
A Network-Coding Based Event Diffusion Protocol for
Wireless Mesh Networks

Roberto Beraldi1 and Hussein Alnuweiri2

1 “La Sapienza” University of Rome, Rome, Italy
beraldi@dis.uniroma1.it

2 Electrical & Computer Engineering Texas A&M University at Qatar
hussein.alnuweiri@qatar.tamu.edu

Abstract. Publish/subscribe is a well know and powerful distributed program-
ming paradigm with many potential applications. In this paper we consider the
central problem of any pub/sub implementation, namely the problem of event dis-
semination, in the case of a Wireless Mesh Network. We propose a protocol based
on non-trivial forwarding mechanisms that employ network coding as a central
tool for supporting adaptive event dissemination while exploiting the broadcast
nature of wireless transmissions. Our results show that network coding provides
significant improvements to event diffusion compared to standard blind dissemi-
nation solutions, namely flooding and gossiping.
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1 Introduction

This paper investigates the problem of event diffusion over a wireless mesh network
(WMN) by leveraging a recent information dissemination technique called Network
Coding; see [8] for a tutorial. The Wireless Mesh Network (WMN) is an emerging
communication architecture with many practical applications in such areas as self-
organizing community networks, industrial plant automation, wireless sensor networks,
etc., [1]. A WMN can be considered as a two-tier architecture. The first tier is a wireless
backbone composed of mesh routers capable of packet routing and optionally providing
gateway functionality. The second tier is composed of mobile and/or portable wireless
devices (e.g. WiFi-enabled smart phones, mobile TV devices, etc.) which can act as
clients. A WMN is a self-organizing network with a certain degree of variability in
terms of participants and topology. For example, clients can move, new clients can join
a network, mesh routers can be occasionally switched off, or some clients can at times
act as wireless routers. Having a suitable application level abstraction that can face with
such a changes is thus very appealing. In this regards, publish/subscribe (pub/sub) is a
mature interaction paradigm that fits such requirements, since it allows for reference-
decoupled and asynchronous interactions among the participants [7]. In a pub/sub com-
munication system publishers produce information in form of events and subscribers
receive the subset of events that match their interests, expressed as a filter. Pub/sub
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Fig. 1. The grid topology arising from a metropolitan deployment of a WMN

systems have been widely studied in wired a setting, e.g., SIENA [6],Gryphon [11],
LeSubscribe [16]. However, while some papers have also focused on pub/sub systems
running over networks exploiting wireless technology, e.g. [3], [13], only a very few of
them have considered WMNs, [10], [21].

We consider a WMN deployed over a Manhattan like city model, see [1], in which
mesh routers can be considered as approximately placed at the intersection of two
streets. Since the streets are running est-west and north-south, mesh routers form a
regular grid topology, Figure 1. We assume that mesh routers are used as a dispatching
structure for supporting event diffusion. This solution is borrowed from the proposal
presented in [10]. We assume that each mesh client can communicate with only one
mesh router (called its local mesh router), and mesh routers are equipped with addi-
tional software appliances that clients interact with. Essentially, when the publisher
needs to publish a new event, it contacts its local mesh router and then sends the event
to it. The mesh router diffuses the newly event to all the other routers in the network, on
behalf of the publisher. A subscriber periodically renews its subscription to its current
local mesh router for a specific period of time, thus implementing a lease mechanism.
Filtering is done at the mesh router, and filters are not propagated into the network. A
router notifies the client as soon as it receives an event matching the filter, given that the
client subscription has not expired. In the rest of the paper we refer to a mesh router as
a node.

1.1 Contribution of the Work

The contribution of the paper is the proposal of an event dissemination protocol suitable
for dynamic environments. The protocol is self tuning in that (i) the behavior of a single
node depends on the amount of information is being received as well as on the number
of neighbors of a node (node density), (ii) the protocol runs efficiently independently of
how many targets there are in the system and where they are located.

The rest of the paper is organized as follows. Section 2 presents a brief tutorial on
the main concept of network coding and discusses basic alternatives to implement event
diffusion in a wireless mesh setting. Section 3 presents the details of our network-coding
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based protocol, and Section 4 provides several evaluation results. Finally, conclusions
are given in Section 5.

2 Background

Network coding is a relatively recent technique for end-to-end information delivery in
communication networks, introduced in the seminal paper of Ahlswede et al., [2] and
advanced by others [12] for many applications. Network coding marks a clear departure
from the basic network role as a passive relay of data packets or frames, to a more
active model in which network nodes can perform algebraic operations on the data
before sending it out. With network coding the intermediate nodes between source of
information and the destination(s) do not simply relay the received packets. Rather, they
are allowed to combine (encode) incoming data in order to generate the data output to
be forwarded. The original key advantage of this intermediate combination is for data
broadcasting and multicasting. With network coding a source node can always send data
at the network’s broadcasting rate, while without network coding this is not possible in
general. Some concrete examples of network coding based multicast protocols can be
found in [14], [15], [5] and [4]. Additional references can be found in [19].

In the following we adopt a linear network coding approach in which operations
on packets are confined to algebraic operations over a finite field. More precisely, we
confine ourselves to the Galois Field GF (2w) and interpret each data packet as being
composed from a set elements of the field, each of size w bits. We restrict ourselves to
apply linear network coding to the problem of broadcasting an original data packet, X ,
from a source node (e.g. the mesh router on behalf of the publisher) to all the other nodes
of a wireless network. The problem solution can be easily generalized to multi-source
multicast under reasonable additional constraints. The main symbols used throughout
the paper are listed in Table 1.

In linear network coding, the basic operation performed by each network node is
generating linear combinations of incoming packets, and transmitting the new ”coded”
packet. A linear combination is carried over a fixed set of original data chunks, called
a generation of the original packet. More precisely, we assume that special designated
nodes split an original data packet X of length l into m chunks, xi, each of length l/m,

Table 1. Definition of the main symbols

E Event to be diffused
m Generation size
x Original chunk of data
X Vector of the original m chunks
y an encoded chunk
Y Vector of encoded chunks
α Random coefficient
A m × m matrix of random coefficients (decoding matrix)
EV Encoding vector, coefficients used to create a linear comb.
IV Information vector, an encoded chunk sent into a packet
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Fig. 2. The operation of linear combination over the original chunks of data

to form the generation {x1, x2, . . . xm}. Each chunk of data is composed of k elements
of GF (2w). Hence, l = k × m × w (0s are padded if required). The value m is called
the generation size.

Consider for sake of example only, a data packet X of size 12 bytes, generation size
m = 3 and element size w = 8 bits, or one byte (see Figure 2). The packet is divided
into 3 chunks, x1, x2, x3, each composed of 4 elements (bytes). A linear combination is
achieved by choosing 3 coefficients of length w bits, α1, α2, α3 and computing a new
encoded chunk

y = α1x1 + α2x2 + α3x3

Because all operators are defined over the finite field GF (2w), the above computation
is performed element-wise, i.e., if xi

j is the i-th element of chunk j and yi is the i-th
element of the linear combination we have

yi = α1x
i
1 + α2x

i
2 + αi

3x3 i = 1, 2, 3

However, for the sake of avoiding cumbersome notation, we do not make this replication
explicit, and a linear combination is expressed as

y =
m∑

i=1

αixi

The result y is called an encoded chunk or, when it is sent in a packet, an Information
Vector, IV . The set EV = [α1, . . . , αm] of coefficients used in the combination is
called the Encoding Vector. As common with other network coding schemes, we assume
that a node sends both the information vector IV and the associated encoding vector
EV . Moreover, the coefficients used in a linear combination are generated randomly by
the node.

Note that the overhead due to sending the above encoding vector is m×w. Assuming
typical values of m = 16 and w = 8 bits when sending a 1 KB data packet, the overhead
is only 16/1024 ≈ 1.5%.

An important aspect of linear network coding is that encoded chunks can themselves
be combined to generate new encoded chunks at an intermediate node. For example,
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to combine n encoded chunks, y1 . . . yn, a node uses n coefficients, say α′
1 . . . α′

n with
which it generates

y′ =
n∑

j=1

α′
jyj

Note that the newly encoded chunk, y′, also represents a linear combination with respect
to the original data chunks. Therefore, since

y′ =
n∑

j=1

α′
j(

m∑

i=1

αjixi) =
m∑

i=1

(
n∑

j=1

α′
jαji)xi

where αji is the i-th coefficient used to calculate yj , the encoding vector the intermedi-
ate nodes is in effect

EV = [
n∑

j=1

α′
jαj1, . . . ,

n∑

j=1

α′
jαjm]

2.1 Event Dissemination with Network Coding

To elucidate the advantage of network coding, we present several alternatives for dis-
seminating (diffusing) an event over a portion of a wireless grid in which each node
can reach four neighbor nodes to the north, south, east and west. For this purpose, we
consider the 2-dimensional grid topology of Figure 3 and explain several alternatives
for disseminating an event E generated by the source node S (located at the center of
the grid) using the smallest amount of data transmissions. The problem we solve is how
to ensure that the event reaches the four destination nodes at the four corners of the
grid. Nodes 1, 2, 3, 4 function as relay nodes in this example.

For the sake of simplicity, we assume here an idealized collision-free broadcast com-
munication channel and that event E fits the size of a single packet ( a realistic channel
is used in simulations ). Our aim is to compare the performance/cost tradeoff of differ-
ent principle design, where the cost is the total amount of data sent over the network,
T , and the performance is measured through the probability PF that all nodes receive
E. In the following the cost of sending one packet (containing E) is counted as one.

In general, there are two different approaches for event diffusion: informed dissemi-
nation and blind dissemination. Informed Dissemination requires the source node S to
know the topology and coordinate transmissions to the destination nodes. For example,
in the case of Figure 3, S may declare, in the packet header, two destinations which
have to rebroadcast the packet. For example, S can specify nodes 1 and 3 as destina-
tions. This means relay nodes 2 and 4 discard the packet, while nodes 1 and 3 will
rebroadcast their packet to the corner nodes. It is obvious that the cost of this solution is
T = 3, and PF = 1 (ignoring the small cost of sending the additional destination IDs
in the packet header). Clearly, this is the smallest amount of data that must be sent for
disseminating the event.

Blind dissemination is an attractive alternative which is more suited to the distributed
dynamic nature of wireless mesh networks. In such environment, it may not be easy (or
it may be very costly) to maintain the required topology or link-state information for
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Fig. 3. Event diffusion over a square grid. The source node S is placed at the center.

disseminating events in the presence of node mobility, or some nodes turning off and
new nodes turning on arbitrarily.

In this paper, we are interested mainly in blind dissemination. Next, we review sev-
eral alternatives that avoid the use of coordination among nodes while still requiring the
same amount of data transmissions as in informed dissemination. Normally, this comes
at the cost of a lower value for PF . In order to assess the benefit of applying network
coding for event diffusion, we will explore and compare the performance of network
coding to other blind dissemination techniques, namely flooding, naive dissemination,
and gossip. We will briefly explain these techniques with the help of the wireless grid
example of Figure 3.

NAIVE RANDOM DISSEMINATION. This technique exploits a very simple random for-
warding approach in which coordination is no longer required. Consider the following
variation of the approach. Initially, the source S transmits the event to its four neighbors
(relay nodes). Then each relay node splits the packet (event E) into two parts, say a and
b, of equal size. Now, each relay node chooses only one of these parts, i.e. either a or b,
with equal probability, then transmits it to all destination it can reach. Since each part
contains only half the information carried in E, the cost of sending one part of the event
by a relay node is 1

2 . Thus, the total cost of dissemination is still T = 3.
To calculate PF , let {y1, y2, y3, y4} denote the scheduled parts chosen by the four

relay nodes 1, 2, 3 and 4, respectively. For example, the schedule {a, a, a, b} refers to
the schedule where relay nodes 1, 2, 3 each choose to transmit a, and 4 chooses to
transmit b. For this example, there are 24 different schedules, but only two of them,
namely {a, b, a, b} and {b, a, b, a} allow all the receiver nodes reconstruct the event.
Thus, pF = 2−3 = 1/8 = 0.125. This result shows the weakness of naive random
dissemination.

RANDOM DISSEMINATION WITH NETWORK CODING. The second random solution
leverages linear network coding, where we can show that we can achieve forwarding
probability pF ≈ 1 while maintaining the cost of forwarding practically the same as
with the informed dissemination. Instead of just sending one half of the event E ran-
domly, a relay node now sends a random linear combination of the two parts a and b.
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To compute the linear combination, the relay node picks two coefficients, α1 and α2,
uniformly at random from a finite field of size q then broadcasts y = α1a+α2b together
with the coefficient’s vector (α1, α1) (all Operations are defined over the field Fq). Note
that the size of the linear combination |y| = |a| = |b| = |E/2|. The transmitted packet
will have a size slightly larger than |y| because we must include the coefficients in the
packet. However, for most practical cases, the overhead due to including the coefficients
in the transmission is small and can be neglected to simplify analysis.

Since a receiver node at one of the corners gets two linear combinations from its
neighbors, say y1 = α11a + α12b and y2 = α21a + α22b with the corresponding 4
coefficients, it will be able to retrieve (i.e. decode) the original event E if it can solve
the following linear system of equations:

α11y1 + α12y2 = x1

α21y1 + α22y2 = x2

There are q4 different possible 2 × 2 matrices whose coefficients are picked randomly
from the field Fq . Considering that the number of linearly independent matrices is (q2−
1)(q2 − q), the probability that the matrix above is non-singular, thus allowing a node
to retrieve the event (by inverting the matrix, or using Gaussian elimination), is

(q2 − 1)(q2 − q)
q4

;

from which the probability that all of the 4 receivers at the corners of the grid get the

event is PF =
[
(1 − 1

q2 )(1 − 1
q )

]4

. For example, if we choose with q = 256, i.e. the

field of 8-bit coefficients, then PF ≈ 0.98. Note, also that the overhead for sending two
coefficients is just two bytes.

GOSSIP. In order to illustrate the powerful utility of network coding in random event
dissemination, we compare it against a probabilistic flooding technique commonly re-
ferred to as gossiping. Using a basic gossip protocol, each relay node transmits the
complete event E to its neighbors with probability p. Let

[tx1, tx1, tx3, tx4]

be the transmit decision of the four relay nodes such that txi = 1 means that node i
decided to transmit the packet, and txi = 0 means it decided to discard the packet.
There are two sets of decisions that allow for all four receivers at the corners of the grid
to get the event. They are

TX = [1, ∗, 1, ∗] TX ′ = [∗, 1, ∗, 1]

where ∗ means any decision. In other words, all receivers will get E when either (at
least) both relay nodes 1 and 3 transmit E, or both nodes 2 and 4 transmit E. A decision
belongs to one of these 2 sets with probability p2. Note that the decision 1, 1, 1, 1 is
common to both sets and occurs with probability p4. Therefore, the probability that all
receivers get the event is the probability to observe a retransmission pattern of type TX
or TX ′ on the relay nodes, or

PF = 2p2 − p4
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To compare gossiping to RDNC, we first observe that in gossiping, the average number
of transmissions is T = 1 + 4p, giving us p = (T − 1)/4, where T is the cost of
dissemination. Figure 4 shows the complete reception probability PF as a function of
T for the gossip technique. The above result shows that if we are to maintain the cost
at T = 3 transmissions, then we get p = 0.5; from which we determine PF ≈ 0.43.
On the other hand, in order for gossip to achieve the same dissemination reliability as
network coding, i.e. PF ≈ 0.98, we need to set p ≈ 0.9, which means the cost will
increase to T ≈ 4.6 transmissions.

3 Proposed Protocol

The prosed protocol utilizes a push-pull method whereby the event is diffused in two
phases. During the first phase, the information content of the event is partially pushed
throughput all the network. During the second phase the fraction of nodes that need to
fully decode the event pull the missed information from their neighbor nodes.

The key idea of the protocol is to assure that although a single node doesn’t have the
whole information required to detect the event, the remaining part can be retrieved from
nearby nodes. Roughly speaking, the pushing phase is such that any group of nodes,
which is composed by a node and its neighbors, has the full information required to
decode the event.

In the first phase of the protocol a node adapts its behavior according to the amount
of information being received. A kind of self adaptation is also incorporated in the
second phase, where a feedback mechanism is used to adapt the reaction of each node
according to the current node density.

3.1 Basic Data Structure and Assumption

Each node manages the following data structures

– m×m matrix, A, called Decoding Matrix containing the elements of the encoding
vector

– 1 × m vector, Y , called the local encoded data vector, which contains the encoded
chunks
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– Operation bit mode, op (normal or collecting)
– Transmission counter, C

A node has direct access to the local broadcast link layer primitive, bcast(P), with
which it can send a packet P to all its neighbor nodes, namely, the ones that are within
its transmission range. A packet P contains the following fields

– Information Vector, P.IV
– Encoding Vector, P.EV
– Generation ID, P.gen
– Topic ID, P.topic

We assume that an event E fits the size of a packet (a simple variation allows to over-
come this limitation). Each event E is uniquely identified through the concatenation of
a generation number, managed by the publisher, and the publisher’s ID.

3.2 Protocol Description

In our algorithm the nodes are classified according to their roles as:

– Source node (the node that sends the packet carrying the event to be diffused)
– Bootstrap nodes (the neighbors of the source)
– Intermediate nodes (all the of other nodes)

An intermediate node may operate into two different modes: normal (op = 0) mode
and collecting mode (op = 1). The nodes initially operate in the normal mode.

The proposed protocol uses the following four key parameters to define a flexible
network-coding specific forwarding policy. These parameters can be tuned to optimize
the performance of the forwarding policy on a wireless mesh. The parameters are:

– BF , Bootstrap Factor
– ΔTC , Collecting Time
– FF , Forwarding Factor
– MaxTx, Maximum number of allowed transmissions

Push phase. The actions performed by each node in the first push phase are the fol-
lowing ones.

PUBLISHER. When the publisher needs to send a new event E, it issues the publish
primitive on the local node (router), say node S. Node S acts as a source of the event
on behalf of the publisher, and sends E by a local broadcast indicating the generation
ID.

BOOTSTRAP NODES. When a bootstrap node, B, receives event E from S, it splits the
event into m chunks, x1, . . . , xm. Then, B executes BF times the following four steps:

1. generate m random coefficients, EV = [α1, . . . , αm]
2. compute the linear combination y = α1x1 + . . . + αmxm

3. prepare a new packet with P.IV = y, P.EV = EV
4. send P via the local broadcast primitive.
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Fig. 5. The initial phase of event diffusion

The Bootstrap Factor parameter, BF , varies in the range [1..m] and determines the
number of linear combinations sent by a bootstrap node.

Figure 5 shows an example for m = 3. For simplicity, we have assumed that E
is composed of 3 bytes, each of value 1. The bootstrap node B generates two linear
combinations with the coefficients [1, 2, 3] and [3, 2, 4]. Thus, the bootstrap factor is 2.

INTERMEDIATE NODES. When an intermediate node, say I , receives a packet P con-
taining a chunk for a new event, it creates a new decoding matrix, A, associated with the
event. The matrix contains all 0s, except for the first row which contains the coefficients
carried in the EV. The node also creates a new local encoded data vector, Y , containing
all 0s in all entries except the first one, which stores the IV of packet P . Finally, it sets
the transmissions counter C to MaxTx.

After these steps, I enters into the collecting operation mode (op = 1) and starts a
new collecting phase. A new collecting phase is initiated each time the node enters this
mode. During a collecting phase I waits for other possible new innovative chunks if
order to decide how many linear combinations to send.

The Collecting time parameter, ΔTC , determines the minimum duration of the col-
lecting phase. If a new innovative packet is received while the node operates in the
collecting mode, say at time t, then the duration of collecting phase will be postponed
until time t +ΔTC . Should a new innovative packet arrive before the new deadline, the
collecting phase will be again deferred by ΔTC .

The application of collecting-time is sketched in Figure 6. Node I has received two
packets, P1 and P2, carrying two linearly independent combinations over the original
chunks. The decoding matrix thus contains the corresponding encoding vectors. Packet
P1 triggers the collecting phase, while P2 prolonged the phase.

Δ

time

3

2

Fig. 6. Generating linear combination at an intermediate node
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After ΔTC from when P2 was received, the node does the following: create a new
linear combination using the coefficients 3 and 2 (they are shown to the left of the matrix
in figure 6), create a new information vector whose value is 3 × 6+2 ×9 =36, create
the new encoding vector, 3[1, 2, 3]+2[3, 2, 4]=[9, 10, 17], then send the new packet P3.

The reason for not immediately sending new linear combinations is that we have
empirically seen by simulations that innovative packets tend to arrive as burst1. As
the generation of a new linear combination is more useful if it is done over a wider
number of chunks, deferring the generation time - in the hope of increasing the number
of chunks - is a simple pragmatic way for improving the benefit of network coding. In
fact, the newly generated combination is more likely to be independent from the ones
stored at a larger number of neighbors.

The prolongation of the collecting phase thus acts a very simple adaption mechanism
that uses the reception of a new innovative chunk as an indicator that further useful
chunks are likely to be received in the near future. Please note that if the rank of the
decoding matrix at the beginning of a collecting phase is r, then the node can receive no
more than m − r new linear combinations; thus, the overall duration of the collecting
phase cannot exceed (m − r) × ΔTC .

At the end of the collecting phase the node sends out k = min{�FF × r�, C}
new combinations, where r is the total number innovative packets collected during the
collecting phase. The parameter FF , called the Forwarding Factor is a real number in
the range (0..1]. The forwarding factor regulates the “verbosity” of a node, and can be
useful in reducing the amount of data flooded in the network, or for conserving energy
by reducing the amount of transmissions from a node. Finally the node I decreases the
transmission counter C of k. The push phase ends when C = 0.

3.3 Pull Phase

The pull phase is initiated by a node A after ΔTP time unit from when C = 0 (recall
that each packet carries the topic identification so A triggers this phase only for chunks
belonging to events of interest).

To pull the missed chunks, node A broadcasts a requesting message to its neighbors.
This message contains the event ID and the number of missed chunks, say c, required
for full decoding. Upon receiving such a request, say at time t, a A’s neighbor, say
B, schedules the transmissions of c linear combinations at time t + ΔT , where ΔT is
a random jitter picked in the interval (0, TJ) (TJ is maximum jitter). During ΔT , B
listen for possible updates sent by A. A sends an update message each time it receives
some innovative chunks from any of its neighbors. An update message contains the
number c′ < c of innovative packets that A now wishes to receive. In such an update
message is received, B adjusts the scheduled number of transmissions to c′. Clearly,
the transmissions are cancelled when c′ = 0. Thus for example, a request message with
c = 3 triggers the scheduling of 3 linear combinations at each A’s neighbors (suppone
they are they B and D). Let assume that a neighbor D sends 3 chunks. If after the
reception of the new chunks A needs, say c′ = 1 more new chunks, A will send a new
requesting message containing this new value. In this way B decreases its contribution
from 3 to 1 chunk.

1 We have used the nam animation tool shipped with ns-2.
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4 Evaluation

This section reports an in-depth performance evaluation study of the proposed protocols
carried out by extensive simulations using ns-2.31 simulation tools [18]. We used a
914 MHz Lucent WaveLAN DSSS radio interface model available in the simulator.
Each node has a transmission range R. We used a two-ray ground refection model as
the wireless propagation model. Each reading of the simulation was taken after 100
independent runs. We have simulated 400 nodes arranged on a grid at distance of 250
meters from one other. The transmission range is either fixed to R = 250m (with
connectivity degree = 4 nodes), or to R = 750m (connectivity degree = 20 nodes). The
duration of each simulation was 500 seconds. The source of the event is placed at the
center of the grid and transmits a new packet of 1KB in size, every 1 s. The default
collecting time is ΔTC = 50 ms while the maximum jitter is TJ = 10 ms. The target
nodes are placed at random.

Arithmetic operations are performed on the Galois field 28. We have used the library
available at [9]. To speed up the simulation, the decoding matrix is managed in the
Gaussian triangular form. We say that a node decodes the event when the associated
encoding matrix has full rank. Using this simulation environment, we provide estimates
of the following performance metrics,

– Percentage of Decoding: percentage of nodes that successfully decode the event.
– Decoding Delay: the amount of time elapsed from when the event is generated until

it is decoded
– Cost of Diffusion: total number of bytes sent transmitted in the network for dissem-

inating the event

4.1 Protocol Tuning

Our first set of experiments concerns the effect of collecting time and the generation
size on the protocol performance. In these preliminary tests we have considered a push-
only protocol, i.e., nodes have no limit on the number of transmissions they are allowed
to perform.

The left plot in Figure 7 shows the full decoding probability as a function of the
generation size and the collecting time given as a parameter. The decoding probabil-
ity is highly affected by the collecting time. When the decoding phase is not applied,
ΔTC = 0, the decoding probability is very low, especially for small generation size.
The decoding probability increases with the collecting time, meaning that waiting al-
lows a node for collecting a larger amount of innovative information and then generating
linear combinations that are useful for a larger number of neighbors.

The right side plot in Figure 7 shows the cost as function of the generation size and
the collecting time as a parameter. The cost increases with the collecting time since a
longer collecting time allows for more node to full decoding and then sending data.

4.2 Performance on a Grid

The left side plot in Figure 8 shows the total per event diffusion cost as a function of
the number of subscribers for a 20 × 20 grid with connectivity 4. The cost of the pro-
posed protocol has been compared against three not adaptive protocols: flooding, gossip
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Fig. 8. Cost performance in a 20× 20 grid, connectivity 4. Number of bytes sent (left), decoding
delay (right).

and a push-only protocol with forwarding factor FF=5 and no limit on the number of
transmissions (labelled Prot Broadcast FF = 0.5). In the gossip protocol a node sends
the packet with probability pc = 0.7. The proposed multicast push-pull runs with
FF = 0.4, MaxTx = 6.

The cost of flooding is always 400 KB as all nodes send the packet whereas the
cost of gossip is 280 KB due to the probabilistic transmission. The cost of our protocol
is composed of a fixed part related to the pushing phase, and a variable part due to
the pulling phase, which increases linearly with the number of subscribers. The cost is
always below the gossip’s one.

The right side plot in Figure 8 shows the total decoding delay. The push-only protocol
is used to estimate an upper bound on the delay of the push-phase. The total decoding
delay is dominated by the time after which a node initiates the pulling phase. In our
simulations the pull phase starts after ΔTP = 7 s. This high value was selected for
clearly distinguish the pull phase component of the delay. From the plot we can see that
the pull phase requires approximatively 1 s to terminate. As the push phase requires no
more than 1.5 s., the total decoding delay can be as low as 2.5 sec.

To test the self-adapting mechanism of the pull phase, we have conducted a set of
experiments considering the higher connectivity degree of 20 neighbors. The parame-
ters used in this new setting are FF = 0.3, MaxTX = 3. These values are determined
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Fig. 9. Cost performance in a 20 × 20 grid, connectivity 20

empirically from the simulation and provide near optimal performance. The cost, see
Figure 9, shows a similar behavior and it always is lower than the cost of a push-only
protocol.

5 Conclusions

In this paper we have proposed an adaptive network-coding based event-diffusion pro-
tocol for wireless mesh networks. The proposed partial diffusion protocol uses a push-
pull method to reduce the initial dissemination cost (amount of data sent), but adds
a recovery cost incurred by the subscriber nodes. Compared to other blind dissemi-
nation protocols, most notably probabilistic flooding or gossip, our protocol has the
advantage that it requires significantly smaller amount of data to be transmitted into the
network. This advantage can be especially important for situations when nodes have
limited energy and/or bandwidth, such as sensor networks, or battery-powered wireless
nodes. Even in wireless meshes harnessed with higher-bandwidth IEEE 802.11 wireless
routers, reducing the amount of data transmitted is necessary in broadcast environments
to reduce contention on channels, since collisions can lead to excessive waiting delays
or dropping connections.

Wireless mesh networks can especially benefit from our protocols because the nodes
are not only transmitting and receiving their own data, but are also involved in relaying
data between close and distant neighbors.
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