not transmitted publicly during broadcast.
- α-values of authorized users are used in Aj(x) which are parts of secret of

authorized users.
- A blinding factor (x−θj) is used in Aj(x) where θj ∈ Fq is randomly chosen for

each session j and is different from α-values of users. Thus Aj(x) is different
for different sessions j even if the same α-values of authorized users are used.

- Aj(αi) = 1 for Ui ∈ Authj and Aj(αi) is random for Ui /∈ Authj .
- Computing αi for Ui ∈ Authj is infeasible from the set {αk : Uk /∈ Authj}

as we assume that the CSPRBG used to generate these α-values is crypto-
graphically secure.

- an adversary or a coalition Rj of users revoked in and before session j cannot
construct the polynomial Aj(x) as it does not know the α-values of the
authorized users Authj in session j and the blind value θj used in session j.

From View, A′ knows only αk for all Uk ∈ Rj , β1, . . . , βj−1 and at most j − 1
session keys SK1, . . . , SKj−1. Consequently A′ has knowledge of at most j − 1
backward keys KB

m, . . . , KB
m−j+2. Observe that SK′

j = SKj provided

20 R. Dutta, S. Mukhopadhyay, and T. Dowling

(i) the guess β′
j of A′ for βj is correct; and

(ii) A′ knows the backward key KB
m−j+1.

The condition (i) occurs if either of the following two holds:

- A′ is able to choose β′
j ∈ Fq so that β′

j = βj , the probability of which is 1/q
(negligible for large q).

-A′ is able to generate βj from View. Note that from View, A′ knows β1, . . . , βj−1

∈ Fq. Observe that β1, . . . , βj−1 are generated by a cryptographically secure
CSPRBG. Thus if A′ is able to generate βj from the known random numbers
β1, . . . , βj−1, then the CSPRBG is insecure, leading to a contradiction.

The condition (ii) occurs if either of the following two holds:

- A′ is able to compute the access polynomial Aj(x) (or Aj(αk) for some Uk ∈
Rj) from View and consequently can recover the backward key KB

m−j+1 =
hj(x)/Aj(x). From View, A′ knows αk for all Uk ∈ Rj and with this knowl-
edge it is computationally infeasible for A′ (or coalition Rj) to learn αi for
Ui ∈ Authj under the security of CSPRBG. Moreover, A′ will not be able
to compute Aj(x) as mentioned earlier. Consequently, A′ will not be able to
recover KB

m−j+1 from Bj .
- A′ is able to choose X ∈ Fq so that the following relations hold:

KB
m = Hj−1(X), KB

m−1 = Hj−2(X), . . . , KB
m−j+2 = H(X)

This occurs with a non-negligible probability only if A is able to invert the
one-way function H. In that case, A returns x = H−1(y).

The above arguments show that if A′ is successful in breaking the security of
our construction, then A is able to invert the one-way function. �	(of claim)

Hence our construction is computationally secure under the hardness of invert-
ing one-way function and the security of the CSPRBG. This is forward secrecy.
We can also prove the computational security for backward secrecy of our con-
struction using the similar arguments as above considering a coalition of new
joined users. The only difference in the proof is that this coalition of new users
joined in and after session j knows all the backward keys, but they do not know
β1, . . . , βj−1 and consequently are unable to compute the past session keys they
were unauthorized to.

We will now show that our construction satisfies all the conditions required
by Definition 1.
1) (a) Session key efficiently recovered by a non-revoked user Ui is described in
the third step of our construction.

(b) For any set Rj ⊆ U of users revoked in and before session j, and any
non-revoked user Ui /∈ Rj , we show that the coalition Rj knows nothing about
the personal secret Si = (αi; βsi , . . . , βj , . . . , βti) of Ui with life cycle (si, ti),
1 ≤ si ≤ ti ≤ m . For any session j, Ui uses αi and βj as its personal secret.
The coalition Rj may at most learn β1, . . . , βj−1 and the probability of Rj to

Enhanced Access Polynomial Based Self-healing Key Distribution 21

guess βj is negligible under the cryptographic security of CSPRBG. Similarly,
it is computationally infeasible for coalition Rj to learn αi for Ui ∈ Authj from
the set {αk : Uk ∈ Rj} under the security of CSPRBG.

(c) The session key SKj for the j-th session is computed from two parts:
backward key KB

m−j+1 and random number βj . Note that βj is part of personal
key of an unauthorized user Ui ∈ Authj that Ui receives from GM before or
when Ui joins the group and KB

m−j+1 = hj(αi)/Aj(αi) is recovered by Ui from
the broadcast message Bj. Note that Aj(αi) = 1 for Ui ∈ Authj and is random
for Ui /∈ Authj . So the personal secret keys alone do not give any information
about any session key. Since the initial backward seed SB is chosen randomly, the
backward key KB

m−j+1 and consequently the session key SKj is random as long
as SB, KB

1 , KB
2 , . . . , KB

m−j+2 are not get revealed. This in turn implies that the
broadcast messages alone cannot leak any information about the session keys.
So it is computationally infeasible to determine Zi,j from only personal key Si

or broadcast message Bj.
2) (Revocation property) Let Rj ⊆ U be a set of users revoked in and before
session j who collude in session j. It is impossible for coalition Rj to learn the
j-th session key SKj because the knowledge of SKj implies the knowledge of the
backward key KB

m−j+1, and the knowledge of the personal secret αi, βj of user
Ui ∈ Authj . The coalition Rj knows the set {αk : Uk ∈ Rj}. The coalition Rj

cannot compute αi for Ui ∈ Authj from the set {αk : Uk ∈ Rj} by the security of
CSPRBG. Moreover, Aj(x) is not publicly computable as discussed earlier. This
in turn makes KB

m−j+1 appears random to all users in Rj . Moreover the coalition
knows at most β1, . . . , βj−1 and guessing βj is negligible under the security of
CSPRBG. Therefore, SKj is completely safe from Rj in computation point of
view.
3) (a) (Self-healing property) As shown in Section 3.2, user Ui can efficiently
recover all missed session keys.

(b) We can prove using similar arguments as the proof of claim that our con-
struction is computationally secure for resisting coalition under the assumption
that the CSPRBG is cryptographically secure. We omit the proof here due to
space constraint which will be avalible in the full version of the paper.
We now show that our construction satisfies all the conditions required by Def-
inition 2.
1) (Forward secrecy) Let Rj ⊆ U and all user Us ∈ Rj are revoked before
the current session j. The coalition Rj can not get any information about the
current session key SKj even with the knowledge of group keys before session
j. This is because of the fact that in order to know SKj , any user Us ∈ Rj

needs to know αi for all Ui ∈ Authj , KB
m−j+1 and βj . Determining αi for Ui ∈

Authj from the set {αk : Uk ∈ Rj} is infeasible by the security of CSPRBG.
Hence Rj is unable to compute SKj . Besides, because of the one-way property
of H, it is computationally infeasible to compute KB

j1 from KB
j2 for j1 < j2. The

users in Rj might know the sequence of backward keys KB
m, . . . , KB

m−j+2, but
cannot compute KB

m−j+1 and consequently SKj from this sequence. Hence our

22 R. Dutta, S. Mukhopadhyay, and T. Dowling

Table 1. Comparison among different self-healing key distribution schemes in j-th
session (ki = ti − si + 1, where (si, ti) is the life cycle assigned to user Ui by the GM;
Authj is the set of authorized users in the j-th session; Tj is a threshold on the number
of revoked users which depend on the monotone decreasing access structure; and t is
the maximum number of revoked users)

Schemes Storage Overhead Communication Overhead Computation Overhead

Construction 3 of [9] (m − j + 1)2 log q (mt2 + 2mt + m + t) log q 2mt2 + 3mt − t
Scheme 3 of [7] 2(m − j + 1) log q [(m + j + 1)t + (m + 1)] log q mt + t + 2tj + j
Scheme 2 of [2] (m − j + 1) log q (2tj + j) log q 2j(t2 + t)

Construction 1 of [6] (m − j + 1) log q (tj + j − t − 1) log q 2tj + j
Construction 1 of [3] (m − j + 2) log q (t + 1) log q 2t + 1
Construction 2 of [3] (m − j + 2) log q (t + 1) log q 2(t2 + t)
Construction of [4] (m − j + 2) log q (Tj + 1) log q 2(T 2

j + Tj)

Construction of [10] (2ki + 1) log q (Tj + 1) log q 2(T 2
j + Tj)

Our Construction (ki + 1) log q (|Authj | + 2) log q |Authj | + 1

construction is forward secure. Moreover the coalition knows at most β1, . . . , βj−1

and guessing βj is negligible under the security of CSPRBG.
2) (Backward secrecy) Let Jj ⊆ U and all user Us ∈ Jj join after the current
session j. The coalition Jj can not get any information about any previous session
key SKj1 for j1 ≤ j even with the knowledge of group keys after session j. This
is because of the fact that in order to know SKj1 , any user Us ∈ Jj requires the
knowledge of βj1 . Now when a new member Uv joins the group starting from
session j +1, the GM gives Uv at most βj+1, . . . , βm, together with the value αv.
Hence it is computationally infeasible for the newly joint member to trace back
for previous βj1 under the security of CSPRBG for j1 ≤ j. Consequently, our
protocol is backward secure.

5 Performance Analysis

Table 1 shows comparisons of different self-healing schemes in terms of storage,
communication and computation. We use the one-way key chain based approach
of self-healing mechanism introduced in [3,4] which yields computationally secure
and efficient scheme as no history of revoked users are sent during broadcast.

The most prominent improvement of our scheme over the previous self-healing
key distributions [2,6,7,9] is that the communication complexity and computa-
tion cost in our construction does not increase as the number of session grows,
but as the number of authorized users in a session grows.

As mentioned earlier, our construction is based on [3,4]. However we have the
following enhancements:

(a) No forward key chain is used in our construction unlike [3,4].
(b) We make use of access polynomial instead of revocation polynomial. Access

polynomial is computable only by authorized users, whereas revocation polyno-
mial is publicly computable.

(c) Contrary to [3,4], each Ui in our construction is pre-assigned a life cycle
(si, ti) by the GM following the work of [10]. Thus user Ui can participate in
ki = ti − si + 1 sessions and can not revoke before session ti is over.

Enhanced Access Polynomial Based Self-healing Key Distribution 23

(d) In contrast to [3,4], we have been able to resist collusion attack in our
construction by using pre-selected random numbers β1, . . . , βm (fixed) as part of
users’ secret keys. A user Ui with life cycle (si, ti) is given only ki = ti − si + 1
values βsi , . . . , βti and a value αi as part of its secret key by the GM via a
secure communication channel between them at the initial setup. As compared
to [3,4], we get less storage for our scheme. The communication and computation
costs at the j-th session for our scheme are linear to Authj , where Authj is
the set of authorized users in session j. Our scheme has less computation and
communication overhead as compared to [3] as long as Authj < t where t is a
threshold on the number of revoked users in [3].

(e) The new scheme allows temporary revocation. Unlike previous self-healing
key distribution schemes, revoked users may join at later sessions with new
identities without violating any security and can get only the keys of the sessions
it was in. Thus our scheme is more flexible as there is no restriction on the
number of revoked users. Any number of users can leave/join the group and a
user can join/leave as many times as it wishes. Most of the previous schemes
constrained the number of revoked users to the threshold t. If more than t users
are revoked, the security of the constructions cannot be guaranteed. Our scheme
overcomes this limitation and thus more practical as it increases reliability of
communication channel.

(f) Denial of service attacks: Availability is of critical business importance
from an information security and business perspective. By availability we mean
that a system is working and any attack that prevents the system working is
known as a denial of service (DOS) attack. DOS attacks are not interested in
breaking encryption or recovering keys, just in reducing availability. DOS attack
scenarios are discussed in [11]. Use of the revocation polynomial in self healing
systems actually facilitates a DOS attack. The attacker in this case colludes
with others to increase the number of revoked users above the threshold t thus
stopping the system. Using the access polynomial approach is resilient against
this attack as it does not care how many users are revoked.

We adapt the similar approach as [10] to achieve resistance to collusion attacks
and the ability of revoked users to rejoin the group. However, in contrast to [10],
we done away with forward hash key chains. Consequently, our scheme is more
efficient than [10] in terms of both storage and computation cost. Moreover, if
|Authj | < Tj, the communication cost in our scheme at the j-th session is less
than that in [10].

6 Conclusion

We have enhanced an existing one-way key chain based self-healing key distri-
bution by fixing the problem of collusion attack between the revoked users and
the newly joined users. We have used the concept of access polynomial and as-
signed a pre-arranged life cycle on each user. Our scheme is robust and efficient
as compared to the most previous schemes. It does not collapse as the number
of revoked users exceeds a threshold value, which increases the availability of

24 R. Dutta, S. Mukhopadhyay, and T. Dowling

communication channel by reducing revocation based denial of service (DOS)
attacks. Our scheme does not forbid revoked users from rejoining in later ses-
sions unlike the existing self-healing key distribution schemes. This again has
commercial advantages. The proposed scheme has been proven to be computa-
tionally secure and resists collusion between new joined users and revoked users
together with forward and backward secrecy in an appropriate security model.
Such security properties greatly increase confidence in a system.

References

1. Alexi, Chor, Goldreich, Schnorr: RSA Rabin Bits are 1/2+1/poly(logn) secure. In:
Proceedings of the IEEE 25th Annual Symposium on Foundations of Computer
Science, pp. 449–557 (1984)

2. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Design of Self-healing Key Distribu-
tion Schemes. Design Codes and Cryptology 32, 15–44 (2004)

3. Dutta, R., Chang, E.-C., Mukhopadhyay, S.: Efficient Self-Healing Key Distribu-
tions with Revocation for Wireless Network using One Way Key Chains. In: Katz,
J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer, Heidelberg
(2007)

4. Dutta, R., Mukhopadhyay, S., Das, A., Emmanuel, S.: Generalized Self-Healing
Key Distribution using Vector Space Access Structure. In: Das, A., Pung, H.K.,
Lee, F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp.
612–623. Springer, Heidelberg (2008)

5. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

6. Hong, D., Kang, J.: An Efficient Key Distribution Scheme with Self-healing Prop-
erty. IEEE Communication Letters 2005, 9, 759–761 (2005)

7. Liu, D., Ning, P., Sun, K.: Efficient Self-healing Key Distribution with Revocation
Capability. In: Proceedings of the 10th ACM CCS 2003, pp. 27–31 (2003)

8. Saez, G.: On Threshold Self-healing Key Distribution Schemes. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 340–354. Springer,
Heidelberg (2005)

9. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing
key distribution with Revocation. In: Proceedings of IEEE Symposium on Security
and Privacy 2002, pp. 224–240 (2002)

10. Tian, B., Han, S., Dillon, T.-S., Das, S.: A Self-Healing Key Distribution Scheme
Based on Vector Space Secret Sharing and One Way Hash Chains. In: Proceedings
of IEEE WoWMoM 2008 (2008)

11. Tipton, H.: Official (ISC)2- Guide to The CISSP-CBK, 1st edn. Auerbach Publi-
cations (2006)

12. Zou, X.K., Dai, Y.S.: A Robust and Stateless Self-Healing Group Key Management
Scheme. In: ICCT 2006, vol. 28, pp. 455–459 (2006)

	Enhanced Access Polynomial Based Self-healing Key Distribution
	Introduction
	Preliminaries
	Notational Convention
	Our Security Model

	Proposed Scheme
	Key Distribution
	Self-healing

	Security Analysis
	Performance Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

