

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 252–267, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

An Autonomic Computing Architecture
for Self-* Web Services

Walid Chainbi1, Haithem Mezni2, and Khaled Ghedira3

1 Sousse National School of Engineers/LI3 Sousse, Tunisia
Walid.Chainbi@gmail.com

2 Jendouba University Campus/LI3 Jendouba, Tunisia
haithem.mezni@fsjegj.rnu.tn

3 Institut Supérieur de Gestion de Tunis/LI3 Tunis, Tunisia
Khaled.Ghedira@isg.rnu.tn

Abstract. Adaptation in Web services has gained a significant attention and be-
comes a key feature of Web services. Indeed, in a dynamic environment such as
the Web, it's imperative to design an effective system which can continuously
adapt itself to the changes (service failure, changing of QoS offering, etc.).
However, current Web service standards and technologies don’t provide a suit-
able architecture in which all aspects of self-adaptability can be designed.
Moreover, Web Services lack ability to adapt to the changing environment
without human intervention. In this paper, we propose an autonomic computing
approach for Web services’ self-adaptation. More precisely, Web services are
considered as autonomic systems, that is, systems that have self-* properties.
An agent-based approach is also proposed to deal with the achievement of Web
services self-adaptation.

Keywords: Web service, autonomic computing systems, self*-properties.

1 Introduction

With the rapid growth of communication and information technologies, adaptation has
gained a significant attention as it becomes a key feature of Web services allowing them
to operate and evolve in highly dynamic environments. A flexible and adaptive Web
service should be able to adequately react to various changes in these environments to
satisfy the new requirements and demands.

When executing Web services, network configurations and QoS offerings may
change, new service providers and business relationships may emerge and existing
ones may be modified or terminated. The challenge, therefore, is to design robust and
responsive systems that address these changes effectively while continually trying to
optimize the operations of a service provider.

So, while we obviously need effective methodologies to adapt web services to a
dynamically changing environment, we also need elegant principles that would give
web services the ability to continue seeking opportunities to improve their behavior
and to meet user needs. To meet these goals, we propose an autonomic computing
architecture for self-adaptive web services. More precisely, we consider Web services
as autonomic computing systems.

 An Autonomic Computing Architecture for Self-* Web Services 253

Autonomic computing is to design and build computing systems that can manage
themselves [1]. These systems are sets of called autonomic elements whose interaction
produces the self-management capabilities. Such capabilities include: self-configuration,
self-healing, self-optimization, and self-protection [2].

• Self-configuration by adapting automatically to the dynamically changing envi-
ronment.

• Self-optimization by continually seeking opportunities to improve performance
and efficiency.

• Self-healing by discovering, diagnosing and reacting to disruptions such as re-
pairing service failure.

• Self-protection by defending against malicious attacks or cascading failures.

Other instantiations of self-managing mechanisms have been also adopted namely
autonomy of maintenance by Chainbi [3], and system adaptation and complexity
hiding by Tianfield and Unland [4].

The rest of this paper is organized as follows: section 2 gives a background mate-
rial on autonomic computing and shows how autonomic computing capabilities may
be applied in Web services. In section 3, we describe our solution for self-* Web
services. Section 4 deals with a case study. In section 5, we compare the proposed
study to related work. Section 6 presents some hints justifying the possible implemen-
tation of the presented autonomic architecture via an agent-based approach. Section 6
compares the proposed study to related work. The last section presents the conclusion
and the future work.

2 Autonomic Computing and Web Services

2.1 Autonomic Computing

Autonomic Computing is started by IBM in 2001 and is inspired by the human body’s
autonomic nervous system [2]. It is a solution which proposes to reallocate many of
the management responsibilities from administrators to the system itself.

Autonomic computing deals with the design and the construction of computing
systems that posses inherent self-managing capabilities. Such systems are then con-
sidered as autonomic computing systems. Each autonomic system is a collection of
autonomic elements – individual systems constituents that contain resources and de-
liver services to humans and other autonomic elements. It involves two parts: a man-
aged system, and an autonomic manager. A managed system is what the autonomic
manager is controlling. An autonomic manager is a component that endows the basic
system with self-managing mechanisms such as self-configuration, self-optimization,
self-healing, and self-protection.

The autonomic computing architecture starts from the premise that implementing
self-managing attributes involves an intelligent control loop [2] (see figure 1). This
loop enables the system to be self-*, and is dissected into three parts that share
knowledge:

254 W. Chainbi, H. Mezni, and K. Ghedira

Fig. 1. A control loop (adapted from [4])

• The measure part provides the mechanisms that collect, aggregate, filter, and
report details (e.g., metrics) collected from the controlled process.

• The decision part provides the mechanisms to produce the action needed to
achieve goals and at the same time respect the constraints.

• The actuation part provides the mechanisms that control the execution of actions.

With this characterization in place, the integration of autonomic computing may be
envisioned by two ways, namely (a) embedding the autonomic manager into the Web
service, and (b) using autonomic managers as an external layer which provides the
autonomic behavior for the Web service. The latter approach treats the Web service as
a "black box" surrounded by autonomic managers controlling the state of the Web
services and performing actions each of which can configure, optimize, heal, or cor-
rect the Web service. This approach requires the development of specific interfaces
facilitating the interaction between the autonomic manager part and the managed part
of the Web service. In this paper, we adopt the latter approach because it seems to be
more appropriate since it separates the monitoring problem from the application
specification. Accordingly, it ensures separation of concerns in the development proc-
ess. Hence, the proposed architecture clearly separates the business logic of a Web
service from its adaptation functionality.

2.2 Self-* Properties in Web Services

We define self-adaptive Web services as Web services supporting the autonomic com-
puting properties which are often referred to as self-* properties, and are the followings.

• Self-configuration: a Web service may be a set of interacting Web services
which in turn may interact with external applications with different interfaces
and protocols. A new component Web service has to incorporate itself seam-
lessly and the rest of the system will adapt itself to its presence. For example,
when a new Web service is introduced into a composite Web service, it will
automatically learn about and take into account the composition and the con-
figuration of the Web service, so that it can process services mismatches be-
tween interfaces and protocols by taking mediation actions.

 An Autonomic Computing Architecture for Self-* Web Services 255

• Self-healing: In case of problems such as service failure or QoS violation, a
Web service has to perform recovery actions including retry execution, substi-
tute candidate service, etc.

• Self-optimization: Web services have to continually seek opportunities to im-
prove their own performance and efficiency. For example, a component Web
service may be substituted with another one guaranteeing a better QoS and tak-
ing into account runtime execution context and other constraints.

• Self-protection: Web services can interact with other services or Web applica-
tions. They have to identify and detect intrusions and defend themselves against
attacks (e.g., message alteration or disclosure, availability attacks, etc.) by de-
fining and integrating some security policies.

It is important to note that these capabilities may be heavily interrelated with one
another in the Web service adaptation. For example, consider a system that fails to
invocate a component Web service. The adaptation process starts by detecting and
diagnosing the failure. Then the recovery action is to substitute this component Web
service (i.e., self-healing action). The system selects the suitable service based on
current state of the environment (i.e., self-optimization action). If the substituted and
the substituting services interfaces don’t match, some mediation actions have to be
taken (i.e., self-configuration action).

3 Autonomic Web Service Architecture

Dealing with self-* in a Web service means simply that the Web service act without
the direct intervention of any other external agent (including but not limited to, a
human) in order to meet self-* properties. Accordingly, autonomy is required for Web
services to self-* themselves to the different events occurring in their environment.
Autonomy is also necessary for an autonomic computing system. Indeed, system self-
* has to be carried out without requiring the user’s consciousness [4].

With this characterization in place, the match process in favor of an autonomic
computing system solution is straightforward. A Web service is the system to be
managed, and an autonomic manager is required to endow the Web-service with self-
* capabilities such as self-configuration, self-healing, self-optimization, and self-
protection. Figure 2 represents an autonomic Web service architecture.

Fig. 2. An autonomic Web service architecture

256 W. Chainbi, H. Mezni, and K. Ghedira

An autonomic Web services environment may combine a variety of managed re-
sources including autonomic Web services, processes, etc. These resources have dif-
ferent requirements and architectures which need autonomic managers with different
capabilities allowing Web services to be self-*.

In case of executing a composite Web service, the management tasks of the com-
ponent services are shared between a set of autonomic managers. The topology of the
autonomic system is specified as a correlation between autonomic managers which
perform many tasks such as managing the executing Web service, interacting with
registries to select suitable web services or coordinate the work of other autonomic
managers. The autonomic managers’ work is orchestrated by a special autonomic
manager which is responsible for the coordination of the basic Web services auto-
nomic managers. Note that the autonomic manager coordinating the set of services'
autonomic managers can be considered as a managed resource in case the associated
composite Web service is used as a component service in another process. Figure 3
shows the structure of such a system.

Fig. 3. An autonomic Web service system architecture

An autonomic manager has to interact with its external environment to be able to
manage Web services efficiently. External environment includes registries and other
autonomic managers. Interaction with registries enable autonomic managers to send a
substitution request of a Web service, to select best available Web services for a new
composition, to get new Web services opportunities, etc. Autonomic managers may
also interact with registries (independently of the managed Web services) when de-
tecting any change in the state of the environment, such as emergence of new nodes,
termination of existing ones, etc. Such interaction allows autonomic managers to be

 An Autonomic Computing Architecture for Self-* Web Services 257

aware of the available resources for the adaptation process of the executing Web ser-
vice or for a future management task.

Autonomic managers may also interact between each others to send information or
to perform adaptation. For example, if a Web service’s autonomic manager fails to
adapt its managed Web service, it may send a request to its coordinating autonomic
manager to execute adaptation actions at the composite service level (i.e., adaptation
of the whole Web service). The same information’s flow may occur between two
coordinating autonomic managers in case the managed composite service is com-
posed of some complex Web services.

4 Example of an Adaptation Scenario

The structure of the autonomic Web service system may change in run time to satisfy
a self*-property. Figure 4 shows an example of adaptation scenario where a basic
Web service is substituted by a composite Web service.

Using the search for music scenario, we show how an executing Web service may
be adapted to meet the user needs and we show how the autonomic system is able to
adjust its specification according to the changing conditions. In this scenario, the
client wishes to listen to music and to download songs in the rm format while reading
lyrics and information about the artist. Figure 5 shows the sequence diagram related
to the adaptation scenario.

Fig. 4. Example of adaptation scenario

Consider the FindMusic Web service invoked by a user to look for a song. The
service takes as inputs the song’s title or the performer’s name. Then, it shows the
results according to the user’s request. Since the user searches songs with a particular
format, he may specify this format in the song’s parameters. After selecting the de-
sired song, the Web service proposes to play or to download the song. While listen-
ing, users have the possibility to read lyrics and artist information.

258 W. Chainbi, H. Mezni, and K. Ghedira

Fig. 5. Sequence diagram of the adaptation scenario

When starting the execution, the FindMusic Web service is associated to an auto-
nomic manager, which performs the monitoring task and interaction with the external
environment such as requesting registries to look for new opportunities or to execute
adaptation actions.

The adaptation process starts when the autonomic system detects an event trigger-
ing a self-* action. Such an event may be an invocation failure of the FindMusic Web
service. Therefore, the autonomic Web service system takes some recovery actions
such as retrying execution. If the execution fails again then the autonomic system
triggers a recovery action in order to replace this component with another one such as
a composite Web service. The autonomic system interacts with Web services regis-
tries to perform the selection of the suitable service according to objectives of the
failed FindMusic service.

 An Autonomic Computing Architecture for Self-* Web Services 259

Let the selected service be a composite web service, where the components are the
SeekMp3 Web service, the MusicConverter Web service and the Lyrics Web service.
These Web services interact to satisfy user requests. The SeekMp3 service receives
the song title or artist name and returns a result which is a set of songs with different
formats. Then MusicConverter service, based on the preferred format, is invoked to
convert input files (results returned by the SeekMp3 service) to the desired format.
The Lyrics service uses the song’s title to return lyrics of the song and information
about the corresponding artist. Finally, outputs of the MusicConverter Web service
and the Lyrics Web service (songs in rm format, lyrics and artist’s information) are
returned to the user.

The selected composite Web service is made up with three autonomic managers for
managing the basic services and an autonomic manager for coordinating services’
autonomic managers. The autonomic manager, responsible for monitoring the failed
FindMusic service, is replaced by these autonomic managers that will manage the
substituting composite service. Analysis and design of autonomic Web services is out
of the scope of this paper which main content deal with an autonomic architecture to
self-* Web services. Some hints are given in section 6.

Note that the desired service (that will substitute the failed FindMusic service) may
be unavailable or may not exist. The autonomic system, then, has to interact with the
registries to look for possible actions such as composing the substituting service. In
case of replacing a composite web service by a basic one, the set of autonomic man-
agers associated to the composite service are replaced by a single autonomic manager
to manage the substituting basic service.

From a functional perspective, the substituting service meets the user needs and of-
fers the same functionality of the failed FindMusic service. Rarely does service’
WSDL interfaces match exactly. In our scenario, SeakMp3 and MusicConverter ser-
vices interfaces don’t match. This requires taking some mediation actions to translate
between the two service-interface signatures, so that interoperability can be made
effective. For this, associated autonomic managers, based on their self-configuration
capabilities, should interact to generate an adapter (e.g. a service) that mediates the
interactions among the two SeakMp3 and MusicConverter services.

Once the autonomic system is established, it continuously monitors the executing
Web service to detect problems while trying to improve its performance. In our work,
Web services self-optimization behavior is a combination of monitoring, selection and
substitution capabilities. Self-optimization may occur in case of emergence of a new
Web service with the same functionality and with a better quality. Regarding our
executing Web service, possible optimization actions are: substituting one of the
component services (SeakMp3, MusicConverter or Lyrics) or substituting the whole
executing composite Web service.

Each autonomic manager must continuously try to improve the whole executing
Web service performance by interacting with registries to get services opportunities.
Indeed, each Web service’s autonomic manager receives opportunities from registries
and decides about substituting its associated Web service. In the same way, the coor-
dinating autonomic manager should also interact with registries to look for a better
Web service that may replace the whole executing web service.

Suppose that a change in the execution environment occurs (emergence of new
Web services similar to the SeakMp3 service). The autonomic manager associated to

260 W. Chainbi, H. Mezni, and K. Ghedira

the SeakMp3 service receives the ranked candidate services list from registries and
decide to replace the SeakMp3 service with the basic AllMusic service. Then, it analy-
ses the new specification of the executing composite Web service to look for any
change. Since the SeakMp3 Web service is replaced with a basic one, the autonomic
manager decides that no changes have occurred in the service specification and keeps
the current autonomic system specification.

Consider now, that the MusicConverter service is no longer available. The associ-
ated autonomic manager handles adaptation accordingly. For this, it implements a set
of recovery actions that allows substituting the MusicConverter service. If no candi-
date service is available for substituting, the autonomic manager tries to apply another
appropriate recovery action to let the execution successfully terminate. To that end,
the autonomic manager features several recovery actions. Possible solutions are (a)
composing a new Web service with the same functionality of the failed MusicCon-
verter service or (b) replacing the whole executing composite service. In case of
adopting the first solution, the autonomic manager uses its automatic service discov-
ery and composition capabilities to interact with registries and perform the necessary
repair actions. It may also choose the second solution and looks for assistance from its
coordinating autonomic manager. This is by informing the coordinating autonomic
manager about the detected problem (MusicConverter unavailability) and about the
new information collected after trying to execute repair actions (unavailability of
substituting services). So, based on information sent by the MusicConverter auto-
nomic manager, and after interacting with registries, the self-healing behavior of the
coordinating autonomic manager is to substitute the whole executing composite Web
service with another one having the same goals. For this, the coordinating autonomic
manager contacts the registries to get a set of candidate services similar to the desired
one (the whole Web service) and selects the best available service: the MusicClub
Web service. Once the MusicClub service starts to execute, the autonomic system
adjust itself according to the new specification of the executing Web service by instanti-
ating new autonomic managers or deactivating existing ones. In case of replacing the
composite Web service by a basic one, the set of autonomic managers associated to the
composite service are replaced by a single autonomic manager to manage the substitut-
ing basic service.

5 Related Work

The main purposes of service adaptation vary from ensuring interoperability to ser-
vice recovery and optimization and context management. Some approaches address
the problem of interoperability due to interfaces and protocols heterogeneity. Recov-
ery deals with techniques for detecting problems in services interaction and searching
alternative solutions. Optimization is about discovering and selecting the suitable
Web service with respect to QoS offerings and user needs. Finally, solutions for con-
text change aim to optimize the service function of their execution context. Here are
some works on service adaptation:

The WS-Diamond Project [5] aims at the development of a framework for self-
healing Web services, that is, services able to self monitor, to self-diagnose the causes
of a failure, and to self-recover from functional and non-functional failures. In [6], the

 An Autonomic Computing Architecture for Self-* Web Services 261

solution for self-healing of BPEL processes is based on Dynamo, a monitoring
framework, together with an AOP extension to ActiveBPEL, and a monitoring and
recovery subsystem that uses Drools ECA rules.

In [7], a methodology and a tool for learning the repair strategies of WS to auto-
matically select repair actions are proposed. The methodology is able to incrementally
learn its knowledge of repairs, as faults are repaired. Thus, it is at runtime possible to
achieve adaptability according to the current fault features and to the history of the
previously performed repair actions. In [8], the authors propose a methodology for the
automated generation of adaptors capable of solving behavioral mismatches between
BPEL processes. [9] introduces PAWS, a framework for flexible and adaptive execu-
tion of managed WS-based business processes. In the framework, several modules for
service adaptation (mediation engine, optimization and self-healing) are integrated in
a coherent way.

In [10], the authors developed a staged approach for adaptive Web service compo-
sition and execution (A-WSCE) that cleanly separates the functional and non-
functional requirements of a new service, and enables different environmental
changes to be absorbed at different stages of composition and execution.

In [11], the authors are focusing on run-time adaptation of non-functional features
of a composite Web service by modifying the non-functional features of its compo-
nent. The aspect oriented programming technology is used for specifying and relating
non-functional properties of the Web services as aspects at both levels of component
and composite services.

While current approaches address significant subsets of adaptation requirements,
they have some drawbacks including the degree of automation, few techniques for
capturing non-functional properties, etc. The autonomic approach presented in this
paper deals with the different facets of adaptation since its purpose is the design and
the construction of Web services that posses inherent self-* capabilities.

Furthermore, there is no existing approach addressing the adaptation cross all the
functional layers of the service based systems (i.e., the business process layer, the
service composition layer, and the service infrastructure layer) since all the ap-
proaches address only a particular functional layer. For example, [10] and [11] deal
with the infrastructural layer whether the composition layer was dealt with in [8] and
[9]. In addition, existing approaches try to integrate a maximum of requirements in
order to have a complete framework. For this purpose, our main concern is to propose
a general autonomic architecture that provides self-* capabilities and meets the most
important adaptation requirements without affecting services consistency and by pre-
serving the robustness of the applications. Moreover, none of the existing approaches
have studied the complexity in the implementation, that is, hiding the complexity
from user and how much the adaptation is complex at any time of the application
lifetime. Autonomic computing provides self-adaptation while keeping its complexity
hidden from the user [4].

In our work, considering Web services as autonomic systems, offers many advan-
tages. First, unlike existing approaches, the management task is shared between a set
of autonomic managers, each of them is associated to a Web service. This leads to an
effective monitoring and consequently to a high degree of adaptation.

262 W. Chainbi, H. Mezni, and K. Ghedira

6 Implementation Issues

In this section, we deal with the technical machinery to achieve the self-adaptation.
We adopt an agent-based solution for the autonomic Web-service system. The inte-
gration of agent-based computing into the framework of autonomic computing may
be envisioned by two ways, namely (a) integrating the autonomic cycle into the sys-
tem, thus in a certain sense embedding the autonomic manager into the managed
system and adopting an agent solution for the whole, and (b) using agents as an exter-
nal layer which provides the autonomic behavior. We propose to adopt an agent solu-
tion for the whole namely the managed part of the Web service and the manager part.
Consequently, the interaction between the managed and the managing parts of the
system become easier. This is mainly due to the homogeneity of the adopted solution
(an agent is the unit of design).

In any design process, finding the right models for viewing the problem is a main
concern. In general, there will be multiple candidates and the difficult task is picking
the most appropriate one. Next, we analyze the high degree of match between the
characteristics of agent systems and those of autonomic systems [3].

6.1 Behavioral Match

The match process argument in favor of an agent based solution can be expressed by
the fact that an agent is able to deal with the aforementioned actions related to the
control loop (see figure 1 §2.1). The term agent in computing covers a wide range of
behavior and functionality. In general, an agent is an active computational entity that
can perceive (through sensors), reason about, and initiate activities (through effectors)
in his environment [12]. Normally, an agent has a repertoire of actions available to
him. This set of possible actions represents his ability to modify his environment. The
types of actions an agent can perform at a point of time include:

• Physical actions are interactions between agents and the spatial environment.
• Communicative actions are interactions between agents. They can be emission

or reception actions.
• Private actions are internal functions of an agent. They correspond to an agent

exploiting his internal computational resources.
• Decision action can generate communicative, physical and private actions. A

decision action can also update the agent's beliefs.

Fig. 6. An ongoing interaction between an agent and his environment

AGENT

ENVIRONMENT

Sensor input

Action output

 An Autonomic Computing Architecture for Self-* Web Services 263

An action may be classified as either configuration, optimization, healing, or pro-
tection action depending on the reason of its execution. For example, substituting a
candidate service is a physical action which can be optimization action if it is in-
tended to guarantee a better QoS. It can be as well considered as a healing action in
case of service failure.

6.2 Complexity Management

Computing systems consisting of software, hardware and communication infrastruc-
ture have become ever increasingly complex. If autonomic computing paradigm is to
be engineered for such complex systems, hierarchical control architectures are con-
sidered as a key technology to rely upon [4, 13, 14]. In such case, a hierarchy of con-
trol loops is required to endow the whole system of self-managing mechanisms. Each
level of control loop, achieving correspondingly, one of the different control goals
which collectively constitute the overall control objectives of the system. Conse-
quently, a multi-agent system solution is envisioned to deal with the self-* capabilities
within an autonomic computing system.

For example, numerous autonomic managers in a composite Web service system
must work together to deliver autonomic computing to achieve common goals. This is
the case of a composite Web service which needs to work with the autonomic manag-
ers of the elementary Web services, registries in order for the Web service infrastruc-
ture as a whole to become a self-* system.

The argument in favor of a multi-agent system solution can also be described in
terms of the ability of such systems to deal with complexity management. Previously,
Booch identified three techniques for tackling complexity in software: decomposition,
abstraction and organization [15].

• Decomposition: the process of dividing large problems into smaller, more man-
ageable chunks each of which can then be dealt with in relative isolation.

• Abstraction: the process of defining a simplified model of the system that em-
phasizes some of the details or properties, while suppressing others.

• Organization: the process of identifying and managing the interrelationships be-
tween the various problem solving components. This helps designers tackle
complexity in two ways. Firstly, by enabling a number of basic components to
be grouped together and treated as a higher-level unit of analysis (e.g., the indi-
vidual components of a subsystem can be treated as a single coherent unit by the
parent system). Secondly, by providing a means of describing the high-level re-
lationships between various units (e.g., a number of components may cooperate
to provide a particular functionality).

Next, we deal with each technique in turn.

• Agent-oriented decomposition is an effective way of partitioning the problem
space of a complex system: the agent-oriented approach advocates decomposing
problems in terms of autonomous agents that can engage in flexible, high-level
interactions. Decomposing a problem in such a way helps the process of engi-
neering complex systems in two main ways. Firstly, it is simply a natural repre-
sentation for complex systems that are invariably distributed and that invariably
have multiple loci of control. This decentralization, in turn, reduces the system’s

264 W. Chainbi, H. Mezni, and K. Ghedira

control complexity and results in a lower degree of coupling between compo-
nents. The fact that agents are active entities means they know for themselves
when they should be acting and when they should update their state. Such self-
awareness reduces control complexity since the system’s control know-how is
taken from a centralized repository and localized inside each individual problem
solving component [12]. Secondly, since decisions about what actions should be
performed are devolved to autonomous entities, selection can be based on the
local situation of the problem solver. This means that the agent can attempt to
achieve its individual objectives without being forced to perform potentially dis-
tracting actions simply because they are requested by some external entity. The
fact that agents make decision about the nature and scope of interactions at run-
time makes the engineering of complex systems easier. Indeed, the system’s in-
herent complexity means it is impossible to know a priori about all potential
links: interactions will occur at unpredictable times, for unpredictable reasons,
between unpredictable components. For this reason, it is futile to try and predict
or analyze all the possibilities at design time. Rather, it is more realistic to en-
dow the components with the ability to make decisions about the nature and
scope of their interactions at run-time. Thus agents are specifically designed to
deal with unanticipated requests and they can spontaneously generate requests
for assistance whenever appropriate.

• The key abstractions of agent-oriented mindset are a natural means of modeling
complex systems: In the case of a complex system, the problem to be characterized
consists of subsystems, subsystems components, interactions and organizational re-
lationships. Taking each in turn: firstly, there is a strong degree of correspondence
between the notions of subsystems and agent organizations. They both involve a
number of constituent components that act and interact according to their role
within the larger enterprise. Secondly, the interplay between the subsystems and
between their constituent components is most naturally viewed in terms of high
level social interactions (e.g., agent systems are described in terms of "cooperating
to achieve common objectives" or "negotiating to resolve conflicts"). Thirdly,
complex systems involve changing webs of relationships between their various
components. They also require collections of components to be treated as a single
conceptual unit when viewed from a different level of abstraction. On both levels,
the agent-oriented mindset again provides suitable abstractions. A rich set of struc-
tures is typically available for explicitly representing and managing organizational
relationships such as roles (see [16, 17] for example). Interaction protocols exist for
forming new groupings and disbanding unwanted ones (e.g., Sandholm's work
[18]). Finally, structures are available for modeling collectives (e.g., teams [19]).

• The agent-oriented philosophy for dealing with organizational relationships is
appropriate for complex systems: organizational constructs are first-class enti-
ties in agent systems. Thus explicit representations are made of organizational
relationships and structures. Moreover, agent-based systems have the concomi-
tant computational mechanisms for flexibly forming, maintaining and disband-
ing organizations. This representational power enables agent-oriented systems
to exploit two facets of the nature of complex systems. Firstly, the notion of
primitive component can be varied according to the needs of the observer. Thus,
at one level, entire subsystems can be viewed as singletons, alternatively, teams

 An Autonomic Computing Architecture for Self-* Web Services 265

or collections of agents can be viewed as primitive components, and so on until
the system eventually bottoms out. Secondly, such structures provide a variety
of stable intermediate forms that, as already indicated, are essential for the rapid
development of complex systems. Their availability means individual agents or
organizational groupings can be developed in relative isolation and then added
into the system in an incremental manner. This, in turn, ensures there is a
smooth growth in functionality.

6.3 Pragmatic Reasons

Autonomic computing denotes a move from the pursuit of high speed, powerful com-
puting capacity to the pursuit of self-managing mechanisms of computing systems.
Indeed, today's computing and information infrastructure have reached a level of
complexity that is far beyond the capacity of human system administration. For in-
stance, follow the evolution of computers from single machines to modular systems to
personal computers networked with larger machines. Along with that growth has
came increasingly sophisticated architectures governed by software whose complexity
now routinely demands tens of millions of lines of codes. The internet adds yet an-
other layer of complexity by allowing us to connect this world of computers and
computing systems with telecommunications networks. In the process, the systems
have become increasingly difficult to manage, and ultimately, to use. Inspired by the
functioning of the human nervous system which frees our conscious brain from the
burden of dealing with some vital functions (such as governing our heart rate and
body temperature), autonomic computing is considered as a promising solution to
such problems.

As yet, however there is not a successful solution to autonomic computing which
can be applied on a significant scale. So far a mature solution has not yet appeared. In
part, this is due mainly to the youth of this paradigm and the absence of adequate
tools, but our experience suggests that the absence of tools that allow system com-
plexity to be effectively managed is a greater obstacle.

Agent technology is one of the most dynamic and exciting areas in computer sci-
ence today. Many observers believe that agents represent the most important new
paradigm for software development since object-orientation. Agent technology has
found currency in diverse applications domains including ambient intelligence; grid
computing where multi-agent system approaches enable efficient use of the resources
of high-performance computing infrastructure in science, engineering, medical and
commercial applications; electronic business, where agent-based approaches support
the automation of information-gathering activities and purchase transactions over the
internet; the semantic web, where agents are needed both to provide services, and to
make best use of the resources available, often in cooperation with others ; and others
including resource management, military and manufacturing applications [20].

Agent paradigm has achieved a respectable degree of maturity and there is a wide-
spread acceptance of its advantages: a relatively large community of computer-
scientists which is familiar with its use now exists. A substantial progress has been
made in recent years in providing a theoretical and practical understanding of many
aspects of agents and multi-agent systems [21].

266 W. Chainbi, H. Mezni, and K. Ghedira

7 Conclusion and Future Work

In this paper we adopt autonomic computing paradigm to propose an approach for
self-adaptive web services. The basic idea is to consider web services as autonomic
systems, that is, systems able to manage and adapt themselves to the changing envi-
ronment according to a set of goals and policies. As a result, autonomic web services
can recover from failure, optimize their performance, configure themselves, etc. with-
out any human intervention. An autonomic distributed architecture is proposed where
each component service is associated with one or a set of specific autonomic
manager(s). We have also presented in this paper the main reasons to consider agent
technology as a suitable candidate to deal with the technical machinery achieving
self-adaptation within a Web services system.

Motivated by the fact that self-adaptation systems are recently considered as the
trend of the new systems, and by the justified claim that agent-based computing has
the potential to be integrated into the framework of autonomic computing we will
show, in our future work, how software agents may be used to deal with autonomic
Web services systems. More precisely, we envision to develop an agent-based archi-
tecture for an autonomic Web services system. An adaptive version of the Search for
Music scenario, presented in this paper, is currently being implemented by using an
agent based approach.

References

1. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era. J. IBM Sys-
tems 42(1), 5–18 (2003)

2. IBM Group.: An Architectural Blueprint for Autonomic Computing, http://www-
03.ibm.com/autonomic/pdfs/AC

3. Chainbi, W.: Agent Technology for Autonomic Computing. J. Transactions on Systems
Science and Applications 1(3), 238–249 (2006)

4. Tianfield, H., Unland, R.: Towards Autonomic Computing Systems. J. Engineering Appli-
cations of Artificial Intelligence 17(7), 689–699 (2004)

5. Console, L., Fugini, M.: The WS-Diamond Team: WS-DIAMOND: an Approach to Web
Services - DIAgnosability, MONitoring and Diagnosis. In: e-Challenges Conference, The
Hague (2007)

6. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL Processes with Dynamo and the
JBoss Rule Engine. In: International Workshop on Engineering of Software Services for
Pervasive Environments (ESSPE 2007), pp. 11–20 (2007)

7. Pernici, B., Rosati, A.M.: Automatic Learning of Repair Strategies for Web Services. In:
5th European Conference on Web Services (ECOWS 2007), pp. 119–128 (2007)

8. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: International Con-
ference on Service Oriented Computing (2006)

9. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for
Executing Adaptive Web-Service Processes. J. IEEE Software 24(6), 39–46 (2007)

10. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service
Composition and Execution. In: International Conference on Web Services, pp. 549–557
(2006)

 An Autonomic Computing Architecture for Self-* Web Services 267

11. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-Time Adaptation
of Non-functional Properties of Composite Web Services Using Aspect-Oriented Pro-
gramming. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 546–557. Springer, Heidelberg (2007)

12. Jennings, N.: On Agent-based Software Engineering. J. Artificial Intelligence 117(2), 277–
296 (2000)

13. Albus, J.S., Meystel, A.M.: Engineering of Mind: an Introduction to the Science of Intelli-
gent Systems. Wiley, New York (2001)

14. Tianfield, H.: Formalized Analysis of Structural Characteristics of Large Complex Sys-
tems. J. IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Hu-
mans 31(6), 59–572 (2001)

15. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley,
Reading (1994)

16. Baejis, C., Demazeau, Y.: Organizations in Multi-Agent Systems. Journées DAI, Toulouse
(1996)

17. Fox, M.S.: An Organizational View of Distributed Systems. J. IEEE Transactions on Sys-
tems, Man and Cybernetics 11(1), 70–80 (1981)

18. Sandholm, T.: Distributed Rational Decision Making. Multi-Agent Systems. MIT Press,
Cambridge (1985)

19. Tambe, M.: Toward Flexible Teamwork. J. Artificial Intelligence Research 7, 83–124
(1997)

20. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Com-
puting. In: AgentLink II (2003)

21. D’inverno, M., Luck, M.: Understanding Agent Systems, 2nd edn. Springer, Heidelberg
(2004)

	An Autonomic Computing Architecture for Self-* Web Services
	Introduction
	Autonomic Computing and Web Services
	Autonomic Computing
	Self-* Properties in Web Services

	Autonomic Web Service Architecture
	Example of an Adaptation Scenario
	Related Work
	Implementation Issues
	Behavioral Match
	Complexity Management
	Pragmatic Reasons

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

