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Abstract. Pervasive Grid computing platforms are composed of a vari-
ety of fixed and mobile nodes, interconnected through multiple wireless
and wired network technologies. Pervasive Grid Applications must adapt
themselves to the state of their surrounding environment (context), which
includes the state of the resources on which they are executed. By fo-
cusing on a specific instance of emergency management application, we
show how a complex high-performance problem can be solved according
to multiple parallelization methodologies. We introduce the ASSISTANT
programming model which allows programmers to express multiple ver-
sions of a same parallel module, each of them suitable for particular con-
text situations. We show how the exemplified programs can be included
in a single ASSISTANT parallel module and how their dynamic switch-
ing can be expressed. We provide experimental results demonstrating the
effectiveness of the approach.

Keywords: Adaptivity, Context Awareness, Parallel Programming,
High-Performance Computing.

1 Introduction

Pervasive Grid computing platforms [15] are composed of a variety of fixed and
mobile nodes, interconnected through multiple wireless and wired network tech-
nologies. In these platforms the term context represents the state of logical and
physical resources and of the surrounding environment (e.g. acquired by sensor
data). An example of Pervasive Grid application is risk and emergency man-
agement [4]. These applications include data- and compute-intensive processing
(e.g. forecasting models) not only for off-line centralized activities, but also for
on-line, real-time and decentralized ones: these computations must be able to
provide prompt and best-effort information to mobile users. In general these
applications are composed of multiple software modules interconnected in some
graph structure (e.g. work- or data-flow). In abstract terms each module is re-
sponsible for solving a specific sub-problem. Clearly, each problem can be solved
according to different methods featuring different characteristics. They are suit-
able for different parallelization techniques and optimized for being mapped onto
different resources. For instance, a method can be optimized for the paralleliza-
tion according to task farm instead of data parallel. These computations can also
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be different in the provided Quality of Service (QoS). In this paper we consider
the term QoS as a set of metrics, which reflect the run-time behavior of a com-
putation w.r.t. factors such as its memory occupation, its estimated performance
(e.g. the average service time for a stream computation or the completion time
of a single task) and the the quality of computed results. In this paper we show
how multiple versions of a same parallel module can be introduced to target per-
formance issues for different computing nodes, to face with the dynamic nature
of pervasive grids and to meet dynamic user requests. We show that each version
is best suited to be selected depending on conditions which are verified only at
run-time (e.g. failures and user requests). This contribution is synthesized in
the novel ASSISTANT programming model (ASSIST [18] with Adaptivity and
Context-Awareness) which allows programmers to:

– express multiple versions of a same parallel module, exploiting the structured
parallelism paradigm [6] (e.g. skeletons). This feature is inherited from the
previous ASSIST parallel programming model [18];

– dynamically select which parallel version must be performed, in response to
user-defined events or context changes (e.g. related to resource availability
and sensor data). This feature can be expressed by exploiting performance
models of structured parallel computations [19].

Thus, an ASSISTANT parallel module can be used to implement a fully auto-
nomic computation.

We show a prototype implementation of ASSISTANT and we use it on a spe-
cific problem which is part of flood management application. A main module is
involved in computing a flood forecast and it includes the resolution of a large
number of tridiagonal linear systems. We show some different methods to solve
tridiagonal systems, we discuss their properties and how these influence their par-
allelization scheme. We show experimental results of the execution of two parallel
programs on best suited computing platforms. Thus, in this paper we show an ex-
ample focusing on self-healing, self-configuring and self-optimization properties,
leaving to future work the description of the remaining self- properties.

The paper is organized as follows: Sect. 2 discusses related works. Sect. 3 intro-
duces the flood management application. Sect. 4 describes the different versions
solving tridiagonal systems. Sect. 5 introduces the ASSISTANT programming
model. Sect. 6 describes the implementation of the tridiagonal solver methods
in the ASSISTANT model and it shows experimental results.

2 Related Work

Adaptivity has been introduced for mobile and pervasive applications by ex-
ploiting the concept of context [3]. Context definition includes environmental
data, such as air temperature, the state of network links and processing nodes,
and high-level information. Smart Space systems [16] mainly consist in provid-
ing context information to applications, which possibly operate on controllers
to meet some user defined requirements. Some works focus on abstracting use-
ful information from raw sensor data for adaptivity purposes. For instance, [5]
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exploits ontologies to model various context information, to reason, share and
disseminate them.

General mobile applications must adapt themselves to the state of the con-
text. For instance a mobile application can exploit optimized algorithms [12],
protocols [7] or systems [2]. In this vision, it is the run-time support (e.g. the
used protocol) which is in charge of adapting its behavior to the context. In
a more advanced vision adaptivity can be defined as part of the application
logic itself [4]. For instance, in Odyssey [13] an operating system is responsi-
ble of monitoring resources. Significant changes in resource status are notified
to applications, which adapt themselves to meet a fidelity degree. Adaptivity is
expressed in terms of the choice of the used services.

High-performance for context-aware applications is introduced in [11]. Com-
putations are defined as data stream flows of transformations, data fusions and
feature extractions. They are executed on centralized servers, while mobile nodes
are only demanded to result collection and presentation. We go beyond this vi-
sion by: (i) allowing programmers to express multiple versions of a same program
with different QoS; (ii) allowing programmers to execute proper versions also on
mobile nodes.

Independently of pervasive environments, several research works are focused
on adaptivity for high-performance programs [19]. In [1] it is shown how hierar-
chical management can be defined for structured parallel component-based ap-
plications [6]. Adaptivity for service-oriented applications is also targeted in [14],
but application adaptivity is only discussed for large-scale simulations of non-
linear systems. We inherit and extend these research works in our programming
model. In this paper we mainly focus on the programming model mechanisms
to express adaptivity between multiple versions of a same computation, and on
their performances according to a known cost model.

3 A Flood Management Application

We consider a schematic view of an application for fluvial flood management
(see Fig. 1). During the “normal” situation several parameters are periodically
monitored and acquired through sensors and possibly by other services (meteo
and GIS). For instance sensors can monitor the current value and the variation of
flow level and surface height. A forecasting model is periodically applied for spe-
cific geographical areas and for widest combinations of these areas. An example
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Fig. 1. Scheme of the flood management application
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is the TUFLOW [17] hydrodynamic model, which is based on mass and momen-
tum partial differential equations to describe the flow variation at the surface.
Their discrete resolution requires, for each time slice, the resolution of a very
large number of linear (tri-diagonal) systems. The quality of the forecasts also
depends on the size of the tridiagonal systems. There exist parallel techniques
which allow us to obtain reasonable response times in scalable manner.

During the execution, the forecasting model may signal abnormal situations
which could lead to a flood. Thus, performance is a critical parameter concerning
the response time of the forecasting model per se and also concerning all graphic
and visualization activities.

Consider an example of a critical situation: the network connection of the
human operator(s) with the central servers is down or unreliable. This is possible
because we are making use of a (large) set of mobile interconnection links which
are geographically mapped onto a critical area. To manage the potential crisis in
real time, we can think to execute the forecasting model and visualization tools
on a set of decentralized resources whose interconnections are currently reliable.

Just limiting to this scenario, it is clear that there is a complex problem in
dynamic allocation of software components to processing and communication re-
sources. Some resources may have specific constraints in terms of storage, pro-
cessing power, power consumption: the same version of the software components
may be not suitable for them, or even may be impossible to run it. Thus, the ap-
plication must be designed with several levels of adaptivity in order to be able to
cover different resource availability situations and dynamic QoS requirements.
In this paper we show how multiple versions can be introduced for the flood
emergency management application.

4 Defining Parallel Versions

We focus on the problem of solving tridiagonal linear systems of equations and we
show how multiple parallel versions can be introduced each with different charac-
teristics. There exist several resolution methods for generic linear systems: if the
system is tridiagonal specialized techniques can be employed [9]. For performance
modeling purposes, in this paper we focus on direct methods, which attempt to
find an exact solution in a fixed, statically known, number of steps. Examples of
direct approaches for tridiagonal systems are twisted factorization and cyclic re-
duction [9]. In this paper we are interested in defining multiple versions by ex-
ploiting different parallelization schemas of the same method: we focus on cyclic
reduction methods because they can be easily generalized to banded and block
tridiagonal systems [9]. In [10] two algorithms are introduced for solving tridiago-
nal systems of generic size N . For brevity, we avoid to introduce the mathematical
formulations of these algorithms: interested readers can refer to [10].

First Algorithm. This algorithm includes two main parts. The first part (de-
noted by transformation) transforms in q − 1 steps (q = log2(N + 1)) the input
system. At each step l we consider all rows i such as i mod 2l = 0. We solve:
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al
i = αia

l−1
i−2l−1 cl

i = γic
l−1
i+2l−1

bl
i = bl−1

i + αic
l−1
i−2l−1 + γi kl

i = kl−1
i + αik

l−1
i−2l−1 + γik

l−1
i+2l−1

αi = −al−1
i /bl−1

i−2l−1 γi = −cl−1
i /bl−1

i+2l−1

(1)

where ai, bi, ci and ki are the diagonal coefficients and the constant term of the
i-th row. The superscripts denote the computational step at which their values
are taken. α and γ are used in this notation to make equation reading easier. The
stencil, i.e. the functional dependencies between successively computed values,
refers the same element i and two neighbors: rows i − 2l−1 and i + 2l−1.

The second part of this algorithm is denoted resolution. We compute the
solutions of the system, according to a fill-in procedure. It includes q steps for
l = q, q − 1, . . . , 1. At each step l we consider all rows i for which i mod 2l = 0

xi = (kl−1
i − al−1

i xi−2l−1 − cl−1
i xi+2l−1 )/bl−1

i (2)

In this case we do not need multiple x values for each computation step. The
stencil is the same of the first part of the algorithm.

Second Algorithm. The second algorithm includes two parts as the previous
one. The first part includes q steps. Unlike the first algorithm, we solve the same
equations (1) but for all rows at each step. The second part includes only a single
step in which we directly get all the solutions of the system. These are computed
in the following way: xi = kq

i /bq
i . Notice that we only need the last values of the

transformed system, instead of all the ones computed in the first part.

Discussion. We discuss the features of each algorithm to define the best par-
allelization schemas. In this paper we focus on context events including the state
of the used computing resources and their associated performance. We avoid to
consider environmental data (e.g. sensor data) influencing the version selection
policy (demanded to future work).

The performance features of the described algorithms can be characterized as
following:

– Number of steps: The first algorithm performs q−1 = log2(N−1)−1 steps
during the transformation part and q = log2(N − 1) in the resolution one.
The second algorithm performs less steps: q = log2(N − 1) transformation
steps and only one resolution step.

– Number of Operations: The first algorithm performs a lower number of
operations in the first part w.r.t. the second algorithm. This because the
second algorithm applies, at each step, the equations (1) to all system ele-
ments, instead of only a subset of them. The second part of both algorithms
involves the same number of operations.

– Number of Functional Dependencies: The first algorithm includes a
lower number of functional dependencies because, at each step of the trans-
formation part, equations 1 are solved only for a subset of elements.

In our application we need to solve a stream of tridiagonal systems, i.e. a possibly
unlimited sequence of systems. We need to consider the parallel efficiency on the
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single system and on the stream of systems. Looking at the algorithms above we
can think to use two kinds of parallel structures:

– Task Farm: The systems (tasks) belonging to the input stream are sched-
uled w.r.t. several replicated workers according to a load balancing strategy,
each worker executing the sequential algorithm. An output stream of results
is produced. As known, this parallelism paradigm does not decrease the pro-
cessing latency of a single element of the stream, but it decreases the service
time (increases the throughput), provided that the stream interarrival time is
sensibly less than the sequential processing time (stream processing situation
in the true meaning).

– Data Parallel: Each tridiagonal system is partitioned (scattered) onto sev-
eral replicated workers, each one performing the sequential algorithm for its
respective partition. In the considered algorithms, workers cooperate during
each step according to a proper communication stencil. The whole result is
obtained by gathering the partial results. With respect to the farm struc-
ture, this parallelism paradigm works both in a stream processing situation,
and when only a single system has to be processed (i.e. equivalently, when
the stream interarrival time is greater than the sequential processing time
for a single task). Moreover, it is able to decrease the processing latency of
a single tridiagonal system and the memory size per node. In a stream situ-
ation, the disadvantage of a stencil-based data parallel structure, w.r.t. the
farm paradigm, is a potential load unbalance and a more critical impact of
the communication/computation time ratio, thus in general a greater service
time.

Two structuring modalities of the whole computation have to be distinguished:
an acyclic graph structure or a cyclic one. In the former case, a pipeline-like
effect is present, provided that a real stream processing situation occurs. In the
latter, the overall computation is a client-server schema. Each client sends the
input data to the tridiagonal solver module (i.e. the server) and it waits for
the corresponding results. To increase the performance of each client we can
parallelize the server with a proper parallelism degree:

– in a task farm structure it is equal to the number of clients;
– in a data parallel structure it is independent of the number of clients and can

be obtained by the proper cost model of the parallel structure. Moreover,
the reduced latency time contributes to decrease the server response time,
thus the client service time.

All the described situations (stream vs single element processing, acyclic graph
vs client-server structure) can be taken into account in an adaptive and context-
aware computation. The farm and the data- parallel paradigms are able to opti-
mize specific situations. In general it may be convenient, or necessary, to switch
from one structure to another one dynamically, thus to switch from a version of
the computation implemented according to a parallelism paradigm to another
version, implemented according to the other parallelism paradigm: this feature
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characterizes our approach to high-performance adaptive and context-aware ap-
plication design.

We have seen that the second algorithm performs more operations than the
first one (but less steps), but also more communications. These can be buffered
and, provided that their support is efficient, the second algorithm can be paral-
lelized according to the data parallel structure. Communication efficiency charac-
terizes multicores: communications between cores are implemented as accesses
to shared variables and the computation can take advantage of the hardware
caching support. Thus, we implement this version on a multicore architecture
(see below).

The first algorithm minimizes the number of operations performed in the
whole computation. Thus, it seems reasonable to: (a) parallelize it according
to the task farm model, which has not the strong requirements, in terms of
communication efficiency, of the data parallel; (b) implement it for both cluster
and multicore architectures. We show experimental results for both versions and
we discuss how the best version is dynamically selected according to specific
context situations.

We show the data parallel program for the second algorithm in the ASSIST
syntax. For brevity, we avoid to show the program of the task farm version.

4.1 The ASSIST Model

ASSIST [18] is a programming environment for expressing parallel and dis-
tributed computations according to the structured parallel paradigm. In ASSIST
it is not possible to natively express an adaptive application, which is one of the
intended goals of ASSISTANT. An ASSIST application is expressed in terms
of a set of ParMods (i.e. Parallel Modules) interconnected by means of typed
streams. The ParMod construct includes three sections:

– input section: It is used to express the distribution of received data from
input streams to the parallel activities performing the computation, accord-
ing to primitive constructs (e.g. on-demand and scatter) or user-programmed
ones;

– virtual processors: They are used to express the parallel computation ap-
plied to each input data, possibly producing an output result. Virtual pro-
cessors are the abstract units of parallelism in ASSIST, which are mapped
onto a set of implementation processes;

– output section: In this section we express the collection of virtual processors
results and their delivery to output streams, by means of primitive strategies
(e.g. gather) or user-programmed ones.

4.2 Parallel Programs in ASSIST

We implement an ASSIST parmod for the data parallel version using the second
algorithm (see Fig. 2). The parmod TSM-DP receives a stream of tridiago-
nal systems (syst row data structure) as input tasks (line 1). For each system
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1 parmod TSM−DP( input stream syst row i npu t s y s t [N] output stream
s o l u t i o n s s o l s ) {

2 topo logy array [ i :N] vp ;
3 a t t r i b u t e syst row comput ing syst [ 2 ] [N] scatter S [ ] [ ∗ i ] onto VP[ i

] ;
4
5 do input section {
6 guard1 : on , , i n pu t s y s t {
7 distribution i n pu t s y s t [∗ s ] scatter to comput syst [ 0 ] [ s ] ;
8 }
9 } while ( true )

10
11 virtual processors {
12 so l v e sy s t em ( in guard1 out s o l s ) {
13 VP i {
14 for ( l = 1 ; l <= q ; l++)
15 trans form( i , comput ing syst [ i ] [ l −1] , comput ing syst [ i−pow

(2 , l −1) ] , comput ing syst [ i+pow(2 , l −1) ] , s o l s [ i ] ) ;
16
17 so l v e ( i , comput syst [ i ] [ ] , s o l s [ i ] ) ;
18 }
19 }
20 }
21
22 output section {
23 co l l ects s o l s from ALL vp [ i ] ;
24 }
25 }

Fig. 2. Data parallel program based on the second cyclic reduction algorithm

it computes the correct solution (solutions data structure). The topology com-
mand (line 2) gives integer numbers (from 1 to N) as names of virtual processors.
Virtual processors are assigned a single system row on which they apply the al-
gorithm. In the implementation, multiple virtual processors are mapped onto
a set of implementation processes. At line 3 an attribute (a ParMod variable)
is used to store two successive system values during its transformation and it
is scattered amongst the virtual processors. The input section (line 5) is fired
when a system is received (line 6) on the input stream. The system is scattered
onto the first position of the attribute (line 7). In the virtual processors section
(line 11) each VPi in parallel: (a) transforms the input system in q steps (line
15); (b) computes the results (line 17). In the output section we gather all com-
puted results (from ALL keyword), which are automatically delivered onto the
output stream.

4.3 Experiments

We have tested the parallel efficiency of the different tridiagonal solver versions
on a emulation of a pervasive grid. The aim of this section is to experimentally
show that different versions can be used to target different context situations,
related to the state of the used computing resources (e.g. their availability)
and on their performance. The experiments are performed on a prototype of
ASSISTANT: we avoid to show the reconfiguration costs (i.e. version selection)
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because it is out of the scope of this paper. The pervasive grid is emulated by
the following nodes:

– a centralized server, emulated with a cluster architecture. The cluster is
composed by 30 nodes Pentium III 800 MHz with 512 KB of cache, 1 GB
of main memory and interconnected with a 100 Mbit/s Fast Ethernet. We
map the task farm version onto this platform;

– an interface node between the cluster and the mobile distributed platform
of PDA nodes and sensor devices. The interface node is emulated with an
Intel E5420 Dual Quad Core multicore processor, featuring 8 cores of 2.50
GHz, 12 MB L2 Cache and 8 GB of main memory. Both data parallel and
farm versions are mapped onto this architecture.

Fig. 3, 4 and 5 show the results in terms of service time and scalability. We define
the service time as the time passing between the consuming of two successive sys-
tems from the input stream (not their complete resolution but only their consum-
ing). Scalability can be defined as the ratio between the sequential computation
time (parallelism equal to 1) and the parallel one: it represents the quality of par-
allelization of the module. Notice that the cluster service time is higher than the
multicore one because of the sensible difference between the processing power of
their single nodes (800 MHz versus 2.5 GHz). For comparable processing powers,
the cluster would provide higher scalability and parallelism degrees. As discussed
at the end of Sect. 4, for acyclic graph application structures:

– the farm version is effective only when the computation operates on a stream
processing situation: in this case it performs better than the data-parallel
solution;

– the data parallel version has to be adopted when the computation operates
on a single tridiagonal system (i.e. too large interarrival time).

For client-server cyclic graph application structures, both versions are potentially
feasible: one or the other will be selected dynamically according the performance
comparison between the farm and the data parallel version, i.e. according to the
optimal parallelism degree of the two versions.
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From this discussion we can conclude that pervasive grid applications must
be programmed as multiple parallel modules, each provided in multiple versions.
Moreover, the programmer needs to express the conditions (or events) under
which each version is dynamically selected, according to the available resources
and user needs. This can be done by specifying different parallel programs and
by introducing a policy for the dynamic selection of the best version. The actual
implementation of version selection can be automatized in the following points:

– low-level version switching: this includes the re-direction of input data streams
between the versions;

– data consistency: the channel re-direction must guarantee that no input el-
ements are lost or re-ordered.

In the next section we introduce an high-level programming model in which all
these actions are automatized, while the application programmer just focuses on
the abstract events inducing a version switching.

5 The ASSISTANT Programming Model

We introduce the novel ASSISTANT programming model for high performance
pervasive applications with adaptive and context-aware behaviors.
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With ASSISTANT we target application adaptivity by allowing programmers
to express how the computation evolves reacting to specified events. We enable
this kind of expressivity with a new ParMod construct. We can characterize
three main logics (Fig.6 (left)) that can be used to describe the semantic and
the behavior of a ParMod:

– Functional logic: This includes all the versions solving the same problem
in the ASSIST syntax. Functional logics of different ASSISTANT ParMods
communicate by means of typed data streams.

– Control logic: This includes the adaptivity strategies, i.e. the reconfiguration
actions performed to adapt the ParMod behavior in response to specified
events. For instance, the control logic can select the best version between
multiple ones, according to specific cost models. The programmer is pro-
vided with high-level constructs to directly express the control logic with
the corresponding adaptivity strategies. Control logics of different applica-
tion ParMods can interact by means of control events.

– Context logic: This includes all the aspects which link the ParMod behavior
with the surrounding context. The programmer can specify events which
correspond to sensor data, monitoring the environmental and resource state
(e.g. air temperature and network bandwidth). It can also specify events
related to the dynamic state of the computation (e.g. the service time of
a ParMod). These context events can be provided by the run-time support
of the programming model, or in other cases primitive context interfaces
(e.g. failure detectors) which communicate with the application modules by
context events.

The different versions of a same ParMod are expressed by means of the operation
construct. Each ParMod can include multiple operations (see Fig. 7), all solving
the same problem according to different algorithms and parallel structures. All
operations of the same ParMod must feature the same input and output inter-
faces, in terms of streams. Each operation includes its own part of functional,
control and context logic of the ParMod in which it is defined. That is, each
operation features its own parallel algorithm, but also its own control and con-
text logics. Notice that operations are not merely alternative sections of code
inside a module definition: they are the adaptation and deployment units of the

OP0 OP1

OP2

EV0 EV2

EV1

EV4

EV6

EV5 EV3

Fig. 6. Example of ASSISTANT ParMods (left) and of event-operation graph (right)
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parmod:: in_datastream ...; out_datastream ...;
global variables

events

.  .  .

operation 1 {

operation N { }

control
on_event {

}
. . .

ASSIST
Parallel Program

functional

Fig. 7. Syntactic view of a ParMod

versions of the same Assistant module. For this reason, a new suitable construct
is required to achieve our goals.

Syntactically, the ParMod has a name and a set of input and output streams.
It can feature a global state shared between operations and it can define events
which it is interested to sense. Events may be context ones, whose monitoring
can be provided by context interfaces, or control events obtained from the control
logic of other ParMods. Semantically, only one operation for each ParMod can
be currently activated by its control logic. When a ParMod is started a user-
specified initial operation is performed, possibly deploying it on dynamically
discovered resources. During the execution the context logic of a ParMod, or the
control logic of other modules, can notify one or more events. The control logic
exploits a mapping between these events and reconfiguration actions, defined
by the programmer, to either select a new operation to be executed, or modify
the run-time support of the current operation (e.g the parallelism degree of a
parallel computation as described in [19]). The control logic of an ASSISTANT
ParMod can be described as a graph (see Fig. 6(b)(right)): nodes are operations
of the ParMod and arcs are events (or their combinations with logical expres-
sions on the actual ParMod state). Semantically a ParMod control logic is a
sequential automaton: this is done to avoid nondeterministic behaviors. In the
case of concurrent events we serialize and manage them according to a priority
defined in the control logic itself (i.e. their definition sequence). In the example,
the initial operation is OP0. If the event EV0 occurs, we continue executing OP0

but we modify some aspects of its implementation (e.g. its parallelism degree).
That is, self-arcs, starting and ending in the same node, correspond to run-time
system reconfigurations. Consider now the arc from OP0 to OP1 fired by event
EV1. In this case the programmer specifies that if we are executing OP0 and
event EV1 occurs, we stop executing OP0 and we start OP1. This switching can
include pre- and post- elaborations: for instance, we can reach some consistent
state before moving from OP0 to OP1 in order to allow the former operation to
start from a partially computed result, instead of from the beginning.

Reconfigurations can be performed in the case: (a) some pre-determined events
happen and/or (b) some predicates on the module state are satisfied. That is,
the control logic of a ParMod is stateful. This behavior is expressed in each
operation of a ParMod by means of the on event construct. Syntactically, the
programmer makes use of nondeterministic clauses which general structure is
described as shown in Fig. 8:
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event combination :
do <r e c on f i g u r a t i o n code>
enddo

Fig. 8. General structure of the on event construct

If the event combination logical expression is satisfied, the corresponding re-
configuration code is executed. Programmers are also provided with a parallelism
construct, to specify a modification of the parallelism degree of the current op-
eration (i.e. a run-time system reconfiguration).

6 Programming Adaptivity for the Flood Application in
ASSISTANT

We show how to encapsulate the different versions, to solve tridiagonal systems,
in a single ParMod.The flood management application is composed of the fol-
lowing ParMods:

– Generator: This module emulates all the application phases preceding the
flood forecasting model. It generates a stream of double precision floating
point data related to the conditions of each point in the river [17].

– Tridiagonal Solver Module (TSM): This module implements the fore-
casting model (see Sect. 4), which is applied to each input stream element
received by the Generator. For each input data, it generates and solves four
tridiagonal systems (e.g. see [17]). The TSM includes three different opera-
tions.

– Visualization: This module implements the post-processing activities, vi-
sualizing forecast results on the user’s display.

In this program we consider three different operations for the TSM: the first
one is clusterOperation which is the task-farm mapped onto the cluster architec-
ture as described in Sect. 4. The second one is interfaceNodeFarm) which is the
task farm version executed on interface multicore nodes. The third operation
is interfaceNodeD.-P- which is the data parallel version executed on interface
multicore nodes. As the TSM functional logic has been described in Sect. 4,
we are interested in the control logic. This is responsible of deciding which con-
text changes have to be monitored and which ones cause a reconfiguration. The
considered context changes are:

– a network event from the TSM context logic related to the current status
of network connections (e.g. their availability or presence of high-latency
links). We have considered only two disconnection events: mainNetFail and
mobileNetFail which provide a boolean information related to the connection
capability (based on current latency and connection status) between the
cluster and the considered interface node (the former) and the interface node
and the user’s PDAs (the latter);
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cluster
Operation

servTime

mainNetFail &&
!mobileNetFail &&

on_stream

on_stream

mainNetRecover &&
mobileNetRecover

!on_stream

mainNetRecover

mainNetFail &&
!mobileNetFail &&

!on_stream

interface
Node
Farm

interface
Node
D.-P.

Fig. 9. Event-Operation graph of the parmod TSM. Bold arrows are implemented in
Fig. 6.

parmod TSM( . . ) {
operation interfaceNodeD.−P. {

// Para l l e l Computation in an ASSIST−l i k e fashion :
see Sect ion 3 . .

//Management se c t ion of t h i s operation :
on event {
mainNetRecover && mobileNetRecover :

do
not i f y ( Generator Module , c o n f a i l ) ;
n o t i f y ( Cl ient Module , c o n f a i l ) ;
//Stop the operation c ons i s t e n t l y :
this . stop ( ) ;
//Act ivat ion of the new operation :
c l u s t e rOpe ra t i on . s t a r t ( ) ;

enddo
on stream ( ) :

do
. . .
interfaceNodeFarm . s t a r t ( ) ;

enddo
}

}
. . .

Fig. 10. Control part of interfaceNodeD.-P. operation inside the parmod TSM
definition

– the average interarrival time to the ParMod TSM is lower than a maximum
threshold. This event is denoted with on stream.

Fig. 9 shows the event-operation graph of the TSM: bold arrows are those ex-
pressed in the interfaceNodeD.-P. control part. Dotted arrows are expressed in
the other two operations. Fig. 6 shows the corresponding on event section of
the operation inside the TSM definition, implementing its adaptive behavior
when the interfaceNodeD.-P. is executed. This on event instance describes two
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different conditions: while executing interfaceNodeD.-P. the mainNetRecover
and mobileNetRecover events can be received. We choose to execute the fore-
casting model on the cluster, because it enables higher parallelism degree than
the multicore and, consequently, lower service times. If the on stream event is
received, the input stream interarrival time is now lower than the TSM service
time. In this case we can switch to the interfaceNodeFarm operation, which
provides better on stream scalability (see Sect. 4). We also need to notify the
generator and client modules of this re-configuration (i.e. the notify function).

7 Conclusions

In this paper we have shown how adaptivity for pervasive grid applications can
be defined by exploiting multiple versions for the same application module. We
have exemplified our approach on the specific problem of solving tridiagonal sys-
tems of linear equations, introducing two resolution algorithms and parallelizing
them. The two algorithms are shown to be best suited for being executed on
a cluster architecture and on a multicore one. The experimental results show
that: the cluster version and the interface node version, as well as the respec-
tive farm and data parallel schemas, have clear pros and cons that can drive
the selection of the best adaptation strategy at run time. As an example, the
cluster version has to be preferred to the interface node one if the network sta-
tus provides a reasonable communication latency between the cluster and the
mobile users. We have introduced the novel ASSISTANT programming model,
providing constructs to express multiple versions of a same parallel module and
to adapt its execution by dynamically selecting the best one. We have imple-
mented a flood forecasting module exploiting the ParMod construct, including
the two resolution algorithms and their dynamic selection policy.
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