
Integrating Autonomic Grid Components and

Process-Driven Business Applications

Thomas Weigold1, Marco Aldinucci2, Marco Danelutto3, and Vladimir Getov4

1 IBM Zurich Research Lab., Zurich, Switzerland
twe@zurich.ibm.com

2 Computer Science Dept., University of Torino, Italy
aldinuc@di.unito.it

3 Computer Science Dept., University of Pisa, Italy
marcod@di.unipi.it

4 School of Electronics and Computer Science, University of Westminster,
London, U.K.

V.S.Getov@westminster.ac.uk

Abstract. Today’s business applications are increasingly process driven,
meaning that the main application logic is executed by a dedicate process
engine. In addition, component-oriented software development has been
attracting attention for building complex distributed applications. In this
paper we present the experiences gained from building a process-driven
biometric identification application which makes use of Grid infrastruc-
tures via the Grid Component Model (GCM). GCM, besides guarantee-
ing access to Grid resources, supports autonomic management of notable
parallel composite components. This feature is exploited within our bio-
metric identification application to ensure real time identification of fin-
gerprints. Therefore, we briefly introduce the GCM framework and the
process engine used, and we describe the implementation of the appli-
cation using autonomic GCM components. Finally, we summarize the
results, experiences, and lessons learned focusing on the integration of
autonomic GCM components and the process-driven approach.

Keywords: Autonomic computing, components, parallel applications,
distributed applications, process-driven applications.

1 Introduction

Today’s businesses are increasingly process driven. Ideally, all actions within an
enterprise are explicitly defined as processes with the goal to improve control,
flexibility, and effectiveness of delivering customer value. Additionally, business
processes are oftentimes supported or even fully implemented by software ap-
plications [1]. In many cases, the business processes are turned into software
such that they are hidden in the application’s source code. However, there is
a trend towards separating the main business logic from the functional code
such that the resulting applications become more transparent and more flexi-
ble. The approach is to embed a so-called process engine into the application,

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 96–113, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Autonomic Grid Components 97

which then executes process definitions representing the main control logic of
the application. Functional code is then triggered from the process engine in ac-
cordance with the process definition. Such applications are called process-driven
or workflow-driven applications [2,3,4]. The main advantages of this approach
are the fact that the application logic can be modified without re-compiling the
application, even at runtime, the business logic is more evident, and monitoring
features of the process engine can be explored.

Besides the trend towards process-driven applications, enterprises seek ways
to benefit from resources available from computing Grids/Clouds, in particular
in all those cases were parallel computing is required to guarantee fair perfor-
mances. The development of grid applications is not an easy task, however. Grid
architectures present peculiar features such as dynamicity, heterogeneity and
non exclusive access to resources, that require substantial effort to be suitably
handled; furthermore, this effort is in addition to the normal effort required to
develop efficient parallel/distributed applications. Within the plethora of pro-
gramming environments targeting Grids, GCM (the Grid Component Model
developed within CoreGRID [5] and whose reference implementation has been
provided by GridCOMP) [6]) supports Grid programmers in designing paral-
lel/distributed grid applications. In particular, GCM provides pre-defined com-
posite components modelling standard parallel/distributed computation pat-
terns that users can instantiate just providing the components implementing
the sequential computations involved in the parallel pattern. In addition, these
pre-defined composite components implement proper autonomic managers that
completely take care of non functional aspects related to application execution
according to what is specified in user supplied contracts.

In this work, we discuss a process-driven application, which makes use of
GCM autonomic components to solve the problem of large-scale biometric
identification[7], that has been developed as part of the activities of the Grid-
COMP project [6]. In particular, we discuss how process-driven application de-
velopment exploits the autonomic features provided by the underlying Grid soft-
ware as well as the results, experiences, and lessons learned during application
development focusing on the integration of autonomic GCM components and
the process-driven approach.

The paper is organized as follows: Sec. 2 introduces GCM and Behavioural
Skeletons (BS), i.e. the autonomic composite components modelling notable par-
allel/distributed patterns within GCM. Sec. 3 introduces the process engine used
to implement the biometric identification application discussed in Sec. 4 on top
of GCM/BS. Eventually, Sec. 5 discusses the overall results achieved and Sec. 6
drafts the conclusions of the paper.

2 The GCM Framework

The Grid Component Model (GCM) is a component model explicitly designed
to support component-based autonomic applications in distributed contexts [5].
The main features of this component model can be summarised as follows:

98 T. Weigold et al.

– Hierarchical: GCM components can be composed in a hierarchical way
in composite components. Composite components are first class components
and they are not distinguishable from non composite components at the user
level. Hierarchical composition greatly improves the expressive power of the
component model and is inherited by GCM from the Fractal component
model [8].

– Structured: In addition to standard intra-component interaction mecha-
nisms (use/provide ports [9]) GCM allows components to interact through
collective ports modelling common structured parallel computation commu-
nication patterns. These patterns include broadcast, multicast, scatter and
gather communications operating on collections of components. Also, GCM
provides data and stream ports, modelling access to shared data encapsu-
lated into components and data flow streams. All these additional port types,
not present in other well known component models, increase the possibili-
ties offered to the component system user for developing efficient parallel
component applications.

– Autonomic: GCM specifically supports implementing autonomic compo-
nents in two distinct ways: by supporting the implementation of user defined
component controllers and by providing behavioural skeletons. Component
controllers can be programmed in the component membrane (the membrane
concept, as the place where component control activities take place, is inher-
ited from Fractal [8]) and controllers can be components themselves. This
provides a substantial support to the development of reusable autonomic
controllers. Behavioural skeletons, thoroughly discussed in Sec. 2.1, are com-
posite GCM components modelling notable parallel/distributed computation
patterns and supporting autonomic managers, i.e. components taking care
of non functional concerns affecting parallel computation.

Due to the presence of controllers and autonomic managers, GCM components
implement two distinct kinds of interfaces: functional and non-functional ones.
The functional interfaces host those ports concerned with the implementation of
the functional features of the component. The non-functional interfaces host the
ports related to controllers and autonomic managers. These ports are the ones
actually supporting the component management activity in the implementation
of the non-functional features, i.e. those features contributing to the efficiency
of the component in obtaining the expected (functional) results but not directly
involved in result computation.

GCM has been designed within the Programming Model Institute [10] in
CoreGRID [11] and a reference implementation of the component model has
been developed within the GridCOMP project [6]. Within the same GridCOMP
project, a Grid Integrated Development Environment (GIDE) has been devel-
oped to support development and maintenance of GCM programs.

2.1 Behavioural Skeletons

Behavioural skeletons represent a specialisation of the algorithmic skeleton
concept for component management [12]. Algorithmic skeletons have been

Autonomic Grid Components 99

Algorithmic
Skeletons

Autonomic
Management

Standard code,
parameters

Behavioral
Skeletons

(factory usage)

Working
automomic
application

Developing framework concern

Application programmer concern

Functional concern Non-Functional concern

Behavioral
Skeletons

(factory design)

Fig. 1. Behavioural skeleton rationale

traditionally used as a vehicle to provide efficient implementation templates
of parallel paradigms. Behavioural skeletons, as algorithmic skeletons, represent
patterns of parallel computations (which are expressed in GCM as graphs of
components), but in addition they exploit the inherent skeleton semantics to
design sound self-management schemes of parallel components.

Behavioural skeletons are composed of an algorithmic skeleton together with
an autonomic manager (see Fig. 1). They provide the programmer with a com-
ponent that can be turned into a running application by providing the code
parameters needed to instantiate the algorithmic skeleton parameters (e.g. the
code of the different stages in a pipeline or the code of the worker in a task farm)
plus some kind of Service Level Agreement (SLA, e.g. the expected parallelism
degree or the expected throughput of the application). The code parameters are
used to build the actual code run on the target parallel/distributed architecture,
while the SLA is used by the autonomic manager that will take care of ensuring
this SLA (best effort) while the application is being computed.

The choice of the skeleton to be used as well as the code parameters provided
to instantiate the behavioural skeleton are functional concerns: they only depend
on what has to be computed (i.e. on the application at hand) and on the qual-
itative parallelism exploitation pattern the programmer wants to exploit. The
autonomic management itself is a non-functional concern. The self-management
and self-tuning activities taking place in the manager to ensure user supplied
SLA both depend on the application structure (the one defined by the algorith-
mic skeleton) and on the target architecture at hand. The implementation of
both the algorithmic skeleton and the autonomic manager is in the charge of the
“system” programmer, i.e. the one providing the behavioural skeleton framework
to the application user.

In the programming model provided by behavioural skeletons, the application
programmers are in charge of picking up a behavioural skeleton (or a composition
of behavioural skeletons) among those available and of providing the correspond-
ing parameters and SLA. The system, and in particular the autonomic managers
of the behavioural skeletons instantiated by the application programmer, are in

100 T. Weigold et al.

charge of performing all those activities needed to ensure the user supplied SLA.
These activities, in turn, may include varying some implementation parameters
(e.g. the parallelism degree, the kind of communication protocol used among
different parallel entities or scheduling/mapping of the parallel activities to the
target processing elements) as well as changing the behavioural skeleton (com-
position) chosen by the application programmer (e.g. using “under the hoods”
an equivalent, but more efficient (with respect to the target architecture and
user supplied SLA) behavioural skeleton (composition)).

Autonomic management of non-functional concerns is based on the concur-
rent execution (with respect to the application “business logic”) of a basic con-
trol loop such as that shown in Fig. 2. In the monitor phase, the application
behaviour is observed, then in the analyse and plan phases the observed be-
haviour is examined to discover possible malfunctioning and corrective actions
are planned. The corrective actions are usually taken from a library of known
actions and the chosen action is determined by the result of the analysis phase.
Finally, the actions planned are applied to the application during the execute
phase [13,14,15,16,17,18].

Currently, two kind of behavioural skeletons are implemented in GCM: a task
farm BS and a data parallel BS (see Fig. 3). The former models embarrassingly
parallel computations processing independent items xi of an input stream to
obtain items f(xi) of the corresponding output stream. The latter models data
parallel computations by computing for each item of the input stream xi an
item f(xi, D) of the corresponding output stream, where D represents a read
only data structure and the result of f(xi, D) can be computed as a map of
some function f ′(xi) on all the items of D followed by a reduce of the different
f ′(xi, Dj) with an associative and commutative operator g.

Both BS implement an AM taking care of the performance of the parallel
computation at hand. In particular, the AM may ensure contracts stating the
expected service time (or throughput, i.e. the time between the delivery of two
consecutive items on the output stream) of the BS (both task farm and data
parallel BS) or the expected partition size of data structure D (data parallel
BS only). Currently, the contracts must be supplied to the BS AMs through
the BS non functional ports as a(n ASCII string hosting a) set of JBoss rules

Analyse
Is the contract
broken? Why?

QoS
contract

Plan
Which plan can

solve the problem?

Monitor
How is AE
behaving?

Execute (Adapt)
Actuate the reconf.

protocol

Sensors

Monito

Effectors

Fig. 2. The classical control loop implemented within Autonomic Managers in GCM
Behavioural Skeletons

Autonomic Grid Components 101

Non-Functional
client & server ports

membrane

ABC
LC

CC

BC

AM

S C

W

W

content

Non-Functional
client & server ports

membrane

ABC
LC

CC

BC

AM

S

content

W

W

D

Functional client & server ports

LC: Lifecycle Controller
CC: Content Controller
BC: Binding Controller

ABC: Autonomic Behaviour Controller
AM: Autonomic Manager

W:Worker component

Task Farm BS Data Parallel BSTask Farm BS: receives tasks
to be computed via port S,

schedules them to one worker.
Once computed, results are

delivered to components
connected to port C.

Data Parallel BS: receives
data to be partitioned among

workers through port D and
tasks through port S. Results are

returned as results of calls
to port S.

Fig. 3. Behavioural skeletons currently implemented in GCM

defined in terms of the operations provided by the ABC controller bean. In
fact, the AM control loop is implemented by running an instance of the JBoss
business rule engine at regular intervals of time. At each time interval, all the
pre-condition-action rules supplied to the AM are evaluated and those that turn
out to be fireable (e.g. whose with the pre-condition holding true) are executed
ordered by priority (or salience according to JBoss jargon). The pre-conditions
are evaluated using values provided by the monitoring system implemented in
the ABC controller beans, actually. The period used to run the JBoss engine
is determined in such a way it is neither too fast (reacting when it was not
the case to react to small changes in the system, thus increasing overhead to
the autonomic management) nor too slow (poorly reacting to actual changes in
the system, thus decreasing efficiency of autonomic management).

Current AMs manage the contracts varying the parallelism degree of the BS,
i.e. the number of worker instances actually used to implement the BS. The
variation of the number of worker instances happens adding/removing a fixed
amount of workers. This fixed amount is a BS user configurable constant (Δw).
Rules supplied to the AM in the BS also consist in specific rules avoiding to
perform (probably) useless adaptations (e.g. avoiding to adapt BS parallelism
degree immediately after another adaptation took place) as well as rules default
actions basically only taking care of updating monitored values when no other,
more significant actions turn out to be fireable.

3 The ePVM Process Engine

The embeddable Process Virtual Machine (ePVM) is a research prototype pro-
cess engine [4] basically built upon two core concepts. Firstly, a process model
which is rooted in the theoretical framework of communicating extended finite

102 T. Weigold et al.

state machines (CEFSM). Secondly, whereas many efforts have been made to
create the ultimate process language, ePVM provides in contrast a low-level
run-time environment based on a JavaScript interpreter where higher-level do-
main specific process languages can be mapped to.

The idea of ePVM can be considered to follow a bottom-up or micro-kernel
type of approach for building process-driven applications, Business Process Man-
agement Systems (BPM), or workflow systems. This means that ePVM is a basic
framework for building such systems rather than a complete off-the-shelf appli-
cation that can run stand-alone. It consists of a library including a lightweight,
generic, and easily programmable process execution engine. Lightweight hereby
means that the engine is small in size and imposes minimum requirements on its
environment, namely the host application it is embedded in. ePVM has its own
process model resembling networks of communicating state machines running
in parallel, which makes it an inherently asynchronous, event-driven run-time
system. Every state machine is implemented by one JavaScript function, has an
associated thread executing it, has a state object which is passed every time the
function is invoked, and can communicate with other processes as well as entities
external to the process engine via some messaging system. An arbitrary number
of external entities, so-called host processes, can be attached to the engine to
become visible for ePVM processes. The ePVM programming model based on
the theory of CEFSM combines the simplicity of JavaScript with an easy and
powerful way of defining complex concurrent business processes. More details
can be found in [4].

4 Process-Driven Distributed Biometric Identification

In recent years biometric methods for verification and identification of people
have become very popular. Applications span from governmental projects like
border control or criminal identification to civil purposes such as e-commerce,
network access, or transport. Frequently, biometric verification is used to au-
thenticate people meaning that a 1:1 match operation of a claimed identity to
the one stored in a reference system is carried out. In an identification system,
however, the complexity is much higher. Here, a person’s identity is to be deter-
mined solely on biometric information, which requires matching the live scan of
his biometrics against all enrolled (known) identities. Such a 1:N match opera-
tion can be quite time-consuming making it unsuitable for real-time applications.
In order to tackle this challenge, a distributed biometric identification system
(BIS), which can work on a large user population of up to millions of individuals,
has been developed. It is based on fingerprint biometrics and allows real-time
identification within a few seconds period by taking advantage of the Grid, in
particular via GCM components.

4.1 Application Architecture

The BIS can be considered a process-driven application, as it is centrally driven
by the ePVM process engine. Fig. 4 outlines its high-level architectural design.

Autonomic Grid Components 103

Biometric Identification System (BIS)

Identities
DB

Application
GUI

BIS
services

DB
access

GCM
adapter ePVM process engine

Process definitions

Enrolment Identification

System
management

Admin

Host process

GCM
components

GCM
components

GRID infrastructure

Fig. 4. BIS high-level architecture

A number of ePVM process definitions describing the main control flow for
operations such as starting up the system or identifying a person are loaded
into the process engine. These processes co-operate with external entities such
as the GUI, the database (DB) of known identities, and the distributed GCM
component system via a number of host processes to implement the overall
functionality of the BIS.

4.2 Process-Engine/GCM Interfacing

The actual distributed fingerprint matching functionality is implemented via a
set of GCM components deployed within a Grid/Cloud infrastructure as indi-
cated in Fig. 4. Processes running within the process engine must be able to
create, deploy, configure and interact with these components. For this purpose,
a dedicated host process named GCM adapter (c.f. Fig. 4) has been developed,
which receives messages from ePVM process instances, turns these messages into
method invocations on GCM framework methods or GCM components, and gen-
erates appropriate reply messages returned to ePVM. The GCM adapter repre-
sents the main interface between ePVM and GCM. As ePVM process definitions
are implemented in JavaScript and the GCM framework is available as a Java
library, the GCM adapter essentially converts between JavaScript messages and
Java method invocations.

An alternative option would have been to export the GCM components as
Web services, as supported by the GCM implementation, and invoke them from

104 T. Weigold et al.

within the GCM adapter. However, this would have increased the number of
required type conversions going from Java Script over SOAP to Java and vice
versa. Also, the GCM framework only supports exporting GCM components as
Web services. Other framework services, for example, functionality for deploy-
ment and component creation, cannot be turned into Web services automatically.
Finally, the ePVM process engine does not necessarily require working on Web
Services level like, for instance, process engines based on the Business Process
Execution Language (BPEL). Consequently, we decided not to use Web services
as interfaces between the process engine and GCM.

The functionality provided by the GCM adapter includes:

– Activate a given GCM deployment descriptor to start the nodes available in
the Grid.

– Modify architecture description language (ADL) files describing the GCM
components used.

– Create GCM components within the Grid.
– Invoke methods on GCM components, for example, to configure the quality

of service (QoS) contract, distribute the DB of known identities, or submit
the biometrics of a person for identification.

The GCM adapter is triggered by ePVM process instances to implement the
overall application logic. As an example, the activity flow chart shown in Fig. 5
illustrates the control logic implemented within an ePVM processes as it is exe-
cuted during BIS initialization. For each of the activities a message is being sent
to a host adapter which implements the functionality. Some of the activities
execute in parallel, for instance, activity 1.1 to 1.3, some are sequential.

4.3 Using Autonomic GCM Components

The problem of biometric identification can be considered a search problem
where the compare function is a biometric matching algorithm, here fingerprint

Start

Stop

1.1
Start Nodes

1.2
Generate ADL

1.3
Connect DB

DB Valid? 1.4
Generate DB

2
Create GCM
Components

No

3
Submit QoS

Contract

4
Distribute

DB

Yes

Fig. 5. BIS initialization process flow

Autonomic Grid Components 105

matching. To distribute the problem within a Grid infrastructure, the DB of
known identities needs to be distributed such that each computing node in the
Grid receives a partition of the overall DB and can match a given identity against
this partition. The time spent in matching the given identity against the local
portion of the database is clearly proportional to the size of this local DB por-
tion. Therefore, considering that the distribution of the DB among the grid
nodes is performed once and for all, and considering negligible the time spent to
broadcast the fingerprint that has to be matched with those in the distributed
database, the ability to perform fingerprint matching in real time roughly de-
pends on the ability to distribute local portions of the database small enough
to allow real time matching of the broadcasted fingerprint. More precisely, the
time spent in matching a single fingerprint against the local database also de-
pends on the computing power and on the load of the machine used to perform
the matching. The machine power and the local database sizes are somehow
static properties. The load of the machine is instead a dynamic property. Thus,
in order to keep the matching time perceived by the application user within a
given range (i.e. satisfying a given service level agreement (SLA) or performance
contract), our BIS application should i) properly dimension the number of dis-
tributed resources used to host database portions and ii) dynamically adapt to
the varying load of the grid resources involved in such a way a user supplied per-
formance contract (such as match fingerprint in less than 30 secs) is ensured.
Both features are supported within the GCM Behavioural skeletons presented
in Sec. 2.1: if the user instantiates a Behavioural skeleton to implement the BIS
search process, and if he/she provides a contract stating the expected latency
of the fingerprint matching process, the AM of the behavioural skeleton will
start with a predefined number of workers (i.e. a predefined parallelism degree)
and then adapt this number to achieve the matching latency adding (removing)
workers from the BS composite component. In case of overload of some of the
resources used in the matching, the AM of the behavioural skeleton will also
manage to increase the number of resources recruited to the parallel matching,
in such a way the contract can be ensured again. In this case, the recruitment
of a new processing resource induces a physical redistribution of the database
among the resources. This redistribution is completely implemented/managed
by the behavioural skeleton AM.

In order to implement our BIS application, we used a data parallel (DP)
behavioural skeleton. Referring to Fig. 3 (right), the DP skeleton is a composite
component which includes an autonomic behaviour controller (ABC) and an
autonomic manager (AM). The AM periodically evaluates certain monitored
properties of the skeleton to ensure that a given QoS contract is satisfied. If
this is not the case, it triggers appropriate reconfiguration operations provided
by the ABC. To apply the DP skeleton for our application scenario, it must
be parameterized with a worker component and a QoS contract. The worker
component, here named IDMatcher, implements the actual fingerprint matching
functionality and the skeleton allocates one instance of this worker component

106 T. Weigold et al.

per node. The QoS contract consists of a set of rules interpreted by the JBoss
Drools rule engine.

For our BIS prototype we chose to implement a QoS contract requiring to
keep the partition size of the workers constant, independently of the size of the
database presented to the BS through port D. The contract is provided before
starting the computation through the non functional server port attached to
the BS AM. The AM, in this case, adds or removes workers from the BS in case
the partition size exceeds or is less than the value supplied by the user within
the contract provided through the non functional BS ports.

Before identification requests can be processed, the identity DB is distributed
across the worker components using port D. As a consequence, the DB is parti-
tioned on the inner W components. The identity DB holds information such as
name, address, and fingerprints of all enrolled (known) people.

Once the skeleton has been initialized, identification requests can be submitted
via the second port provided by the BS, port S, the so-called broadcast port.
Fingerprints of a person to be identified are broadcasted via this port to all
worker components and each worker matches them against its partition of the
DB. Results are returned synchronously via method return values.

If the AM triggers reconfiguration via the ABC, for example, to increase
the number of worker components, the AM collects all DB partitions from the
workers, modifies the number of workers, and finally redistributes the DB to the
workers. This way the DB is redistributed during each reconfiguration operation.

The submission of the contract through non functional interfaces, the DB
through BS port D, and the fingerprints to be matched through port S are
all interactions with the GCM BS triggered by ePVM processes via the GCM
adapter.

4.4 Deployment and Component Creation

When the BIS application is started, activation of the GCM deployment descrip-
tor is triggered by the process engine as indicated in Fig. 5, activity 1.1. The
GCM framework then defines virtual nodes, creates a mapping to real nodes,
and starts JVMs on all of them. The DP skeleton uses virtual nodes listed in the
descriptor for allocating worker components. Afterwards, when the initialization
process reaches activity 2, the GCM component system is created according to
the ADL files of the BS.

4.5 Application Monitoring

Monitoring is one of the core features of every process engine and it is an impor-
tant argument for using one when building an application. The ePVM engine
supports monitoring processes by registering monitor objects for one or more
process definitions. Furthermore, it can be specified which events shall be mon-
itored. Available are a number of standard events such as a process instance
being created, a message being processed, or a process becoming idle. Further-
more, custom events can be defined such that more fine-grained monitoring can

Autonomic Grid Components 107

be implemented, for example, multiple events can be trigged while a single mes-
sage is processed.

In the BIS application, a monitor object is used to track the progress of ePVM
process instances, for example, while the system initialization process is executed
(c.f. Fig. 5). The monitor object is triggered by the process engine whenever
activities start or finish and it updates the GUI to reflect the state of the system.
Furthermore, it is desired to monitor the GCM component system with the goal
to visualize AM actions and the number of workers used in the DP skeleton. A
system administator could observe this and, if required, trigger reconfiguration
or add resources manually. For monitoring the skeleton, functionality provided
by the GCM framework can be used. However, monitoring in GCM is based
on a pull model where information about components and their states can be
retrieved on request. On the contrary, the ePVM approach can be considered a
push model where a monitor is registered and receives events. To integrate GCM
monitoring with the event-driven paradigm applied in ePVM some adaptation is
necessary. A first solution is to create a dedicated ePVM process which regularly
retrieves information about the component system via the GCM API and creates
events for the monitor object. A second solution is to instrument the component
implementation to actively send events to an ePVM process. The first approach is
more generic with respect to distribution, as the GCM framework handles remote
method invocations required to query for component states automatically. The
second approach is more efficient, as communication only takes place if an event
to be monitored occurs. However, a component might not be able to easily
communicate with the process engine if it is running on a remote machine, since
the process engine itself is not a GCM component. In the BIS we used the first
approach to implement monitoring the number of workers, as the workers are
typically distributed. For monitoring AM actions, we use the second approach
exploiting the fact that in our deployments the AM is always co-located with
the process engine such that no remote communication is necessary.

In general, the requirement to monitor actions within the DP skeleton to some
extend is contradictory to the idea of autonomic components. On one hand the
goal of using the DP skeleton is to take advantage of its built-in functionality
without taking care of the implementation details. On the other hand, we still
want to be able to monitor certain internal details such as reconfiguration op-
erations and the number of workers. From the perspective of the process-driven
applications paradigm all important actions which shall be monitored should be
centrally controlled by the process-engine. However, in real-world applications a
trade-off between central process control and autonomy must be made.

4.6 Automatic Futures vs. Message Passing

When integrating process-engines and distributed computing frameworks, it
is very important to be aware of their communication and synchronization
paradigms. The GCM framework is based on Java RMI and implements the
concept of automatic futures [19]. This means that method invocations always
return immediately, whereas results which are not yet available are represented

108 T. Weigold et al.

by so-called future objects. Program execution is then blocked automatically
if a future object is being accessed as long as the value represented is not yet
available. The goal is to ease parallel programming by hiding synchronization
details within a meta object protocol implemented in GCM. The ePVM process
engine, however, uses message passing for communication and synchronization
between concurrent control flows. If these two paradigms are interweaved, as it
is the case in the BIS application, process flows can easily become distorted. For
example, if a process definition assigns two activities to be carried out sequen-
tially (c.f. activity 2 and 3 in Fig. 5), it must be ensured that no more future
objects resulting from the first activity exist before the second is triggered.

This issue becomes obvious when an identification process is triggered within
the BIS. In this case, an ePVM process sends a message to the GCM adapter
including fingerprints of a person to be identified. The GCM adapter forwards
this information to the component system by invoking the broadcast interface of
the DP skeleton (port S, Fig. 3). This interface is a so-called collective interface,
which turns one method invocation into N method invocations on all the bound
IDMatcher components to broadcast the identification request. The return value
is a list of result objects, one from each IDMatcher component. When the interface
is invoked, it immediately returns a list of future objects, which at the beginning
are all unavailable and then by-and-by become available as the IDMatcher com-
ponents return their results. It is important that the GCM adapter waits for the
futures to become available and generates messages to be returned to the ePVM
process instance accordingly. It must not report the identification as completed
before all futures are available. Effectively, the GCM adapter retracts automatic
synchronization in order to make the actual progress visible to the process engine,
which must to be informed whenever an IDMatcher component has searched its
part of the DB. Obviously, converting from one paradigm into the other must be
handled with care as the semantics of the process definitions can be broken due
to delayed synchronization within GCM.

4.7 Integrated Development

On one hand, the advanced features offered by both technologies, the process
engine and the GCM framework, significantly reduce the development effort re-
quired for the BIS. On the other hand, it requires handling a large number
of different development artefacts including plain Java code, JavaScript process
definitions, XML deployment descriptors and ADL definitions, and JBoss Drools
rule files. As the process engine does not mandate the use of high-level modelling
tools, developers can use the Java/JavaScript toolset of their choice. For GCM
development, the Grid IDE (GIDE) [20] is available, which consists of a set of
plugins to the famous Eclipse development environment. It also includes support
for graphical GCM component composition and ADL code generation. Conse-
quently, all artefacts can be developed within Eclipse with appropriate plugins
installed. This reduces the complexity to a manageable level, such that once the
knowledge about both technologies is available, integration work can be carried
out smoothly.

Autonomic Grid Components 109

5 Results, Experiences, and Lessons Learned

The primary result of this work is the fully functional prototype of the BIS
application, which acts as a use case demo for the process engine as well as for the
GCM framework. Additional results have been gained by critically evaluating the
application and experimenting with it. Firstly, it has been successfully deployed
on various hardware platforms ranging from one multicore PC to heterogeneous
sets of clusters as provided by the Grid5000 project [21]. Switching hardware
platforms did not require changing a single line of functional code, only the
infrastructure part of the XML deployment descriptor required modification.
The strict separation of concerns and the autonomic functionality implemented
within the GCM framework have turned out to be the main factors leading to this
flexibility. The former ensures that resources are never directly referenced in the
source code while the latter provides autonomic adaptation to the performance
properties of the hardware in use.

Secondly, functionality and autonomic behaviour of the application has been
verified using Grid5000. The BIS has been started using 50 workers (one per
node), a DB holding 50000 identities (approx. 400 MB), and a QoS contract man-
dating a partition size of 1000 identities/worker. At runtime, the contract has
been updated to 800 (± 10%) identities/worker. Thereupon, the AM has success-
fully detected 7 contract violations and each time reconfigured the DP skeleton
by adding one additional worker until a partition size of 877 identities/worker
was reached at 57 workers/nodes. During this experiment, every reconfiguration
operation took about 9 seconds in which the complete DB has been redistributed
(from the node hosting the whole database to the nodes hosting the workers of
the data parallel BS) by the ABC. When identification requests where issued
during reconfiguration, they where queued automatically by the skeleton and
processed as soon as reconfiguration was completed. For the given DB size, each
identification request required around 10 seconds to be processed. This means
that each reconfiguration operation roughly decreases the throughput of the BIS
by one identification for any given timeframe. Therefore, if the BIS is used in
a very dynamic environment requiring frequent reconfiguration, the number of
occurrences of reconfigurations may be sensibly reduced by adopting more ag-
gressive parallelism degree variation policies, in such a way the overall overhead
is reduced. Such more aggressive policies at the moment consist in varying the
constant Δw that defines the number of workers to be added/removed when
reconfiguring the parallelism degree of a BS. In the BS/GCM framework we
are currently investigating the possibility to use a kind of exponential backoff
increase/decrease protocol. All those cases, of course, rely on the possiblity to
effectively monitor the increase/decrease achieved in the BS performance as a
consequence of the parallelism degree adaptation.

Finally, evaluating the application’s source code, including the deployment
descriptor required to run on 50 nodes of Grid5000, unveiled the source code
breakdown illustrated in Fig. 6. The functional code mainly includes the host
processes (c.f. Fig. 4) providing DB access, the GUI functionality, and the in-
terfacing to the GCM components. Its absolute size is about 2500 lines of code,

110 T. Weigold et al.

Fig. 6. BIS source code breakdown

which is very small considering the the overall functionality provided by the
application. This is due to the fact that the GCM framework provides all the
functionality for distribution and autonomicity. Implementing this functional-
ity from scratch not using GCM would have been significantly more effort. In
particular, adding autonomic control to an application is virtually effortless if
a matching behavioural skeleton is available. Only the QoS contract must be
provided and a few non-functional interfaces used by the controller must be im-
plemented within the worker component. In case of the BIS application, only
about 200 lines of code where necessary for that. Furthermore, it is to be noted
that more than a quarter of the source code (27%) consists of code interpreted
at runtime. This code, including the deployment descriptor, the process defini-
tions, the QoS contract, and the GCM component definitions, contains the main
control logic and infrastructure definition of the application. As a result, the
application can be adapted significantly without recompilation - a very impor-
tant property required for operation in today’s dynamic business environments.
Hard-coding this part of the application would clearly decrese the applications
flexibilty as achieved through the combination of GCM and ePVM.

During application development, we have made a number of experiences with
regards to the integration of process technology and the GCM framework. The
interfacing between the two technologies went rather smoothly, since the ePVM
engine is available as a Java library and it does not dictate the use of Web
services. Also, the DP skeleton fits well to the given biometric identification
problem. However, application monitoring turned out to be challenging. One
must be aware that the idea behind components is hiding complexity and this
can be a problem if component internals need to be monitored. The GCM frame-
work supports querying the state of a component system, however, it does not

Autonomic Grid Components 111

support monitoring activities within components, for example, reconfiguration
within a BS. Solving this problem by instrumenting component implementations
(c.f. Sec. 4.5) requires comprehensive knowledge of the GCM framework. Fur-
thermore, the monitoring support of GCM follows a pull model while process
engines are mostly event driven. Joining the two paradigms in a sensible way
requires an extra effort and can have a performance impact. For example, reg-
ularly traversing component hierarchies to detect newly created components is
not very efficient.

Another lesson we have learned is that the two different synchronization
paradigms applied in GCM and ePVM can interfere if not handled with care.
The concept of automatic futures implemented in the GCM framework follows
the wait-by-necessity idea. This means that unavailable results are replaced by
future objects such that synchronization is delayed as long as possible. Therefore,
it must be carefully checked if results of activities within a process flow include
one or more future objects before the next activity of a sequence is triggered,
otherwise the process semantics can easily become distorted. In other words, if
a GCM component returns an object it does not necessarily mean that all the
related operations have completed.

Finally, we realized that working with the advanced features of both frame-
works, ePVM and GCM, requires working with a large number of different devel-
opment artefacts and acquiring related skills. The GIDE eases this to some ex-
tend and provides a jump start into GCM. Nevertheless, combining process tech-
nology with GCM allows producing extremely flexible and complex distributed
applications with minimum effort.

6 Conclusions

Process-driven application development is increasingly gaining attention in the
business environment. At the same time, software development frameworks for
the Grid/Cloud are raising interest in the course of the Cloud computing wave.
In this paper we have considered combining the two approaches to produce
a process-driven distributed biometric identification system. In discussing the
application we have made the following contributions:

– We provided a brief overview of the GCM framework, its support for auto-
nomic components and behavioural skeletons, and the ePVM process engine.

– We described the architectural design and implementation of the process-
driven biometric identification system utilizing the DP autonomic behavioural
skeleton available in GCM.

– We presented the results, experiences, and lessons learned while integrating
both technologies, the process engine and the GCM framework.

We believe that this use case application demonstrates that combining process
technology and autonomic Grid/Cloud components represents a powerful ap-
proach for developing flexible distributed applications with minimum effort. Ob-
viously, the application could have been developed without using GCM and

112 T. Weigold et al.

ePVM. However, the development effort would have been much higher and the
resulting application would have been less flexible due to the hard-coded appli-
cation logic and autonomic strategy.

References

1. zur Muehlen, M.: Process-driven management information systems - combining
data warehouses and workflow technology. In: Proc. of the 4th Intl. Conference on
Electronic Commerce Research (ICECR-4), Dallas, TX, USA, pp. 550–556 (2001)

2. Bukovics, B.: Pro WF: Windows Workflow in.NET 3.0. Apress (2007)

3. Faura, M.V., Baeyens, T.: The Process Virtual Machine (2007),
http://www.onjava.com/pub/a/onjava/2007/05/07/

the-process-virtual-machine.html

4. Weigold, T., Kramp, T., Buhler, P.: ePVM - an embeddable Process Virtual Ma-
chine. In: Proc. of the 31st Intl. Computer Software and Applications Conference
(COMPSAC), Beijing, China, pp. 557–564 (2007)

5. CoreGRID NoE deliverable series, Institute on Programming Model: Deliver-
able D.PM.04 – Basic Features of the Grid Component Model (assessed) (2007),
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

6. GridCOMP Project: Grid Programming with Components, An Advanced Compo-
nent Platform for an Effective Invisible Grid (2008), http://gridcomp.ercim.org

7. Weigold, T., Buhler, P., Thiyagalingam, J., Basukoski, A., Getov, V.: Advanced
grid programming with components: A biometric identification case study. In: Proc.
of the 32nd Intl. Computer Software and Applications Conference (COMPSAC),
Turku, Finland, pp. 401–408. IEEE, Los Alamitos (2008)

8. ObjectWeb Consortium: The Fractal Component Model, Technical Specification
(2003)

9. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker,
S., Smolinski, B.: Toward a common component architecture for high performance
scientific computing. In: Proc. of the 8th Intl. Symposium on High Performance
Distributed Computing, HPDC 1999 (1999)

10. CoreGRID NoE: Home page of the Institute on Programming model (2009 - last
accessed), http://www.coregrid.net/mambo/content/blogcategory/13/292/

11. CoreGRID NoE: Home page (2009 - last accessed), http://www.coregrid.net

12. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30, 389–406 (2004)

13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36, 41–50 (2003)

14. Danelutto, M.: QoS in parallel programming through application managers. In:
Proc. of Intl. Euromicro PDP: Parallel Distributed and network-based Processing,
Lugano, Switzerland, pp. 282–289. IEEE, Los Alamitos (2005)

15. Aldinucci, M., Danelutto, M.: Algorithmic skeletons meeting grids. Parallel Com-
puting 32, 449–462 (2006)

16. Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza,
D., Tonellotto, N.: Behavioural skeletons for component autonomic management
on grids. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, Heraklion, Crete,
Greece (2007)

http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://gridcomp.ercim.org
http://www.coregrid.net/mambo/content/blogcategory/13/292/
http://www.coregrid.net

Autonomic Grid Components 113

17. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Towards hierarchical management of
autonomic components: a case study. In: El Baz, D., Tom Gross, F.S. (eds.) Proc.
of Intl. Euromicro PDP 2009: Parallel Distributed and network-based Processing,
Weimar, Germany, pp. 3–10. IEEE, Los Alamitos (2009)

18. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In: Proc.
of Intl. Parallel & Distributed Processing Symposium (IPDPS), Rome, Italy, pp.
1–12. IEEE, Los Alamitos (2009)

19. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer, Heidelberg
(2005)

20. Basukoski, A., Getov, V., Thiyagalingam, J., Isaiadis, S.: Component-based devel-
opment environment for grid systems: Design and implementation. In: Danelutto,
M., Frangopoulou, P., Getov, V. (eds.) Making Grids Work. CoreGRID, pp. 119–
128. Springer, Heidelberg (2008)

21. The Grid5000 Project: An infrastructure distributed in 9 sites around France, for
research in large-scale parallel and distributed systems (2008),
http://www.grid5000.fr

http://www.grid5000.fr

	Integrating Autonomic Grid Components and Process-Driven Business Applications
	Introduction
	The GCM Framework
	Behavioural Skeletons

	The ePVM Process Engine
	Process-Driven Distributed Biometric Identification
	Application Architecture
	Process-Engine/GCM Interfacing
	Using Autonomic GCM Components
	Deployment and Component Creation
	Application Monitoring
	Automatic Futures vs. Message Passing
	Integrated Development

	Results, Experiences, and Lessons Learned
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

