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Abstract. Context-awareness is viewed as one of the most important aspects in 
the emerging pervasive computing paradigm. Mobile context-aware applica-
tions are required to sense and react to changing environment conditions. Such 
applications, usually, need to recognize, classify and predict context in order to 
act efficiently, beforehand, for the benefit of the user. In this paper, we propose 
a mobility prediction model, which deals with context representation and loca-
tion prediction of moving users. Machine Learning (ML) techniques are used 
for trajectory classification. Spatial and temporal on-line clustering is adopted. 
We rely on Adaptive Resonance Theory (ART) for location prediction. Loca-
tion prediction is treated as a context classification problem. We introduce a 
novel classifier that applies a Hausdorff-like distance over the extracted trajec-
tories handling location prediction. Since our approach is time-sensitive, the 
Hausdorff distance is considered more advantageous than a simple Euclidean 
norm. A learning method is presented and evaluated. We compare ART with 
Offline kMeans and Online kMeans algorithms. Our findings are very promis-
ing for the use of the proposed model in mobile context aware applications. 

Keywords: Context-awareness, location prediction, Machine Learning, online 
clustering, classification, Adaptive Resonance Theory. 

1   Introduction 

In order to render mobile context-aware applications intelligent enough to support users 
everywhere / anytime and materialize the so-called ambient intelligence, information on 
the present context of the user has to be captured and processed accordingly. A well-
known definition of context is the following: “context is any information that can be 
used to characterize the situation of an entity. An entity is a person, place or object that 
is considered relevant to the integration between a user and an application, including 
the user and the application themselves” [1]. Context refers to the current values of 
specific ingredients that represent the activity of an entity / situation and environmental 
state (e.g., attendance of a meeting, location, temperature).  

One of the more intuitive capabilities of the mobile context-aware applications is 
their proactivity. Predicting user actions and contextual ingredients enables a new 
class of applications to be developed along with the improvement of existing ones. 
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One very important ingredient is location. Estimating and predicting the future loca-
tion of a mobile user enables the development of innovative, location-based ser-
vices/applications [2], [12]. For instance, location prediction can be used to improve 
resource reservation in wireless networks and facilitate the provision of location-
based services by preparing and feeding them with the appropriate information well in 
advance. The accurate determination of the context of users and devices is the basis 
for context-aware applications. In order to adapt to changing demands, such applica-
tions need to reason based on basic context ingredients (e.g., time, location) to deter-
mine knowledge of higher-level situation.  

Prediction of context is quite similar to information classification / prediction (off-
line and online). In this paper, we adopt ML techniques for predicting location 
through an adaptive model. ML is the study of algorithms that improve automatically 
through experience. ML provides algorithms for learning a system to cluster pre-
existing knowledge, classify observations, predict unknown situations based on a his-
tory of patterns and adapt to situation changes. Therefore, ML can provide solutions 
that are suitable for the location prediction problem. Context-aware applications have 
a set of pivotal requirements (e.g., flexibility and adaptation), which would strongly 
benefit if the learning and prediction process could be performed in real time. We 
argue that the most appropriate solutions for location prediction are offline and online 
clustering and classification. Offline clustering is performed through the Offline 
kMeans algorithm while online clustering is accomplished through the Online kMeans 
and Adaptive Resonance Theory (ART). Offline learners typically perform complete 
model building, which can be very costly, if the amount of samples rises. Online 
learning algorithms are able to detect changes and adapt / update only parts of the 
model thus providing for fast adaptation of the model. Both forms of algorithms ex-
tract a subset of patterns / clusters (i.e., a knowledge base) from an initial dataset (i.e., 
a database of user itineraries). Moreover, online learning is more suited for the task of 
classification / prediction of the user mobility behavior as in the real life user move-
ment data often needs to be processed in an online manner, each time after a new por-
tion of the data arrives. This is caused by the fact that such data is organized in the 
form of a data stream (e.g., a sequence of time-stamped visited locations) rather than a 
static data repository, reflecting the natural flow of data. Classification involves the 
matching of an unseen pattern with existing clusters in the knowledge base. We rely 
on a Hausdorff-like distance [5] for matching unseen itineraries to clusters (such met-
ric applies to convex patterns and is considered ideal for user itineraries). Finally, lo-
cation prediction boils down to location classification w.r.t. Hausdorff-like distance.  

We assess two training methods for training an algorithm: (i) the “nearly” zero-
knowledge method in which an algorithm is incrementally trained starting with a little 
knowledge on the user mobility behavior and the (ii) supervised method in which sets of 
known itineraries are fed to the classifier. Moreover, we assess a learning method for the 
online algorithms regarding the success of location prediction, in which a misclassified 
instance is introduced into the knowledge base updating appropriately the model. 

We evaluate the performance of our models against the movement of mobile users. 
Our objective is to predict the users’ future location (their next move) through an on-line 
adaptive classifier. We establish some important metrics for the performance assessment 
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process taking into account low system-requirements (storage capacity) and effort for 
model building (processing power). Specifically, besides the prediction accuracy, i.e., 
the precision of location predictions, we are also interested in the size of the derived 
knowledge base; that is the produced clusters out of the volume of the training patterns, 
and the capability of the classifier to adapt the derived model to unseen patterns. Surely, 
we need to keep storage capacity as low as possible while maintaining good prediction 
accuracy. Lastly, our objective is to assess the adaptivity of the proposed schemes, i.e., 
the capability of the predictor to detect and update appropriately the specific part of the 
trained model. The classifier (through the location prediction process) should rapidly 
detect changes in the behavior of the mobile user and adapt accordingly through model 
updates, however, often at the expense of classification accuracy (note that an ambient 
environment implies high dynamicity). We show that increased adaptivity leads to high 
accuracy and dependability.  

The rest of the paper is structured as follows. In Section 2 we present the consid-
ered ML models by introducing the Offline kMeans, Online kMeans and ART algo-
rithms. In Section 3 we elaborate on the proposed model with context representation. 
Section 4 presents the proposed mobility prediction model based on the ART algo-
rithm. The performance assessment of the considered model is presented in Section 5, 
where different versions of that model are evaluated.  Moreover, in Section 6, we 
compare the ART models with the Offline / Online kMeans algorithms. Prior work is 
discussed in Section 7 and we conclude the paper in Section 8. 

2   Machine Learning Models 

In this section we briefly discuss the clustering algorithms used throughout the paper. 
Specifically, we distinguish between offline and online clustering and elaborate on the 
Offline/Online kMeans and ART.  

2.1   Offline kMeans 

In Offline kMeans [3] we assume that there are k > 1 initial clusters (groups) of data. 
The objective of this algorithm is to minimize the reconstruction error, which is the 
total Euclidean distance between the instances (patterns), ui, and their representation, 
i.e., the cluster centers (clusters), ci. We define the reconstruction error as follows: 
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U = {ut} is the total set of patterns and C = {ci}, i = 1,…, k is the set of clusters. bi,t is 
1 if ci is the closest center to ut in Euclidean distance. For each incoming ut each ci is 
updated as follows: 
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Since the algorithm operates in offline mode, the initial clusters can be set during the 
training phase and cannot be changed (increased or relocated) during the testing 
phase.  

2.2   Online kMeans 

In Online kMeans [3] we assume that there are k > 1 initial clusters that split the data. 
Such algorithm processes unseen patterns one by one and performs small updates in 
the position of the appropriate cluster (ci) at each step. The algorithm does not require 
a training phase. The update for each new (unseen) pattern ut is the following: 

( )ittiii b cucc −⋅⋅+= ,η  

This update moves the closest cluster (for which bi,t = 1) toward the input pattern ut 
by a factor of η. The other clusters (found at bigger distances from the considered 
pattern) are not updated. The semantics of bi,t, η and (ut – ci) are:  

 bi,t ∈ {0, 1} denotes which cluster is being modified, 
 η ∈ [0, 1] denotes how much is the cluster shifted toward the new pattern, and, 
 (ut – ci) denotes the distance to be learned.  

Since the algorithm is online, the initial clusters should be known beforehand1 and 
can only be relocated during the testing phase. The number of clusters remains con-
stant. Therefore, the algorithm exhibits limited flexibility.  

2.3   Adaptive Resonance Theory  

The ART approach [4] is an online learning scheme in which the set of patterns U is 
not available during training. Instead patterns are received one by one and the model 
is updated progressively. The term competitive learning is used for ART denoting that 
the (local) clusters compete among themselves to assume the “responsibility” for rep-
resenting an unseen pattern. The model is also called winner-takes-all because one 
cluster “wins the competition” and gets updated, and the others are not updated at all.  

The ART approach is incremental, meaning that one starts with one cluster and adds 
a new one, if needed. Given an input ut, the distance bt is calculated for all clusters ci, i = 
1, .., k, and the closest (e.g., minimum Euclidean distance) to ut is updated. Specifically, 
if the minimum distance bt is smaller than a certain threshold value, named the vigi-
lance, ρ, the update is performed as in Online kMeans (see Eq.(3)). Otherwise, a new 
center ck+1 representing the corresponding input ut is added in the model (see Eq.(3)). It 
is worth noting that the vigilance threshold refers to the criterion of considering two 
patterns equivalent or not during the learning phase of a classifier. As it will be shown, 
                                                           
1  One possible approach to determine the initial k clusters is to select the first k distinct in-

stances of the input sample U. 
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the value of vigilance is considered essential in obtaining high values of corrected clas-
sified patterns. The following equations are adopted in each update step of ART: 

( )⎩
⎨
⎧

−+=
>←

−=−=

+

=

otherwise

bif

b

itii

ttk

tl

k

l
tit

cucc

uc

ucuc

η
ρ 

||||min||||

1

1  
(3)

3   Context Representation 

Several approaches have been proposed in order to represent the movement history 
(or history) of a mobile user [15]. We adopt a spatiotemporal history model in which 
the movement history is represented as the sequence of 3-D points (3DPs) visited by 
the moving user, i.e., time-stamped trajectory points in a 2D surface. The spatial at-
tributes in that model denote latitude and longitude. 

Let e = (x, y, t) be a 3DP. The user trajectory u consists of several time-ordered 
3DPs, u = [ei] = [e1, …, eN], i = 1, …, N and is stored in the system’s database. It 
holds that t(e1) < t(e2) < … < t(eN), i.e., time-stamped coordinates. The x and y dimen-
sions denote the latitude and the longitude while t denotes the time dimension (and t(⋅) 
returns the time coordinate of e). Time assumes values between 00:00 and 23:59. To 
avoid state information explosion, trajectories contain time-stamped points sampled at 
specific time instances. Specifically, we sample the movement of each user at 1.66⋅10-

3 Hertz (i.e., once every 10 minutes). Sampling at very high rates (e.g., in the order of 
a Hertz) is meaningless, as the derived points will be highly correlated. In our model, 
u is a finite sequence of N 3DPs, i.e., u is a 3·N dimension vector. We have adopted a 
value of N = 6 for our experiments meaning that we estimate the future position of a 
mobile terminal from a movement history of 50 minutes (i.e., 5 samples). Specifically, 
we aim to query the system with a N-1 3DP sequence so that our classifier / predictor 
returns a 3DP, which is the predicted location of the mobile terminal. 

A cluster trajectory c consists of a finite number of 3DPs, c = [ei], i = 1, …, N 
stored in the knowledge base. Note that a cluster trajectory c and a user trajectory u 
are vectors of the same length N. This is because c, which is created from ART based 
on unseen user trajectories, is a representative itinerary of the user movements. In 
addition, the query trajectory q consists of a number of 3DPs, q = [ej], j = 1, …, N-1. 
It is worth noting that q is a sequence of N-1 3DPs. Given a q with a N-1 history of 
3DPs we predict the eN of the closest c as the next user movement. 

4   Mobility Prediction Model 

From the ML perspective the discussed location prediction problem refers to an m+l 
model [13]. In m+l models we have m steps of user movement history and we want to 
predict the future user movement after l steps (the steps have time-stamped coordi-
nates). In our case, m = N-1, i.e., the query trajectory q, while l = 1, i.e., the predicted 
eN. We develop a new spatiotemporal classifier (C) which given q can predict eN. 
Specifically, q and c are trajectories of different length thus we use a Hausdorff-like 
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measure for calculating the ||q - c|| distance. Given query q, the proposed classifier C 
attempts to find the nearest cluster c in the knowledge base and, then, take eN as the 
predicted 3DP. For evaluating C, we compute the Euclidean distance between the 
predicted 3DP and the actual 3DP (i.e., the real user movement). If such distance is 
greater than a preset error threshold θ then prediction is not successful. After predict-
ing the future location of a mobile terminal, the C classifier receives feedback from 
the environment considering whether the prediction was successful or not, and reor-
ganize the knowledge base accordingly [14]. In our case, the feedback is the actual 
3DP observed in the terminal’s movement. Thus the C classifier reacts with the envi-
ronment and learns new patterns once an unsuccessful prediction takes place.   

Specifically,  

 in case of an unsuccessful prediction, the C appends the actual 3DP to q and up-
dates (i.e., learns) such extended sequence in the model considering as new 
knowledge, i.e., an unseen user movement behavior.  

 in the case of a successful prediction, C dos not need to learn. A successful pre-
diction refers to a well-established prediction model for handling unseen user 
trajectories.   

The heart of the proposed C classifier is the ART algorithm. ART clusters unseen user 
trajectories to existing cluster trajectories or creating new cluster trajectories depend-
ing on the vigilance value. ART is taking the u1 pattern from the incoming set U of 
patterns and stores it as the c1 cluster in the knowledge base. For the t-th unseen user 
trajectory the following procedure is followed (see Table 1): The algorithm computes 
the Euclidean distance bt between ut and the closest ci. If bt is smaller than the vigi-
lance ρ then ci is updated from ut by the η factor. Otherwise, a new cluster cj ≡ ut is 
inserted into the knowledge base. The ART algorithm is presented in Table 1. 

Table 1. The ART Algorithm for the C classifier 

1. j ← 1 
2. cj ← uj 
3. For (ut ∈ U) Do 
4. bt = ||cj – ut|| = minl=1,…,j||cl – ut|| 
5.     If (bt  > ρ) Then  /*expand knowledge*/ 
 
6. 

        j ← j + 1 
       cj ← ut 

7.     Else 
8. cj ← cj + η(ut – cj)  /*update model locally*/ 
9.     End If 
10. End for 

 
Let T, P be subsets of U for which it holds that T ⊆ P ⊆ U. The T set of patterns is 

used for training the C classifier, that is, C develops a knowledge base corresponding 
to the supervised training method. The P set is used for performing on-line predictions. 
We introduce the C-T classifier version, which is the C classifier trained with the  
T set. In addition, once the T set is null then the C classifier is not trained beforehand 
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corresponding to the zero-knowledge training method and performs on-line prediction 
with the set P. In this case, we get the C-nT classifier corresponding to the C classifier, 
when the training phase is foreseen.   

Moreover, in order for the C classifier to achieve prediction, an approximate Haus-
dorff-like metric [5] is adopted to estimate the distance between q and c. Specifically, 
the adopted formula calculates the point-to-vector distance between ej ∈ q and c, 
δ’(ej, c), as follows:  

( ) )|()(|min||||,'
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where || . || is the Euclidean norm for fi ∈ c and ej. The δ’(ej, c) value indicates the 
minimum distance between ej and  fi w.r.t. the time stamped information of the user 
itinerary, that is the Euclidean distance of the closest 3DPs in time. Hence, the overall 
distance between the N-1 in length q and the N in length c is calculated as 
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Figure 1 depicts the process of predicting the next user movement considering the 
proposed C classifier. Specifically, once a query trajectory q arrives, then C attempts 
to classify q into a known ci in the knowledge base w.r.t. Hausdorff metric. The C 
classifier returns the predicted eN ∈ ci of the closest ci to q. Once such result refers to 
an unsuccessful prediction w.r.t. a preset error threshold θ then the C-T (or the C-nT) 
extend the q vector with the actual 3DP and insert q into the knowledge base for fur-
ther learning according to the algorithm in Table 1 (feedback).   

qruntime
(Ν-1 steps)

Classification

q ← q + actual 3DP

Prediction eN (threshold θ)

«failure»

return eN

«success»

C
C-T or C-nT

Data Base (U)

Knowledge Base (C)

ART

feedback  

Fig. 1. The proposed adaptive classifier for location prediction 
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5   Prediction Evaluation 

We evaluated our adaptive model in order to assess its performance. In our experi-
ments, the overall user movement space has a surface of 540 km2. Such space derives 
from real GPS trace captured in Denmark [6]. The GPS trace was fed into our model 
and the performance of the C system w.r.t. predefined metrics was monitored. Table 2 
indicates the parameters used in our experiments. 

Table 2. Experimental Parameters 

Parameter Value Comment 
Learning rate (n)  0.5 In case of a new pattern ut, the 

closest cluster ci is moved  
toward ut by half the spatial 
and temporal distance. 

Spatial coefficient of 
vigilance (ρs) 

100 m Two 2D points are considered 
different if their spatial distance 
exceeds 100 meters. 

Temporal coefficient 
of vigilance (ρt) 

10 min Two time-stamps are  
considered different if their 
temporal distance exceeds 10 
minutes.  

Precision threshold / 
location accuracy (θ) 

10 m The predicted location falls 
within a circle of radius 10 
meters from the actual  
location.2 

 
The GPS traces including 1200 patterns were preprocessed and we produced two 

training files and two test files as depicted in Figure 2. The first training file, TrainA, is 
produced from the first half of the GPS trace records. The second training file, TrainB, 
consists of a single trace record. The first test file, TestA, is produced from the entire set 
of trace records, including -in ascending order- the first half of the GPS traces and the 
other half of unseen traces. Finally the second test file, TestB, is produced from the en-
tire set of the GPS trace records, including -in ascending order- the second half of un-
seen traces and the first half of the GPS traces. During the generation of the training/test 
files, white noise was artificially induced into the trace records.  

u1 u600 u1200

GPS Pattern Instances (i.e., the U set)

TrainA = {u1, …, u600}

TrainB = {u1}

TestA = {u1, …, u600, u601, …, u1200}

TestB = {u601, …, u1200, u1, …, u600}
 

Fig. 2. The generated GPS trace files for experimentation 

                                                           
2  Such accuracy level is considered appropriate for the kind of applications where location 

prediction can be applied (see the Introduction section or [12]). 
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We have to quantitatively and qualitatively evaluate the proposed model. For that 
reason, we introduce the following quantitative and qualitative parameters: (a) the 
precision achieved by the prediction scheme –the higher the precision the more accu-
rate the decisions on the future user location- (b) the size of the underlying knowledge 
base –we should adopt solutions with the lowest possible knowledge base size (such 
solutions are far more efficient and feasible in terms of implementation) and (c) the 
capability of the model to rapidly react to changes in the movement pattern of the 
user/mobile terminal and re-adapt. We define precision, p, as the fraction of the cor-
rectly predicted locations, p+, against the total number of predictions made by the C 
system, ptotal, that is,  

totalp

p
p +=  

In the following sub-sections, we evaluate the diverse versions of the C classifier 
w.r.t. training methods by examining the classifier convergence (speed of learning 
and adaptation) and the derived precision on prediction future locations.  

5.1   Convergence of C-T and C-nT 

The C classifier converges once the knowledge base does not expand with unseen 
patterns, i.e., the set U does not evolve. In Figure 3, we plot the number of the clus-
ters, |U|, that are generated from the C-T/-nT models during the testing phase. The 
horizontal axis denotes the incoming (time-ordered) GPS patterns. The point (.) 
marked line depicts the behavior of the C-T-1 model trained with TrainA and tested 
with TestA. In the training phase, the first 600 patterns of TrainA have gradually gen-
erated 70 clusters in U. In the testing phase, the first 600 patterns are known to the 
classifier so there is no new cluster creation. On the other hand, in the rest 600 unseen 
patterns, the number of clusters scales up to 110 indicating that the ART algorithm 
learns such new patterns.  
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Fig. 3. Convergence of C-T/-nT 
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The circle (o) marked line depicts the C-T-2 model, which is trained with TrainA 
and tested with TestB. Since the train file is the same as in the C-T-1 model, the first 
generated clusters are the same in number (|U| = 70). In the testing phase, we observe 
a significant difference. ART does not know the second 600 unseen patterns, thus, it 
learns new patterns up to 110 clusters. In the next 600 known patters, C-T-2 does not 
need to learn additional clusters thus it settles at 110 clusters. 

We now examine the behavior of the C-nT model corresponding to the zero-
knowledge training method. The asterisk (*) marked line depicts the training phase 
(with TrainB) followed by the testing phase (with TestA) of C-nT. In this case, we 
have an incremental ART that does not need to be trained. For technical consistency 
reasons, it only requires a single pattern, which is the unique cluster in the knowledge 
base at the beginning. In the testing phase, for the first 600 unseen patterns of TestA 
we observe a progressive cluster creation (up to 45 clusters). For the next 600 unseen 
patterns, we also observe a gradual cluster creation (up to 85 clusters) followed by 
convergence. Comparing the C-T-1/-2 and C-nT models, the latter one achieves the 
minimum number of clusters (22.72% less storage cost). This is due to the fact that C-
nT starts learning only from unsuccessful predictions in an incremental way by adapt-
ing pre-existing knowledge base to new instances. Nevertheless, we also have to take 
into account the prediction accuracy in order to reach safe conclusions about the effi-
ciency and effectiveness of the proposed models. 

5.2   Precision of C-T and C-nT 

In Figure 4 we examine the precision achieved by the algorithms. The vertical axis de-
picts the precision value p achieved during the testing phase. The point (.) marked line 
depicts the precision of the C-T-1 model trained with TrainA and tested with TestA. 
During the test phase, for the first 600 known patterns C-T-1 achieves precision value 
ranging from 97% to 100%. In the next 600 unseen patterns, we observe that for the first 
instances the precision drops smoothly to 95% and as C-T-1 learns, i.e., learn new clus-
ters and optimize the old ones, the precision converges to 96%. 
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Fig. 4. Precision of C-T/-nT 
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The circle (o) marked line depicts the precision behavior for the C-T-2 model 
tested with TestB and trained with TrainA. With the first 600 totally unseen patterns 
during the test phase, C-T-2 achieves precision from 26% to 96%. This indicates that 
the model is still learning during the test phase increasing the precision value. In the 
next 600 known patterns, the model has nothing to learn and the precision value con-
verges to 96%. 

The asterisk (*) marked line depicts the precision behavior of the C-nT model 
tested with TestA and trained with TrainB. In this case, C-nT is trained with only one 
pattern instance, i.e., the algorithm is fully incremental, thus, all the instances are 
treated as unseen. In the test phase, for the first 600 patterns, the model achieves pre-
cision, which ranges from 25% to 91% In the next 600 patterns, we can notice that for 
the first instances the precision drops smoothly to 88% and as the model learns, preci-
sion gradually converges to 93%. 

Evidently, the adoption of the training method, i.e., the C-T-1/-2 models, yields 
better precision. However, if we correlate our findings with the results shown in  
Figure 3, we infer that a small improvement in precision has an obvious storage cost. 
Specifically, we need to store 110 clusters, in the case of C-T, compared to 85 clusters 
in the case of C-nT (22.72% less storage cost). Furthermore, the user movement pat-
terns can be changed repeatedly over time. Hence, by adopting the training method, 
one has to regularly train and rebuild the model. If the mobile context-aware applica-
tion aims at maximizing the supported quality of service w.r.t. precision, while keep-
ing the storage cost stable, the C-nT model should be adopted. 

6   Comparison with Other Models 

We compare the C-nT model with other known models that can be used for location 
prediction. Such models implement the Offline kMeans and Online kMeans algo-
rithms. Such models require a predefined number of k > 1 initial clusters for con-
structing the corresponding knowledge base. We should stress here that, the greater 
the k the greater the precision value achieved by Offline/Online kMeans. In our case, 
we could set k = 110, which is the convergence cluster-count for the C models  
(Section 5). For C-nT, we use TrainB for the training and TestA for the testing phase 
(such model adopts the zero-knowledge training method). Moreover, for the Off-
line/Online kMeans models we use TrainA for the training and TestA for the testing 
phase because both models require k > 1 initial clusters.  

Figure 5 depicts the precision achieved by the C-nT (the point (.) marked line), Off-
line kMeans (the asterisk (*) marked line) and Online kMeans (the circle (o) marked 
line) models. The horizontal axis represents the ordered instances and the vertical axis 
represents the achieved precision. We can observe in the first 600 patterns C-nT 
achieves precision levels ranging from 25% to 91% indicating adaptation to new 
knowledge. This is attributed to the learning mechanism (C-nT recognizes and learns 
new user movements). In the next 600 patterns we notice that for the first instances, the 
precision drops smoothly to 88% and as the knowledge base adapts to new movements 
and optimizes the existing ones, precision converges to 93%. 
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Fig. 5. Comparison of C-nT with the Offline/Online kMeans models 

In the case of Offline kMeans, we observe that for the first 600 patterns, it achieves 
precision levels ranging from 96% to 98% once the initial clusters are set to k = 110. 
In the next 600 patterns we notice that the precision drops sharply and converges to 
57% as the knowledge base is not updated by unseen user movements. By adopting 
Online kMeans we observe that for the testing phase (the first 600 patterns) it achieves 
precision levels ranging from 94% to 97% given the train file TrainA. In the next 600 
patterns we notice that for the first instances the precision drops rather smoothly to 
86% and, as the knowledge base is incrementally adapting to new patterns, the preci-
sion value converges to 65%. Evidently, by comparing such three models, the most 
suitable model for location prediction is the C-nT since (i) it achieves greater precision 
through model adaptation and (ii) requires a smaller size of the underlying knowledge 
base (i.e., less clusters) than the Offline/Online kMeans models. 
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Fig. 6. The behavior of the γ parameter vs. temporal and spatial coefficients of the vigilance 
threshold 
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Up to this point we have concluded that the C-nT model achieves good precision 
with limited memory requirements, which are very important parameters for mobile 
context-aware systems. However, we need to perform some tests with C-nT in order 
to determine the best value for the spatiotemporal parameter vigilance ρ. In other 
words, we aim to determine the best values for both spatial ρs and temporal ρt vigi-
lance coefficients in order to obtain the highest precision with low memory require-
ments. We introduce the weighted sum γ as follows:  

γ = w ⋅ p + (1 - w) ⋅ (1 – a) 

where a is the proportion of the generated clusters by the classifier (i.e., the size of the 
knowledge base in clusters) out of the total movement patterns (i.e., the size of the 
database in patterns), that is: a = |C|/|U|; |C| is the cardinality of the set C. The weight 
value w ∈ [0, 1] indicates the importance of precision and memory requirements; a 
value of w = 0.5 assigns equal importance to a and p. In our assessment, we set w = 
0.7. We require that a assumes low values minimizing the storage cost of the classi-
fier. A low value of a indicates that the applied classifier appropriately adopts and 
learns the user movements without retaining redundant information. The value of γ 
indicates which values of ρs and ρt maximize the precision while, on the same time, 
minimize the memory requirements. Hence, our aim is to achieve a high value of γ 
indicating an adaptive classifier with high value of precision along with low storage 
cost. As illustrated in Figure 6, we obtain a global maximum value for γ once ρs = 100m 
and ρt = 10min (which are the setting values during the experiments – see Table 2).  

7   Prior Work 

Previous work in the area of mobility prediction includes the model in [7], which uses 
Naïve Bayes classification over the user movement history. Such model does not deal 
with fully / semi- random mobility patterns and assumes a normal density distribution 
for the underlying data. However, such assumptions are not adopted in our model as 
long as mobility patterns refer to real human traces with unknown distribution. More-
over, the learning automaton in [8] follows a linear reward-penalty reinforcement 
learning method for location prediction. However, such model does not provide satis-
factory prediction accuracy, as reported in [8]. The authors in [9] apply evidential 
reasoning in mobility prediction when knowledge on the mobility patterns is not 
available (i.e., similarly to this paper). However, such model assumes large computa-
tional complexity (due to the adopted Dempster-Schafer algorithm) once the count of 
possible user locations  increases and requires detailed user information (e.g., daily 
profile, preferences, favorite meeting places). Other methods for predicting trajectory 
have also been proposed in the literature [10] but these have generally been limited in 
scope since they consider rectilinear movement patterns only (e.g., highways) and not 
unknown patterns. A closely related work to ours has been reported in [11], where a 
GPS system is used to collect location information. The proposed system then  
automatically clusters GPS data taken into meaningful locations at multiple scales. 
These locations are then incorporated into a similar Markov model to predict the 
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user’s future location. The authors in [16] adopt a data mining approach (i.e., rule extrac-
tion) for predicting user locations in mobile environments. This approach achieves predic-
tion accuracy lower than ours (i.e., in the order of 80% for deterministic movement). In 
[17], the authors adopt a clustering method for the location prediction problem. Prediction 
accuracy is still low (in the order of 66% for deterministic movement). The authors in [18] 
introduce a framework where for each user an individual function is computed in order to 
capture its movement. This approach achieves prediction accuracy lower than ours (i.e., in 
the order of 70% for deterministic movement). In [19], the authors apply movement rules 
in mobility prediction given the user’s past movement patterns.  Prediction accuracy is 
still low (i.e., in the order of 65% for deterministic movement). The authors in [20] intro-
duce a prediction model that uses grey theory (i.e., a theory used to study uncertainty). 
This approach achieves prediction accuracy lower than ours (i.e., in the order of 82% for 
deterministic movement).  

8   Conclusions 

We presented how ML techniques can be applied to the engineering of mobile con-
text-aware applications for location prediction. Specifically, we use ART (a special 
Neural Network Local Model) and introduce a learning method. Furthermore, we deal 
with two training methods for each learning method: in the supervised method the 
model uses training data in order to make classification and in the zero-knowledge 
method the model incrementally learns from unsuccessful predictions. We evaluated 
our models with different spatial and temporal parameters. We examine the knowl-
edge bases storage cost (i.e., emerged clusters) and the precision measures (prediction 
accuracy). Our findings indicate that the C-nT model suits better to context-aware 
systems. The advantage of C-nT model is that (1) it does not require pre-existing 
knowledge in the user movement behavior in order to predict future movements, (2) it 
adapts its on-line knowledge base to unseen patterns and (3) it does not consumes 
much memory to store the emerged clusters. For this reason, C-nT is quite useful in 
context-aware applications where no prior knowledge about the user context is avail-
able. Furthermore, through experiments, we decide on which vigilance value achieves 
the appropriate precision w.r.t. memory limitations and prediction error. Finally, in 
the Neural Networks Local Models literature there are other models (e.g., Self-
Organizing Maps) that we have not examined in this paper. We intent to implement 
and evaluate them with C-nT by means of knowledge base requirements, precision of 
the location prediction and adaptation.  
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