A Generic Agent Organisation Framework for
Autonomic Systems

Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings

School of Electronics and Computer Science
University of Southampton, Southampton, UK
{rckO5r,nmg,nrj}@ecs.soton.ac.uk

Abstract. Autonomic computing is being advocated as a tool for man-
aging large, complex computing systems. Specifically, self-organisation
provides a suitable approach for developing such autonomic systems
by incorporating self-management and adaptation properties into large-
scale distributed systems. To aid in this development, this paper de-
tails a generic problem-solving agent organisation framework that can
act as a modelling and simulation platform for autonomic systems. Our
framework describes a set of service-providing agents accomplishing tasks
through social interactions in dynamically changing organisations. We
particularly focus on the organisational structure as it can be used as the
basis for the design, development and evaluation of generic algorithms
for self-organisation and other approaches towards autonomic systems.

Keywords: Organisation, Autonomic Systems, Organisation Model.

1 Introduction

Autonomic systems are envisaged as self-managing, distributed computing sys-
tems containing several service-providing components interacting with each other
over large networks to accomplish complex tasks. The features of such systems
are that they are robust, decentralised, adapting to changing environments and
self-organising. Within this, a central concern that needs to be focused on is the
interactions between the various computing entities involved. In particular, the
interactions within the system are critical for it to achieve its system-wide goals
as the tasks tend to be too complex to be accomplished by any single component
or entity alone. Given this, and taking inspiration from self-organisation prin-
ciples, the development of effective autonomic systems involves, to a significant
extent, adapting local interactions towards achieving a better performance glob-
ally [I8]. By so doing, the system can robustly reconfigure itself to the changing
requirements and environmental conditions. Therefore, the self-management as-
pect of the system requires that the individual components of the system are
allowed the freedom to adapt their local interactions with other components. In
particular, adapting these interactions is necessary because, purely changing the
internal characteristics of the components will not be sufficient for improving
performance as most of the tasks and goals involve multiple components and
interactions across them.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 203 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

204 R. Kota, N. Gibbins, and N.R. Jennings

For example, consider the interconnected network of a university as a form
of an autonomic grid system. Being a university, it contains various labs with
their own specialised computing systems, as part of the overlaying network of
the university. That is, there might be a graphics lab containing computers with
some high end graphics cards for rendering rich intensive images. Similarly, some
computers in the geography lab might contain various GIS maps and related soft-
ware. Also, there will be complex computing tasks that need several computers
(possibly situated in different labs) providing specialised services for their ac-
complishment. A task might need statistical analysers from the mathematics
department for analysing data available from the sociology department in order
to predict natural resource, like water and wood, usage as needed by the institute
on environmental conservation. Thus, the computers on the university network,
need to interact with one another to perform these complex tasks. Moreover, as
these individual computers are controlled by different people in different labs,
the respective loads on them, at any time, cannot be known or predicted. Also,
some might go offline, some might be upgraded and so on. Hence, the computers
need to continuously adapt their interactions with others in the network to keep
up with the changes and, also optimise the overall performance.

Now, these social interactions of the components can be quite reactive and
not guided by definite regulations or they can be structured using an explicitly
depicted network or organisation. That is, the individual components of the
system will be modelled as autonomous agents participating in an organisation
and the interactions between the components are governed by the structure of
this organisation. In such a context, regulating the interactions in the system
through the organisation structure will aid in the design of adaptation techniques
by suitably representing the recurring interactions between the components. For
example, consider the autonomic system being used to maintain the computing
systems in a university, as discussed earlier. Now, given the large number of
computers or components in the system, one computer can hope to maintain
links with just a limited number of those in the network. Now, say a computer
in the geography lab regularly needs computers with good graphics capabilities
for rendering its maps. It has to choose between maintaining links with just one
computer or with many in the graphics lab. The former case will lead to less
processing at the geography computer during allocation but might lead to delays
in task completion when that particular graphics computer is busy. In contrast,
the latter case will require more processing at the geography computer every
time it has to allocate a task,but might help in getting quicker outputs once the
task is allocated. Now, if provided with the structure, the geography computer
can smartly choose how many graphics computers to maintain links with by
evaluating the possible delays that might occur when accessing most of the
graphics computers indirectly and compare that with the resources saved at itself
in terms of processing cycles per each allocation task. Once the social interactions
are explicitly depicted by the organisation structure, designers seeking to embed
adaptation into the system can then use and focus on this organisation as a whole
rather than working on each of the individual components separately. Thus, the

A Generic Agent Organisation Framework for Autonomic Systems 205

organisation model will provide a better overview of the global performance of
the system without compromising on the individuality of the constituent entities.

In summary, we argue that a formally modelled organisational representation
of the components will help in managing their social interactions [22], and at the
same time, provide insights into possible avenues for self-organisation and adap-
tation towards improving global behaviour. More specifically, we contend that
depicting the distributed computing systems, including the service providers,
their social interactions and the task environment, using an abstract organisa-
tion framework will provide a suitable platform to develop and test techniques
attempting to bring about autonomicity into the system.

Against this background, we seek to develop a problem-solving agent organi-
sation model that serves as a fitting abstract representation of such distributed
computing systems. Our model will provide an appropriate simulation framework
for distributed systems by modelling the task environment, the computational
entities and their interactions along with their performance evaluation mea-
sures. Such a platform can then be used for developing and evaluating generic
approaches designed for autonomic systems. In this context, by problem-solving
agent organisations we refer to those containing some service-providing agents
that receive inputs, perform tasks and return results. We chose to use problem-
solving agent organisations because they can be decentralised with autonomous
and independent agents which accomplish tasks by providing services and col-
laborating with each other through social interactions governed by the organi-
sation’s structure. Thus, it models the salient features of distributed computing
systems and, at the same time, contains the flexibility required to make them
autonomic. Following the reasons detailed above, the focus of the model is on the
inter-agent interactions; that is, the organisation structure and its effect on the
system. Moreover, we also present an evaluation mechanism for the performance
of the organisation based on the tasks or goals achieved by it. This method
is developed such that the critical role played by the organisation structure
on the performance is made explicit and clear. Therefore, any designer of self-
organisation techniques, especially those focusing on the structure or network,
will be able to see their method in action and evaluate its performance before
being transported and put in the actual domain specific autonomic systems.

In more detail, our organisation models a set of service-providing, resource
constrained agents facing a dynamic stream of tasks requiring combinations of
services with some ordering. The agents only posses local views and need to
interact with each other to accomplish the tasks. These interactions are governed
by the relations existing between the agents (organisation structure) and affect
task allocation and organisation’s performance. Finally, keeping in mind the
development of adaptation techniques based on the structure, we also provide a
method of representing the costs and resources involved in reorganisation.

In the next section (Sec. @), we discuss the current literature in our context.
Then in Sec. [Bl we present our organisation framework together with the task
environment, agents, organisational characteristics and performance measures.
We illustrate our model with an example in Sec. @l and conclude in Sec.

206 R. Kota, N. Gibbins, and N.R. Jennings

2 Related Work

As we are seeking to develop an organisation framework that suitably represents
distributed computing systems, it should provide an abstract representation of
the components of the system, their social interactions and the tasks that they
perform along with the environment that they are based in. Correspondingly, or-
ganisation modelling involves modelling the task environment, the organisational
characteristics (structure and norms), the agents and the performance measures.
In the following, we study the current literature in each of these aspects.

2.1 Modelling Tasks

The tasks faced by the organisation can be atomic or made up of two or more
tasks (or subtasks) which, in turn, may be composed of other tasks. The tasks
may have dependencies among them, resulting in a temporal ordering of the
tasks in the organisation. In this context, [I9] identifies three kinds of such
dependencies— pooled, sequential and reciprocal. Two or more tasks whose re-
sults are jointly required to execute another task are said to be in a pooled
dependency relation with each other. A sequential dependency exists between
tasks if they have to be performed in a particular sequence. Finally, a reciprocal
dependency exists if the tasks are mutually dependent on each other and have
to be executed at the same time. However, the tasks dependencies as suggested
by Thompson have subsequently been interpreted in different ways in different
models. In particular, [I1] model the task dependencies in their ‘Virtual Design
Team (VDT)’ closely following Thompson’s model. In fact, they even extend the
sequential and reciprocal dependencies by classifying each of them into different
types. In contrast, in the PCANS model, [I3] demonstrate that both pooled and
reciprocal dependencies, as described by Thompson, can be derived from sequen-
tial dependencies. Thus, their representation enables the designer to model just
a single dependency type. For our present requirements, we just require a simple
task model containing dependencies, and hence we will use the PCANS model.

2.2 Modelling Organisational Characteristics

Approaches towards organisational design in multi-agent systems can be con-
sidered to be either agent-centric or organisation-centric [14]. The former focus
on the social characteristics of agents like joint intentions, social commitment,
collective goals and so on. Therefore, the organisation is a result of the social
behaviour of the agents and is not created explicitly by the designer. On the
other hand, in organisation-centric approaches, the focus of design is the organ-
isation which has some rules or norms which the agents must follow. Thus, the
organisational characteristics are imposed on the agents. As we are primarily
interested in problem-solving agent organisations, we only study organisations
in multi-agent systems whose design is modelled explicitly.

In this context, the OperA and OMII frameworks [2/21] formally specify agent
societies on the basis of social, interaction, normative and communication struc-
tures. However, in both of these frameworks, the agents are not permitted to

A Generic Agent Organisation Framework for Autonomic Systems 207

modify the pre-designed organisational characteristics. Hence, they do not pro-
vide a suitable platform for self-organisation. Islander [I6] also uses a similar
approach by expecting the designer to pre-design the roles and the possible inter-
actions between them thus delivering fixed patterns of behaviour for the agents
to follow. Thus, this too is not flexible enough to incorporate reorganisation.

A more useful and simpler model developed by [3] provides a meta-model
to describe organisations based on agents, groups and roles (AGR). While their
model mainly pertains to groups of agents and intra-group dynamics (which does
not apply to our requirements), they model organisation structure as defining
the possible interactions between the groups. This interpretation of the structure
matches our purpose and lies behind our model as well. A somewhat similar
approach is followed by Moise [§], which considers an organisation structure as
a graph defined by a set of roles, a set of different types of links and a set of
groups. An agent playing a role must obey some permitted behaviours comprising
the role. Organisation links are arcs between roles and represent the interactions
between them. These links can be of three types— communication, authority and
acquaintance. However, the links have a context associated with them and are
valid within that context only. We seek an organisation structure that is not so
specific or bounded. Nevertheless, some of the ideas used in this model, especially
those relating to the organisation structure will be used while developing our
model. A slightly different approach is followed by the Virtual Design Team
(VDT) framework [I1]]. Its purpose is to develop a computational model of real-
life project organisations. It does not use the agent-role paradigm. Instead, the
agents are fixed to their duties and are called actors. The organisation structure
is composed of a control structure and a communication structure. Evidently,
VDT attempts to model a problem-solving organisation, and therefore, very
relevant for our requirements. However, it lacks flexibility in the organisation
structure, as it only permits purely hierarchical organisations. Therefore, we do
not directly use the whole VDT model but only some parts of it.

In contrast to the above models, mathematical approaches have been developed
for creating organisations [I0/I7]. However, they produce an instantiated organi-
sation according to complex and elaborate specification of organisational require-
ments but not the generic model we need. In a more relevant work, [15] aim at
an organisation framework that is flexible enough for self-organisation. However,
they take a strictly emergent view of self-organisation and focus mainly on the
social delegation aspects in agent organisations. Furthermore, their method spec-
ifies a set of organisation models, and the participating agents choose, whether or
not, to join such organisations. Therefore, it does not inherently aid the develop-
ment of problem-solving agent organisations. Another work [20] follows a norm
based approach for modelling hierarchical organisations in which every role has
a position profile associated with it. This profile is specified by positional norms
and an agent can take up a role by changing its own set of norms to conform to
these positional norms. However, the model requires that all positions and norms
are specified at the outset itself thereby not allowing for the flexibility in the in-
teractions as sought by us.

208 R. Kota, N. Gibbins, and N.R. Jennings

2.3 Modelling Agents

An overview of modelling agents in the context of organisations is presented by
[1]. From this, it is apparent that the modelling of agents varies across differ-
ent organisation models. In particular, agents may be homogeneous or belong
to different classes, be cooperative or competitive. Their abilities may be rep-
resented as a simple vector or as a complex combination of skills, strategies,
preferences and so on. Against this background, while all the organisation design
approaches described above, with the exception of VDT, leave the agent devel-
opment to the designer, VDT models the members of the organisation called
actors in great detail. The main characteristics of the actors are attention al-
location (determines the decision making behaviour of how the actor chooses
among several task alternatives) and information processing (determines the
skills, capacity and other processing characteristics). This design of agents will
be partly used in our organisation model as it meets our requirements for mod-
elling agents in the context of problem-solving organisations. Another concept
that we will use is obtained from [6] where the agents are required to perform
task assignment but can only address one request per time-step. Thus, we will
also make use of this concept of agents possessing limited computational capaci-
ties so that the efficiency of the agents plays a prominent role in the performance
of the organisation, thereby, reflecting the real-life scenarios where the compo-
nents of the autonomic systems often possess small and limited computational
power.

2.4 Evaluating an Organisation’s Effectiveness

Organisation characteristics play a major role in the performance of the organi-
sation [5]. Therefore, there are a number of existing methods for evaluating an
organisation’s characteristics based on parameters like robustness of the struc-
ture, connectivity and degree of decentralisation [9J7]. However, these measures
are independent of the tasks being handled by the system and thus, fail to
capture the suitability of the organisation according to the environment it is
situated in. A contrasting criterion is to measure the performance of the or-
ganisation on the basis of how well it performs its tasks [4]. We believe this
provides a good indication of the organisation’s efficiency during run-time. In
this context, in VDT, the measure of the performance of the organisation is
on the basis of the load on the organisation. The load on the organisation is
represented in units of work volume, thereby providing a common calibration
for different tasks. The total work volume of a task depends partly on the task
specification and partly on the organisational characteristics. Therefore, the re-
sultant load on the organisation is a function of the tasks and the organisational
characteristics and acts as a performance indicator. Therefore, the approach
chosen by VDT is more suitable for our requirements and will be taken into
account.

A Generic Agent Organisation Framework for Autonomic Systems 209

3 The Agent Organisation Framework

We describe our organisation framework by first detailing the task environment.
Then we describe the agents and the organisation structure, before discussing
the performance evaluation mechanism.

3.1 Task Representation

The task environment contains a continuous dynamic stream of tasks that are
to be executed by the organisation. A task can be presented to the organisation
at any point of time and the processing of the task must start immediately from
that time-step. Thus, the organisation of agents is presented with a dynamic
incoming stream of tasks that they should accomplish. In detail, the organisation
of agents provides a set of services which is denoted by S. Every task requires
a subset of this set of services. Services are the skills or specialised actions that
the agents are capable of. We model the tasks as work flows composed of a set
of several service instances (SIs) in a precedence order, thereby representing a
complex job as expected in autonomic systems. We define a service instance si;
to be a 2-tuple: (s;,p;) where s; € S (i.e. s; is a member of the services set 5),
p; € N denotes the amount of computation required.

Following the PCANS model of task representation (see Sec. 2I), we only
consider sequential dependencies between the service instances. Thus, the SIs of
a task need to be executed following a precedence order or dependency structure.
This dependency structure is modelled as a tree in which the task execution
begins at the root node and flows to the subsequent nodes. The task is deemed
complete when all its SIs have been executed in the order, terminating at the
leaf nodes. The complete set of tasks is denoted by W and contains individual
tasks w; which are presented to the organisation over time.

3.2 Organisation Representation

Since, we aim to model the agent organisation to represent a distributed comput-
ing system, our organisation framework consists of a set of computational agents
representing the individual components. An agent is an independent computa-
tional entity that can provide one or more services. We model our agents by
simplifying the agent model used by VDT (see Sec. 23)) and consider only the
information processing characteristics of the agents by overlooking the attention
allocation characteristic. The attention allocation characteristic enables an agent
to schedule its allocated tasks. The task scheduling algorithms at an agent will
depend on the system that is being represented. However, this aspect is inter-
nal to an agent and independent of the organisational dynamics which is our
primary focus. Therefore, we do not need to model this aspect.

In more detail, the agents are associated with particular sets of services (like
say, in the example home-management system, a controller manages the heating
system and can also access the internet for communication, thus containing two
services in its service set). These sets can be overlapping, that is two or more

210 R. Kota, N. Gibbins, and N.R. Jennings

agents may provide the same service. Also, building on the agent model used
by Gershenson (see Sec. 23]), every agent also has a computational capacity
associated with it. The computational load on an agent (explained later), in a
time-step, cannot exceed this capacity. This modelling of resource constrained
agents is necessary because, generally the components of an autonomic system
are small embedded devices with low computational power. Formally, let A be
the set of agents in the organisation. Every element in this set is a tuple of the
form:- a, = (S, L,) where the first field, S, € S denotes a set of services that
belong to the complete service set S and L, € N denotes the capacity. The
agents, their service sets and their capacities may change during the lifetime of
the organisation.

The other features of an agent organisation, in general, are its structure and
norms. The structure of an organisation represents the relationships between
the agents in the organisation, while the norms govern the kind of interactions
and messages possible between the agents. However, since we are developing
a problem-solving organisation, the agents are all internal to the organisation
and share the same goals. Moreover, all the agents will be designed in the same
way, and therefore, their interaction protocol will be similar and can be in-
ternally specified. Therefore, an explicit definition of norms is not required to
regulate their interactions. Thus, in our model, the relationships between the
agents (denoted by the structure) also determine the interactions between the
agents. Formally, an organisation is defined as consisting of a set of agents and
a set of organisational links. It can be represented by a 2-tuple of the form:-
ORG = (A,G) where A, as stated above, is the set of agents, G is the set of
directed links between the agents (will be described later in this section).

As mentioned previously, the organisation is presented with a continuous
stream of tasks which are completed by the agents through their services. Tasks
come in at random time-steps and the processing of a task starts as soon as it en-
ters the system. Task processing begins with the assignment of the first SI (root
node). The agent that executes a particular SI is, then, also responsible for the
allocation of the subsequent dependent Sls (as specified by the task structure)
to agents capable of those services. Thus, the agents have to perform two kinds
of actions: (i) execution and (ii) allocation. Moreover, every action has a load
associated with it. The load incurred for the execution of a SI is equal to the
computational amount specified in its description, while the load due to alloca-
tion (called management load) depends on the relations of that agent (will be
explained later). As every agent has a limited computational capacity, an agent
will perform the required actions in a single time-step, as long as the cumulative
load (for the time-step) on the agent is less than its capacity. If the load reaches
the capacity and there are actions still to be performed, these remaining actions
will be deferred to the next time-step and so on. We allow the agents to perform
more than one action in a time-step to de-couple the time-step of the simulation
with the real-time aspect of the actual computing systems. Thus, the time-step
of the model places no restrictions whatsoever and can represent one or several
processor cycles in the actual system.

A Generic Agent Organisation Framework for Autonomic Systems 211

As stated earlier, agents need to interact with one another for the allocation
of SIs. The interactions between the agents are regulated by the structure of
the organisation. Inspired from the Moise approach (see Sec. 222)), we adopt
the organisational links paradigm to represent the structure. However, unlike in
Moise, the links in our case are not task-specific because we do not assume that
the agents will be aware of all the tasks at the outset itself. Moreover, instead of
using several graphs to represent particular aspects, we use an organisation graph
(@) to represent the structure. The nodes in the graph represent the agents of
the organisation while the links represent the relations existing between them.
Thus, the structure of the organisation is based on the relations between the
agents that influence their interactions.

In more detail, we classify the relationships that can exist between agents
into four types — (i) stranger (not knowing the presence), (ii) acquaintance
(knowing the presence, but no interaction), (iii) peer (low frequency of inter-
action) and (iv) superior-subordinate (high frequency of interaction). The
superior-subordinate relation can also be called the authority relation and de-
pict the authority held by the superior agent over the subordinate agent in the
context of the organisation. The peer relation will be present between agents
who are considered equal in authority with respect to each other and is useful
to cut across the hierarchy. Also, the relations are mutual between the agents,
that is for any relation existing between two agents, both the concerned agents
respect it. The type of relation present between two agents determines the infor-
mation that they hold about each other and the interactions possible between
them. The information that an agent holds about its relations is:

1. The set of services provided by each of its peers (S, of each peer ay)

2. The accumulated set of services provided by each of its subordinates. The
accumulated service set of an agent is the union of its own service set and
the accumulated service sets of its subordinates, recursively. Thus, the agent
is aware of the services that can be obtained from the sub-graph of agents
rooted at its subordinates though it might not know exactly which agent is
capable of the service. AS, denotes the accumulated service set of agent a.

Whenever an agent finishes the execution of a particular SI, it has to allocate
each of the subsequent dependent SIs to other agents (this may include itself).
The mechanism for allocating SlIs to other agents is also mainly influenced by
the agents’ relations. The decision mechanism of an agent is as follows:

— When an agent needs to allocate a SI, it will execute the SI if it is capable
of the service and has no waiting tasks (capacity is not completely used up)

— Otherwise, it will try to assign it to one of its subordinates containing the
service in its accumulated service set. This involves the agent traversing
through the accumulated service sets (AS,) of all its subordinates and then
choosing one subordinate from among the suitable ones. If the agent finds
no suitable subordinate (no subordinate or their subordinates are capable of
the service) and it is capable of the service itself (but did not initially assign
to self because its capacity is filled), then it will add the SI to its waiting
queue for execution.

212 R. Kota, N. Gibbins, and N.R. Jennings

— If neither itself nor its subordinates are capable of the service, then the agent
tries to assign it one of its peers by traversing through their service sets and
choosing from among the suitable ones (those capable of the service).

— If none of the peers are capable of the service either, then the agent will
pass it back to one of its superiors (who will then have to find some other
subordinates or peers to execute the service).

Therefore, an agent mostly delegates Sls to its subordinates and seldom to its
peers. Thus, the structure of the organisation influences the allocation of the Sls
among the agents. Moreover, the number of relations of an agent contributes to
the management load that it incurs for its allocation actions, since an agent will
have to sift through its relations while allocating a SI. One unit of management
load is added to the load on the agent every time it considers an agent for
an allocation (mathematically modelled in Sec. B3). Therefore, an agent with
many relations will incur more management load per allocation action than an
agent with fewer relations. Also, a subordinate will tend to cause management
load more often than a peer because an agent will search its peers only after
searching through its subordinates and not finding a capable agent. Generally,
it is expected that an agent will interact more frequently with its subordinates
and superiors than its peers. This process of assigning a SI to an agent requires
sending and receiving messages to/from that agent. Thus, task allocation also
requires inter-agent communication which adds to the cost of the organisation.

In summary, the authority relations impose the hierarchical structure in the
organisation, while the peer relations enable the otherwise disconnected agents
to interact directly. It is important to note that while we present only these
kinds of relations, the model allows the flexibility to depict more relation types
in a similar fashion. Thus, the set of the relation types presented here can be
expanded or contracted depending on the domain that is to be represented by the
organisation model. Using this model, we abstract away the complex interaction
problems relating to issues like service negotiation, trust and coordination. We
do so, so that the model keeps the focus on the essence of self-organisation and
autonomicity and isolates its impact on system performance.

Formally denoting the structure, every link g¢; belonging to G is of form:-
gi = (asz,ay,type;) where a, and a, are agents that the link originates and
terminates at respectively and type; denotes the type of link and can take any of
the values in the set {Acgt, Supr, Peer} to denote the type of relation existing
between the two agents. The absence of a link between two agents means that
they are strangers.

3.3 Organisation Performance Evaluation

The performance of a computing system denotes how well it performs its tasks.
In terms of an agent organisation, the performance measure can be abstracted
to the profit obtained by it. In our model, the profit is simply the sum of the
rewards gained from the completion of tasks when the incurred costs have been
subtracted. In more detail, the cost of the organisation is based on the amount

A Generic Agent Organisation Framework for Autonomic Systems 213

of resources consumed by the agents. In our case, this translates to the cost
of sending messages (communication) and the cost of any reorganisation taking
place within the organisation. Thus, the cost of the organisation is:

costora = C. Z ce +D.d (1)
a,EA

where C' is the communication cost coefficient representing the cost of sending
one message between two agents and D is the reorganisation cost coefficient
representing the cost of changing a relation. ¢, is the number of messages sent
by agent a, and d is the number of relations changed in the organisation.

As stated earlier, agents have limited capacities and their computational load
cannot increase beyond this capacity. Since, an agent might perform three kinds
of actions in a time-step (task execution, task allocation, adaptation), the load
on an agent is the summation of the computational resources used by the three
actions and can be represented by three terms. Thus, the load [, on agent a, in
a given time-step is:

b= 3 ptM Y my.t R, 2)

$1; €EWa g st €Wy

— p; is the amount of computation expended by a, for executing SI si;.

— mj, is the number of relations considered by a, while allocating SI si;.

— W, is the set of SIs (possibly belonging to many tasks) executed by a,.

— Wa,. is the set of SIs being allocated by a.

— M is the ‘management load’ coefficient denoting the computation expended
by an agent to consider one of its relations while allocating a single SI.

— R is the ‘reorganisation load’ coefficient, denoting the amount of computa-
tional units consumed by an agent while reasoning about adapting a relation.

— 1, is the number of agents considered by a, for adaptation, in that time-step.

In this way, M and m; ., together represent the computational load for task
allocation that is affected by the relations possessed by the agent, thereby pro-
viding a simple and explicit method of denoting the effect of the organisation
structure on the individual agents. Similarly, R and r, are used to represent
the load caused by reasoning about adaptation (if any). Thus, the coefficient R
denotes the amount of resources at the agent that are diverted for adaptation
rather than performing tasks and help in deciding about when to reason about
adaptation (meta-reasoning).

Since, the load [, of a, cannot exceed its capacity L., any excess Sls will
be waiting for their turn, thus delaying the completion time of the tasks. The
rewards obtained by the organisation depend on the speed of completion of tasks.
In particular, a task w completed on time accrues the maximum reward b,, which
is the sum of the computation amounts of all its Sls:

[

bw = Z Di (3)
=0

214 R. Kota, N. Gibbins, and N.R. Jennings

where si,, is its set of SIs. For delayed tasks, this reward degrades linearly with
the extra time taken until it reaches 0:

rewardy, = by, — (ti2ken — ¢read) (4)

where 125" represents the actual time taken for completing the task, while #7¢9¢
is the minimum time needed. Thus, the total reward obtained by the organisation
is the sum of the rewards of the individual tasks completed by the organisation:

rewardora = E rewardy, (5)
weWw

where W is the set of all tasks. The organisation’s performance is measured as:

profitopa = rewardora — costora (6)

Thus, for higher profits, the reward should be maximised, while the cost needs to
be minimised. Both of these are affected by the allocation of tasks between the
agents which, in turn, is influenced by the organisation structure. It is important
to note that the agents only have a local view of the organisation. They are not
aware of all the tasks coming in to the organisation (only those SIs allocated to
them and the immediately dependent SIs of those allocated SIs) and neither are
they aware of the load on the other agents. In spite of this incomplete informa-
tion, they need to cooperate with each other to maximise the organisation profit
through faster allocation and execution of tasks. Therefore, by modelling both
the decentralisation and individual agent load along with inter-agent dependence
and global profit, this evaluation mechanism suitably models the requirements
faced by a designer while developing autonomic systems. In the same vein, rea-
soning and adapting the organisation also take up resources (as denoted by R
and D) in our model, thus reflecting real-life scenarios.

4 Applying the Agent Organisation Framework

We illustrate our framework by using it to depict an autonomic system in charge
of the university grid network system as outlined in Sec. [l First, to illustrate
our task model, consider a sample task possibly faced by this system. Assume
that a project involves producing a predictive model of a given city. Such a task
will involve analysing the GIS data of the required city, obtaining the population
density of the city over the past years and then using some kind of statistical
analysers on this data to estimate the population distribution in the future.
It will also involve predicting the changes to the city transport system using
the GIS information on this estimated population, and alongside render the
map of the city graphically. In more detail, let us assume that the first part
of this task will be to obtain the geographical data of the city and analyse it.
In terms of our model, this can be designated as SI geo map needing service
gis-analyser with computation 20 (very intensive job). After this, let us say
that the subsequent sub-tasks are obtaining the historical population data of

A Generic Agent Organisation Framework for Autonomic Systems 215

the city and rendering the city-map graphically. These will form SIs get census
and draw city requiring services census-data (getting and cleaning the census
information from the archives) and graphics (graphically modelling to result in
an image). Finally, execution of get census might reveal that further statistical
analysis is required to properly predict the population growth in the future and
also that the growth caused by immigration depends on the transport incoming
to the city. These can be designated as analyse census and transport flow requiring
services stat-analyser and gis-analyser (as the transport network of the
city can be obtained by analysing the GIS data) respectively. Also, note that
the computation required for geo map is much higher than that required for
transport flow even though both SIs need the same service. The task structure
for this scenario, including the SIs and the dependencies is shown in Fig.
Representing this task formally:

draw city(graphics,12)
geo map(gis-analyser,20)

—0

get census(census-data,3)

transport flow(gis-analyser,11)

analyse census(stat-analyser,9)

leaf node SIs

(a) Task structure

(gis-analyser){{census-data},{gis-analyser,graphics,stat-analyser} }|]
geol

acqt <<= acqt
\\\\2\ peer <1~ - peer
stat supr —="subr
socl g’ ..ot (stat-analyser)
stat-analyser
: (census-data){ } V]\ . {gis-analyser,graphics}|]
gis-analyser,graphics N

() services of self
geo2

(gis-analyser,graphics){ }[census-data] { } acem. sets of subrs

[] services of peers

(b) Organisation structure

Fig. 1. Representation of an example task and organisation

In the same vein, consider a sample agent organisation to represent the au-
tonomic system. Taking a limited view, let us focus on only four agents in this
organisation— geo and geos(two computers in the geography department), socl
(a computer in the sociology department) and stat (an analyser in the statistics
department). The services provided by the agents are basically their capabil-
ities in terms of hardware, software and data accessible to them. Therefore,
let us assume that geo; provides service gis—-analyser. Similarly socl provides
census-data, which is the population data of various places in all the past years,
and stat provides stat-analyser service. However, geoy is capable of provid-
ing both gis-analyser (just like geo;) and graphics (because it also contains
high end graphics cards for rendering maps). Given this, let us look at the pos-
sible structure of the organisation. Let socl and geos have a peer relationship.
Also, assume geo; has two subordinates — socl and stat (because, say, often
GIS based jobs are followed by either census information or statistical analysis).

216 R. Kota, N. Gibbins, and N.R. Jennings

stat, in turn, has geos, as a subordinate. Moreover, while socl and stat are ac-
quaintances of each other, geos and geo; are not aware of each other. The G for
this organisation contains 5 organisational links:

G = {(geou, socl, Supr), (geoy, stat, Supr), (stat, geoa, Supr),
(socl, geoa, Peer), (socl, stat, Acqt)}

For this organisation, the organisation graph is shown in Fig. The absence
of an arrow between two agents means that they are strangers. In addition, the
information possessed by the agents about the services provided by their relations
is also shown. For example, the accumulated service set (AccmSet) of agent
geor, in turn, contains three sets representing its own service (gis-analyser),
AcemSet of its subordinate socl (census-data) and of its other subordinate stat
(gis-analyser,graphics,stat-analyser).

As an illustration of the allocation process, consider the sample organisation
in Figure executing the task shown in Figure The allocation of Sls
across the agents occurs as shown in Figure In detail, we assume that the
task arrives at agent geor. Hence, geo; checks that it is capable of geo map (as
it is capable of service gis-analyser and has available capacity) and therefore,
allocates geo map to itself. After execution, geo; needs to allocate the two de-
pendencies of geo map which are get census and draw city to capable agents. For
allocating get census, it checks the accumulated service sets of its two subordi-
nates (socl and stat) and allocates to socl (because it is the only one capable
of service census-data). Similarly, it allocates draw city to stat because this
subordinate contains service graphics in its accumulated service set. However,
stat has to reallocate draw city to its subordinate geos which is actually capable
of that service. Similarly, after socl executes get census, it needs to allocate the
two dependencies (transport flow and analyse census) to appropriate agents. So,
socl allocates transport flow to its peer geos as it has no subordinates. It also

€0 ma
W b geo map geo map
analyse census o
fl

[
geoz geoa

(a) Before Adaptation (b) After Adaptation (c) After Failure

Fig. 2. Allocation of the task in Fig. in the organisation

A Generic Agent Organisation Framework for Autonomic Systems 217

hands back analyse census to its superior geo; as it has found no subordinates or
peers with that service (stat-analyser). geo; then assigns analyse census to its
subordinate stat (capable of stat-analyser) which then proceeds to execute it.

Thus, the structure of the organisation influences the allocation of service in-
stances among the agents. Therefore, an efficient structure can lead to better and
faster allocation of tasks. We see that in Figure the allocation of draw city
and analyse census was indirect and needed intermediary agents (stat and geoq
respectively). Now, suppose on the basis of some adaptation method (such as
that detailed in [12]), the agents modify their relations to form the structure
as shown in Figure That is, geo; and geos decide to form a superior-
subordinate relation and so do socl and stat. Meanwhile stat ends up becoming
only an acquaintance of geo; and geos as they decide to change the previously
existing authority relations. With this new structure, the allocation of the Sls
turns out to be much more efficient as all the allocations end up being direct
one-step process. Therefore, they take shorter time because intermediary agents
are not involved. Moreover, this allocation process requires less computation and
communication because, for any SI, only a single agent performs the allocation
and sends only one message. Compared to previous structure, this decreases the
load on geo; and stat without putting extra load on other agents.

Now, let us suppose that after some time has passed, geos is reconfigured
(perhaps, the OS is reinstalled) such that it is no longer able to to provide
gis-analyser. In such a scenario, socl will no longer be able to delegate trans-
port flow to geoy and will be handing back the SI to its superior geo;. socl does
so only after unsuccessfully considering its own subordinates and peers for al-
location, thus causing more load onto itself and also taking more time. Under
these changed circumstances, socl and geo; should realise that it is better to
change their current relation into a peer relation so that socl can delegate to
geoy quicker. Reversing the existing superior-subordinate relation will not be as
useful because geo; also needs to continue delegating SIs like get census to socl.
Hence, these two agents change their relation as shown in Fig.

In this way, the performance of the organisation can be improved by modifying
the organisation structure through changes to the agent relationships. This will
involve changes to the organisation graph G.

With this example and the sample adaptation scenarios, we see that adap-
tation of the structure plays an important role in the performance of the or-
ganisation. Furthermore, we illustrated that our framework not only provides
a well-suited platform to represent autonomic systems, but also gives insights
into possible avenues for self-organisation and permits the agents to perform the
required adaptation. Here, while we showed how a more efficient structure can
lead to the better allocation of a task, we should note that the organisation is
performing several tasks at any given time and that the structure is common
to all these possibly dissimilar tasks. Given this, the adaptation method should
be such that the agents are able to identify which set of relations will be most
suitable for their current context on the basis of the kind of tasks facing them
in addition to their own service sets and allocation patterns.

218 R. Kota, N. Gibbins, and N.R. Jennings

5 Conclusions

In this paper, we introduced an abstract organisation framework for depicting
distributed computing systems to aid in the development of autonomic systems.
We presented our model by detailing our representation of the task environment
and the organisation along with a performance evaluation system. The tasks
are made up of service instances, each of which specifies the particular service
and the computation required. The organisation consists of agents providing
services and having computational capacities. The structure of the organisation
manifests the relationships between the agents and regulates their interactions.
Any two agents in the organisation could be strangers, acquaintances, peers or
superior-subordinate. The relations of the agents determine what service infor-
mation is held by the agents about the other agents and how to allocate service
instances to them. We also presented the coefficients that affect the environment
(communication cost, management load, reorganisation load) and the functions
for calculating the organisation’s cost and reward, thus enabling us to evaluate
the profit obtained by it when placed in a dynamic task environment.

Our organisation framework provides a simulation platform that can be used
by designers to implement and test their adaptation techniques before porting
them to real and domain-specific systems. In particular, we designed our model
such that the agents, though generic, realistically represent the components that
would compose autonomic systems. The organisation is decentralised and agents
possess local views and limited capacities like any large distributed computing
system. Nevertheless, the agents interact with each other based on the organisa-
tion structure, which also influences the task allocations and thereby the organi-
sational performance. This presents a suitable environment for self-organisation,
which we have illustrated by using it to represent an intelligent and adapting,
autonomous home-management system. In this context, our framework provides
sufficient flexibility for the agents to modify their characteristics and social in-
teractions, that is, manage themselves, just as expected in autonomic systems.
Furthermore, we also provided the reorganisation cost (D) and load coefficients
(R) to represent the price of adaptation. Thus, we have presented a suitable or-
ganisation framework that can be used as a platform for developing adaptation
techniques, especially focusing on the agents’ social interactions.

References

1. Carley, K.M., Gasser, L.: Computational organization theory. In: Multiagent Sys-
tems: A Modern Approach to Distributed Artificial Intelligence, pp. 299-330. MIT
Press, Cambridge (1999)

2. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Proefschrift Universiteit Utrecht (2003)

3. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organi-
zational view of multiagent systems. In: Proc. of 4th Intl. Workshop on Agent
Oriented Software Engineering, Melbourne, Australia, pp. 214-230 (2003)

4. Fox, M.S.: An organizational view of distributed systems, pp. 140-150. Morgan
Kaufmann Publishers Inc., San Francisco (1988)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Generic Agent Organisation Framework for Autonomic Systems 219

. Galbraith, J.R.: Organization Design. Addison-Wesley, Reading (1977)
. Gershenson, C.: Design and control of self-organizing systems. Ph.D. thesis, Vrije

Universiteit Brussel (2007)

. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural eval-

uation of agent organizations. In: Proc. of the 5th AAMAS (2006)

. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: Moise: An organizational

model for multi-agent systems. In: Proc. of the 7th Ibero-American Conf. on Al
(IBERAMIA-SBIA 2000), pp. 156-165 (2000)

. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The

Knowledge Engineering Review 19(4), 281-316 (2005)

Horling, B., Lesser, V.: Using quantitative models to search for appropriate orga-
nizational designs. In: Autonomous Agents and Multi-Agent Systems (2008)

Jin, Y., Levitt, R.E.: The virtual design team: A computational model of project
organizations. Computational & Mathematical Organization Theory (1996)

Kota, R., Gibbins, N.; Jennings, N.R.: Self-organising agent organisations. In: The
Eighth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), pp. 797-804 (2009)

Krackhardt, D., Carley, K.M.: A pcans model of structure in organizations. In:
Proc. of Intl. Symp. on Command and Control Research and Technology (1998)
Lematre, C., Excelente, C.B.: Multi-agent organization approach. In: Proc. of 2nd
Ibero-American Workshop on DAI and MAS, Toledo, Spain (1998)

Schillo, M., Bettina Fley, M.F., Hillebrandt, F., Hinck, D.: Self-organization in
multiagent systems: from agent interaction to agent organization. In: Proc. of Intl.
Workshop on Modeling Artificial Societies and Hybrid Organizations (2002)
Sierra, C., Rodriguez-Aguilar, J.A., Noriega, P., Esteva, M., Arcos, J.L.: Engi-
neering multi-agent systems as electronic institutions. UPGRADE The European
Journal for the Informatics Professional V(4), 33-39 (2004)

Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 16(2), 151-185 (2008)
Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, 1., Kephart,
J.O., White, S.R.: A multi-agent systems approach to autonomic computing. In:
Proc. of 3rd AAMAS (2004)

Thompson, J.D.: Organizations in Action: Social Science Bases in Administrative
Theory. McGraw-Hill, New York (1967)

Montealegre Vézquez, L.E., Lépez y Loépez, F.: An agent-based model for hierar-
chical organizations. In: Noriega, P., Vazquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386,
pp. 194-211. Springer, Heidelberg (2007)

Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307-360 (2005)

Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methdol. 12(3) (2003)

	A Generic Agent Organisation Framework for Autonomic Systems
	Introduction
	Related Work
	Modelling Tasks
	Modelling Organisational Characteristics
	Modelling Agents
	Evaluating an Organisation's Effectiveness

	The Agent Organisation Framework
	Task Representation
	Organisation Representation
	Organisation Performance Evaluation

	Applying the Agent Organisation Framework
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

