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Abstract. We introduce a novel application of Particle Swarm Optimization in 
the mobile computing domain. We focus on context aware applications and in-
vestigate the context discovery problem in dynamic environments. Specifically, 
we investigate those scenarios where nodes with context aware applications are 
trying to (physically) locate up-to-date context, captured by other nodes. We es-
tablish the concept of context quality (an ageing framework deprecates contex-
tual information thus leading to low quality). Nodes with low quality context 
cannot capture such information by themselves but are in need for “fresh” con-
text in order to feed their application. We assess the performance of the pro-
posed algorithm through simulations. Our findings are quite promising for the 
mobile computing domain and context awareness in specific. We assess two 
different strategies for the PSO-based context discovery framework. 

Keywords: Context-awareness, context-discovery, distributed systems, swarm 
intelligence, particle swarm optimization.  

1   Introduction 

Mobile and distributed computing has become increasingly popular during the last 
years. Many mobile applications exhibit self-organization in dynamic environments 
adopted from multi-agent, or swarm, research. The basic paradigm behind swarm sys-
tems is that tasks can be more efficiently dispatched through the use of multiple, simple 
autonomous agents instead of a single, sophisticated one. Such systems are much more 
adaptive, scalable and robust than those based on a single, highly capable, agent.  

A swarm system can generally be defined as a decentralized group (swarm) of 
autonomous agents (particles) that are simple with limited processing capabilities. Parti-
cles must cooperate intelligently to achieve common tasks. We investigate a mechanism 
that exploits the collaborative behavior of the agents in order to deal with the Context 
Discovery Problem (CDP). Specifically, in CDP an agent (e.g., mobile node) needs to 
discover, locate and track the source that generates the required contextual information 
– context (e.g., environmental parameters like temperature, humidity, situations like fire 
outbreak) for the executing context-aware, mobile application (e.g., the control of a 
group of robots).  

Swarm Intelligence (SI) introduces a powerful new paradigm for building fully dis-
tributed systems in which overall system functionality is attained by the interaction of 
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individual agents with each other and with their environment. Such agents coordinate 
using decentralized control and self-organization. Swarm systems are intrinsically 
highly parallel and exhibit high levels of robustness and reliability: 

1. A SI-driven distributed system does not have hierarchical command and control 
structure and thus no single failure point or vulnerability. Agents are often very 
simple and the overall swarm is intrinsically fault-tolerant since it consists of a 
number of identical units operating (sensing context) and cooperating (sharing 
context) in parallel. In contrast, a conventional complex distributed system re-
quires considerable design effort to achieve fault tolerance. 

2. The key central concept in a swarm system is the simplicity of the agents -an 
agent can be a mobile phone carrying sensors. Simply increasing the number of 
agents assigned to a task (e.g., sensing context) does not necessarily improve the 
system’s performance (i.e., efficiency and reliability). Agents collaborate by ex-
changing useful information in order to obtain the required context. 

3. In a totally distributed environment agents collaborate for discovering context 
with certain validity (e.g., related to time and/or space constraints). Context peri-
odically turns obsolete and has to be regularly determined and discovered. More-
over, the resources of simple agents are limited in terms of (1) memory; agents 
remember the history of their operation up to a certain extent, (2) sensing capa-
bilities; for agents moving around, the sensing radius can be small enough rela-
tively to the coverage area once possible neighboring agents can provide analo-
gous local information, and (3) communication resources; communication among 
agents is intended solely to convey information on the swarm.  

The above-mentioned points lead to the question: “Is the SI paradigm suitable for 
application in the CDP?” The aim of this paper is to address that question. 

Many research efforts have examined multi-agent systems inspired by biology, 
e.g., flocking models [1, 2], emphasizing in fault tolerance [3], cooperative hunting 
[4] and ant colony optimization [5] for solving problems in distributed environments. 
Below we report some typical applications: ‘covering’ (explore enemy terrain), ‘pa-
trolling’ (guarding a museum against theft), ‘self-assembling’ (reconfigurable robots), 
‘localization’ (improvement of positioning accuracy) and ‘environment manipulation’ 
(transportation control). In addition, significant research effort has been invested in 
the design of swarm system for searching areas, either known or unknown, which is 
most relevant to our work. Specifically, in most previous works the targets, i.e., nodes 
with valuable information (e.g., sensor nodes) are assumed to be static. However, only 
a few works examine a swarm system in dynamic environments dealing with the mo-
bility of agents [6, 7, 8] and with information validity constraints. One of the first 
studies in the application of PSO to dynamic environments came from [21]. The work 
in [9] considers dynamic targets but does not deal with certain validity issues as re-
quired in the CDP. A significant SI adaptive mechanism to detect and respond to dy-
namic systems is reported in [23]. The involved agents in such mechanism cannot be 
fully applied to mobile nodes as long as the inherent communication load and effi-
ciency are not taken into consideration, especially when dealing with real context-
aware applications. Therefore, we adopt same ideas from [23] regarding the response 
strategies to various changes. To the best of our knowledge, there is no prior work 
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based on SI in order to deal with the CDP. This motivated us to define, model and 
propose a solution (algorithm and strategies) for the CDP. 

The structure of the paper is as follows: Section 2 presents the basic idea of SI, 
while in Section 3 we introduce certain issues for the CDP. In Section 4 we propose 
an algorithm for the CDP adopting concepts from SI. We assess our algorithm in Sec-
tion 5 and Section 6 concludes the article.   

2   Swarm Intelligence 

The Particle Swarm Optimization (PSO) incorporates swarm behaviors observed in 
flocks of birds, swarms of bees, or human social behavior, from which the idea is taken 
[10]. The main strength of PSO is its fast convergence, which compares favorably with 
many global optimization algorithms (e.g., Genetic Algorithms and Simulated Anneal-
ing). The PSO model consists of a swarm of N particles, which are initialized with a 
population of random candidate solutions (particles). They move iteratively through a d-
dimension problem space ℜd to search new optima. f: ℜd→ ℜ is a fitness function that 
takes a particle's solution in ℜd and maps it to a single decision metric; the CDP deals 
with the geometrical space of two dimensions, i.e., d = 2, as will be discussed bellow. 
Each particle indexed by i has a position represented by a vector xi ∈ ℜd and a velocity 
represented by a vector vi ∈ ℜd, i=1, …, N. Each particle “remembers” its own best 
position so far in a vector xi# = [xij#]. The best position vector among the swarm so far 
is then stored in a vector x* = [xj*]. During the iteration (time) t, the velocity update is 
performed as in Eq(1). The new position is then determined by the sum of the previous 
position and the new velocity in Eq(2).  

uij(t + 1) = wuij(t) + c1r1(xij
#(t) - xij(t)) + c2r2(xj

*(t) - xij(t))                    (1) 

xij(t + 1) = xij(t) + uij(t + 1)                                 (2) 

w is an inertia factor. The r1, r2 random numbers are used to maintain the diversity of 
the population and are uniformly distributed in the interval [0, 1] for the jth dimension 
of the ith particle. c1 and c2 are positive constants called self-recognition and social 
component, respectively. They interpret how much the particle is directed towards 
good positions. That is, c1 and c2 indicate how much the particle's private knowledge 
and swarm’s knowledge on the best solution is affected, respectively. The time inter-
val between velocity updates is often taken to be unit, thus, omitted (the Equation (2) 
is dimensionality inconsistent). From Equation (1), a particle decides where to move 
at the next time considering its own experience, which is the memory of its best past 
position and the experience of the most successful particle in the swarm (or in a 
neighboring part of swarm). The inertia w regulates the trade-off between the global 
(wide-ranging) and local (nearby) exploration abilities of the swarm. A large inertia 
weight facilitates global exploration, i.e., searching new areas, while a small value 
facilitates local exploration, i.e., fine-tuning the current search area –exploitation [18].  

The PSO algorithm is presented in Algorithm 1. The end criterion (line 2) may 
be the maximum number of iterations, the number of iterations without improve-
ment, or the minimum objective function error between the obtained objective func-
tion and the best fitness value w.r.t. a pre-fixed anticipated threshold. Particles are 
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started at random positions with zero initial velocities and search in parallel. What 
is needed is some attraction, if not to the absolutely best position known, at least 
towards a position close to the particle where the fitness is better than the fitness a 
particle has currently determined. All particles exploit at least one good position 
already found by some particle(s) in the swarm (line 7). Hence, particles adjust their 
own position and velocity based on this good position (line 9). Often, the position 
that is exploited is the best position yet found by any particle (line 5). In this case, 
all particles know the currently best position found and are attracted to this position. 
This, obviously, requires communication between particles and some sort of collec-
tive memory to the current global best (gbest). The x* vector in Equation (1) repre-
sents the gbest position of the swarm (line 5).  

Algorithm 1. Particle Swarm Optimization Algorithm  

1 Initialize randomly the positions and zero velocities. 
2 While (the end criterion is not met) Do 
3  t ← t + 1; 
4  Calculate the fitness value f of each particle;  
5  x* = argminN

i=1{f(x*(t -1)), f(x1(t)), …, f(xi(t)), …, f(xN(t))}; 
6  For i = 1: N 
7       xi

#() = argminN
i = 1{f(xi

#(t -1)), f(xi(t))};   
8       For j = 1:d 
9        Update the jth dimension of vi and xi w.r.t. (1), (2); 

      Next j 
10 
11 

 Next i 
 End While 

 
Alternatively, a particle i can experience an attraction back to the best place yet 

found by it. The personal best (pbest) position for particle i results in its independent 
exploration without any input of the other particles. The pbest position for the ith par-
ticle is xi

# (line 7).  
An idea for triggering a particle to direct to an attracted area is to balance the move-

ment between the gbest and pbest positions by defining a local neighborhood around it. 
All Ni particles within an actual physical distance form the neighborhood of the ith par-
ticle. Each particle in Ni shares its fitness value with all other particles in that neighbor-
hood. Hence, neighboring particles experience an attraction to the local best (lbest). The 
problem with lbest (not so critical as in gbest) is that, neighborhoods need to be calcu-
lated frequently and, thus, the computational cost for this operation has to be considered. 
The particles adjust their current velocity based on current pbest and prior knowledge 
derived from gbest and lbest. Based on gbest, particles have to communicate with the 
whole swarm for locating and maintaining information on the global best solution. In 
this case the best particle acts as an attractor pulling all the particles towards it. Eventu-
ally, all particles will converge to this position. Based on lbest, particles are required to 
check for any better solution appeared in adjacent particles.  

In order to avoid the inherent communication cost in CDP due to the information 
exchange among particles for estimating gbest and the premature convergence ob-
tained from gbest, we relate the social component c2 in (1) to the lbest approach, i.e., 
the x* vector in (1) represents the lbest position of a given particle. c2 indicates the 
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willingness of a particle to be attracted by any probable neighbor. We also adopt ran-
dom relative weights for combining lbest and pbest. The continuous movement to-
ward a position of better fitness (w.r.t. pbest) biases the selection of particles with 
even better fitness than the existing one. The discovery process, which is based on 
pbest, dramatically improves the average fitness of the positions explored. Evidently, 
this may result in exploration stopping at a local optimum. But, with a number of dif-
ferent local neighborhoods in use, there is a very good probability that the whole 
swarm will not get so trapped, and that any trapped particle will escape, especially if 
the lbest approach is also simultaneously in use. We adopt both approaches together 
with r1, r2 factors to set the relative influences of each.  

3   The Context Discovery Problem  

We firstly define the notions of context and quality of context and then map the pa-
rameters of the CDP into PSO.  

3.1   Context Representation and Quality of Context  

Context refers to the current values of specific parameters that represent the activity / 
situation of an entity and environmental state [11]. Let Y = [Y1, …, Ym] be a m-
dimensional vector of parameters, which assumes values yl in the domain Dom(Yl), l 
= 1, …, m. A parameter Yl is considered instantiated if at time t some yl value is as-
signed to Yl. Context y is the instantiated Y, i.e., y = [y1, …, ym]. For each instantiated 
Yl, a function v: Yl × T → [0, a), a > 0, is defined denoting whether the value yl is 
valid at time t after the Yl instantiation; T is the time index and a is a real positive 
number. The value yl is valid at time t for a context-aware application that is executed 
on node i if v(yl, t) < θil for a given threshold θil ∈ (0, a), which is application specific. 
A value of θil close to a means that yl is not valid for the ith node. v can be any in-
creasing function F with time t, i.e., v = F(t). For simplicity reasons we can assume 
that F is the identity function (i.e., v = t). The value a is set w.r.t. application specifi-
cation. For instance, in our case a is the maximum time from the sensing time of Yl in 
which its value is not deprecated. A value of θil close to 0 means that yl is of high im-
portance. The indicator v increases over time from the sensing time of yl. Hence, a 
value of v denotes the freshness of yl, i.e., yl refers to either an up-to-date (fresh) or 
obsolete measure. It should be noted that, v refers only to the temporal validity of a 
value. Evidently, other validity functions can be defined referring to quality indicators 
like spatial scope (value is usable within certain geographical boundaries), the source 
credibility, the reliability of the measurement, and other objective or subjective indi-
cators [12]. 

We introduce the quality of context indicator g: Y × T → [0, a) for context y at 
time t denoting whether the values of the parameters of y are valid or not with respect 
to a certain threshold. The value of g is the minimum indicator of the values, that is 
g(y, t) = minl=1

m{v(yl, t)} with threshold θiy = minl=1
m{θil}. A value of θiy close to a 

denotes invalid context, i.e., obsolete context, while a value of θiy close to 0 denotes 
fresh context.  Context y turns obsolete once some parameter turns also obsolete.  
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Each node i attempts to maximize the time period Δt in which g(y, t + Δt) < θiy for 
some t. That is, each node attempts to maintain fresh context as much time as possi-
ble. It is worth noting that a node i evaluates the quality of y differently from a node j, 
i.e., gi(y, t) ≠ gj(y, t). This means that, y may be of value for node i but not for node j 
at the same time. Without loss of generality we assume that all nodes evaluate the 
quality of context with the same θiy. That is, all nodes assess context with the same 
criteria / quality indicators. This does not imply that all nodes obtain context of the 
same quality. Instead, all nodes are interested in the same quality of context. This 
does not undermine the generality of the problem. In fact, if there are groups of nodes 
that assess context differently then groups of nodes will be formed and, consequently, 
each group will assess context with the same θiy.  

3.2   Mapping Swarm Intelligence to Context Discovery 

Let us assume discrete time and consider a square terrain of dimension L. Consider a 
group of N mobile nodes that maps to a swarm of particles and a set of M mobile 
sources (i.e., sensors that sense context) that correspond to the possible solutions in 
PSO. Each source regularly generates fresh context meaning that each source meas-
ures context with a given frequency-sensing rate q. Each sensed value is time stamped 
at the source. Every node needs to move to an area with at least a source that carries 
fresh context. Alternatively, a node attempts to locate areas where other nodes carry 
fresh context or context of better quality than the context currently available in them. 
In addition, a node does not know the existence of a source in a certain area and the 
swarm does not know the number of sources. This evidently denotes that the nodes 
continue searching until all sources are located or all nodes carries fresh context. 
However, the nodes have to adopt a mechanism in order to maintain context as fresh 
as possible as long as the validity fades over time.  

The considered CDP is a 2-dimensional problem space in PSO (d = 2). It refers to 
the 2D location information (longitude and latitude) of the sources / nodes that carry 
fresh context. The exact 2D location information of a node is not known. Hence, we 
assume that all nodes are capable of detecting any neighboring node in a region with 
given transmission range equal to R. The physical presence of a node in a neighbor-
hood can be detected thus such node is assumed to be located in the corresponding 
neighborhood. Moreover, a node i moves towards to a neighboring node j, which car-
ries fresher context than node i.  

The value of gi(y, t) denotes the willingness of node i to seek for fresh, or at least 
of better quality (more up-to-date) context than the existing context. The quality of 
context indicator gi(y, t) resembles the fitness function f in PSO. A node i attempts to: 

 minimize the value of gi(y, t) at time t, and,  
 maximize the duration in which it maintains fresh context, 

      i.e., gi(y, t) < θy.  

It should be noted that gi(y, t) depends on time once the indicators for each parameter 
increase over time (w.r.t. sensing time). This means that a node i has to regularly update 
its fitness by dynamically adjusting its decision regarding the next movement w.r.t. 
pbest and lbest. Let us calculate the pbest and lbest so that node i decides in which di-
rection to move. Let Ni be the indices of the neighboring nodes of node i at time t. The 
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xi
# vector at time t is the position xj of the neighbor j, which carries fresher context y 

than that of node i and the freshest context among all neighbors of node i, i.e.,  

xi
# = xj: j = argminl ∈ {Ni}{gl(y, t) ∧ (gi(y, t) > gl(y, t))}. 

xi
#  is currently the best position found at time t to which the node i adjust its next 

movement at time t + 1 assuming the pbest fitness value gi
#(y) = gj(y, t). The vector 

(xi
# - xi)

 refers to the self-recognition vector for node i that is attracted by the node j.  
Furthermore, the node i can exploit its past knowledge. Based on pbest the node i 

locates the current best node j and moves towards it with a factor r1
.c1. In addition, 

node i exploits the average fitness of all neighbors at time t that is  
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i
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The proposed gNi(y, t) value refers to a local fitness of the neighborhood of node i. 
Node i can obtain a clear view of its neighborhood meaning that: if gNi(y, t) < θiy (i.e., 
fresh context) then the node i might not decide to move far away from this neighbor-
hood hoping that it will probably be within an area where nodes carry fresh context. 
Similarly to gi

#(y), we define the lbest gi
*(y) indicator that is an estimate for the fresh-

ness of y at time t obtained by the neighborhood of node i. If it holds true that gNi(y, t) 
< gi

*(y) then the lbest xi
* is the current xi of node i at time t and the lbest fitness value 

gi
*(y) equals to gNi(y, t). However, it may hold true that gNi(y, t) > gi(y, t) but this does 

not imply that there might not be a neighboring node j that carries more fresh context 
than node i. In this case, the lbest position is not updated contrary to the pbest posi-
tion. Instead, the node i adjusts its next movement by combining a movement towards 
the current pbest xi

# and previous lbest xi
*. Based on the gi

*(y) and gi
#(y) indicators, 

the node i self-controls its decision on the next movement at time t + 1. The vector 
(xi

* - xi)
 refers to the social vector component for node i denoting the attraction of 

node i to its neighborhood. Moreover, gi
*(y) increases over time thus node i has to 

regularly update and check lbest. That is because as long as a previous neighborhood 
has maintained fresh context as a whole, at the next time the lbest position may not refer 
to the same neighborhood even with the same value of gNi(y, t). The node i sim ply 
 

Table 1. Mapping Between CDP & PSO 

PSO concepts Time variant CDP concepts 
swarm of N particles no no group of N mobile nodes 
Particle i - - node i
problem space no yes context y
global optimum 
solution xi

no yes source positioned at xi

local optimum  
solution xi

no yes node with fresh context  
positioned at xi

number of optima no no number of sources M
Fitness f no yes quality of context gi(y, t)
pbest xi

# no yes position of neighboring node j that
maximizes gj(y, t)

lbest xi
* no yes position of node i whose 

 neighborhood maximizes gNi(y, t)
 

, 
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stores the previously visited lbest position assigned to gi
*(y). Hence, the node i has the 

option to move towards to a previous visited position as a last resort.  
Table 1 depicts the mapping between CDP and PSO. It should be noted that the fit-

ness function f in PSO depends only on the solution vector xi and is not time dependent. 
The same holds true for the pbest and lbest positions in PSO. In CDP the corresponding 
fitness gi(y, t) depends on time t as long as the invalidity of y increases over time. Fur-
thermore, the gi

#(y) and gi
*(y) indicators increase over time as well.     

4   The Proposed Algorithm 

We propose an algorithm in which nodes search for areas where better quality of con-
text is obtained. In other words nodes attempt to find, locate and / or follow neighbor-
ing nodes (targets) that carry context of high value. The dynamic behavior of a mobile 
system means that the system changes state in a repeated manner. In our case the 
changes occur frequently, that is, both the location of a leader and the value of the 
optimum (context validity) vary1 [22]. We propose several strategies for the CDP in 
order to (i) experiment with the required time for finding and maintaining high quality 
context, (ii) reduce the inherent network load that is used to automatically detecting 
and tracking various changes of the context validity and (iii) effectively respond to a 
wide variety of changes in context validity. The network load derives from the inter-
communication among nodes. In addition, several constraints that refer to the tempo-
ral validity of context are taken into account. Therefore, the best solution of CDP is 
time dependent (context turns obsolete over time). 

The proposed behaviors indicate the intention of a node in discovering and main-
taining fresh context based on its mobility and other characteristics explained below. 
Specifically, a node transits between three states in order to discover context. In each 
state, the node decides on certain actions. A state ki of node i can be Obsolete (O), 
Partially satisfied (P), or Satisfied (S) as depicted in Figure 1. In state O, a node either 
carries obsolete context (or is in need of) i.e., gi(y, t) > θy. In the S state, a node carries 
fresh context i.e., gi(y, t) < θy. If context y turns obsolete then node i transits into O. In 
the P state, a node chooses to carry less obsolete context than the existing context as 
long as this is the current best solution it achieves (local optimum). This means that 
the node i has found a neighbor j with fresher context i.e., gi(y, t) > gj(y, t) > θy. The 
node i escapes from the P state once another node k, which carries more fresh context, 
is located i.e., gi(y, t) > θy > gk(y, t). We assume that all nodes adopt the same thresh-
old for assessing the quality of context (θiy = θy = θ, i = 1, …, N). 

4.1   Foraging for Context  

A node i in state O initiates a foraging process for context acting as follows: The node 
i moves randomly (vi ~ U(vmin, vmax)) in the swarm and intercommunicates with 
neighbors till to be attracted by a neighbor j. The node j is then called leader. The 
leader j either carries objectively fresh context i.e., gj(y, t) < θy or carries context that 
is more fresh than the context carried by node i i.e., gi(y, t) > gj(y, t) > θy (see obsolete 
state in Figure 1). In the former case, the node i transits directly to state S. In the latter 
                                                           
1 This dynamic environment refers to Type III environment ([18]).  
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case, the node j does not carry context of the exact quality that node i expects but such 
context is preferable than that of node i. Hence, node i can either follow node j hoping 
that it approaches areas (neighborhoods) with more fresh context -thus transiting to P 
state- or, alternatively, ignores such opportunity and continues moving at random -
thus remaining at state O. In state P, node i settles with lower quality of context. This 
does not imply that node i stops communicating with other neighbors while moving. 
Instead, it continues exchanging information related to context quality with the pur-
pose of locating another leader with more fresh context. The P state is an intermediary 
state between the O and S states (see partially satisfied state in Figure 1). The node is 
moving among neighborhoods carrying context of better quality and continues explor-
ing areas. This policy reflects the idea of exploring the solution space even if a solu-
tion has already been reached (possibly a local optimum).  

Node i attempts to retain fresh context for as long as possible. However, the v(yl, t) 
indicator for a sensed parameter Yl increases over time t until that value turns obsolete 
after some Δt, i.e., v(yl, t + Δt) > θl. Hence, Yl has to be regularly determined / sensed, 
with frequency at least 1/Δt. In order for the node i to obtain up-to-date context y, it 
follows leaders or sources that regularly generate objectively fresh context. 

move randomly

check neighborhood {Ni}

gi(y) > θ

follow leader j

gi(y)>gj(y)> θ

behavior

gj(y)<θ<gi(y)

move randomly

gi(y) < θ

gi(y) < θ

gi(y) > θ

check neighborhood {Ni}

gi(y) < θ

gi(y) > θ

start

gi(y) > θ

independent

dependent

gk(y) < gi(y) < θ

follow leader k
satisfied

legend

obsolete
partially 
satisfied

 

Fig. 1. A state transition in CDP 

It should be noted that a localization system is needed in order to determine the so-
lutions xi

# and xi*, and the way node i is directed to its leader. Specifically, a node i 
carried by an agent (possbily a human) is directed to its leader once a GIS application 
displays directional information of the leader obtained, for instance, by a compass-
based mechanism [16] (or other techniques, e.g., the time-of-flight technique that 
adopts radio frequency and ultrasound signal to determine the distance between nodes 
[15]). However, a non-human node i (e.g., a robot), without localization mechanisms, 
can “blindly” follow its leader by adjusting its direction / velocity through small im-
provement steps w.r.t. the signal quality [14]. Imagine for example a WLAN user  
trying to determine the best signal quality in a certain room by stepping around without 
knowing the exact location of the access point. This local-searching blind technique is 
not as efficient as the previously discussed method [17]. 
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4.2   Maintaining Fresh Context 

A node i, in S state, acts as follows (see the satisfied state in Figure 1): it either con-
tinues communicating with leaders (dependent behavior) or re-starts moving at ran-
dom (independent behavior) with vi ~ U(vmin, vmax). In the former behavior, it is likely 
that node i constantly follows leaders (a.k.a. tracking optima [19]). The advantage of 
such behavior is that: in case node i’s context turns obsolete, node i will easier find 
some leader provided that the latter might be yet reachable (or not far away). By 
adopting the independent behavior node i has no information in which direction to 
move towards once context turns obsolete. 

Once a neighbor node k, of a node i, in S state obtains better context y (i.e., θy > 
gj(y, t) > gk(y, t)) then node i may choose to abandon the existing leader and follow 
the new leader node k. Specifically, by adopting the dependent behavior, the node i 
communicates with neighbors with the intention of finding a node k that carries more 
fresh context than the objectively fresh obtained context. Hence, the node i switches 
constantly between among leaders. In addition, the node i never transits to state O 
since its leader is a source (global optimum). However, the main objective in CDP is 
to enable nodes to minimize the communication load and discover as many sources 
and leaders as possible escaping from local optima. If all nodes adopted the dependent 
behavior then they would attach to sources resulting in large communication effort for 
the sources (sources would have to communicate with a large number of nodes) but 
carrying objectively fresh context. It is of high importance to take into account the 
inherent efficiency for both behaviors.  

4.3   The CDP Algorithm 

A node i in state O either transits only to state S once a leader with objectively fresh con-
text is found or transits to the immediate state P once a leader with better context is 
found. As long as a leader carries objectively fresh context then node i transits from state 
P to S. In state S node i adopts either the independent or the dependent behavior. In this 
paper, we present the CDP algorithm in Algorithm 2, in which node i, in state O, transits 
to states P and/or S, and, in state S, it adopts the dependent behavior. Initially, all N nodes 
in the swarm are in state O and are randomly distributed in a given terrain with random 
velocities in [vmin, vmax]. The inertia w is used to controlling the exploration and exploita-
tion abilities of the swarm and eliminating the need for velocity clamping (i.e., if |vi| > 
|vmax| then |vi| = |vmax|). The inertia is very important to ensure convergent behavior; large 
values for w facilitate exploration with increased diversity while small values promote 
local exploitation. We adopt a dynamically changing inertia values, i.e., an initially value 
decreases nonlinearly to a small value allowing for a shorter exploration time (due to 
context validity rate) with more time spent on refining optima [20]. That is, 
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w(0) = 0.9, to is the maximum number of iterations. In case a node transits to state O then 
it re-sets w to its initial value. The randomly moving M sources generate context with 
sensing rate q (in samples/second, Hz) and the thresholds θl = a for the properties Yl are 
set. The c1 and c2 constants denote how much the lbest and pbest solutions influence the 
movement of the node; usually c1 = c2 = 2 ([18]). The r1, r2 are two random vectors with 
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each component be a uniform random number in [0, 1]. In each iteration, a node i in O, 
or P, adjusts its movement (lines 18, 19) w.r.t. pbest and lbest (lines 20-28) once interac-
tive communication takes place. If the node i in S adopts: 

 dependent behavior then it adjusts its movement w.r.t lines 21-28, 
 independent behavior then it randomly moves with vi in [vmin, vmax] (omit lines 17-28).  

The end-criterion of the algorithm can be the number of iterations, the time needed to 
find fresh context a given portion of nodes, or energy consumption constraints. In our 
case the end-criterion is time dependent since the validity of context depends on the 
sensing rate q. Nodes adopting the independent behavior stop searching as long as 
they obtain fresh context and re-start foraging once context turns obsolete. The end-
criterion for the dependent behavior is the minimum mean value g+(t) for the fitness 
function g. We require that g+(t) be as low as possible w.r.t. the a threshold that is, 
maximize d(t) = (g+(t) - a)2. The d(t) value denotes how much fresh is context. In 
other words, it reflects the portion of time needed for context to turn obsolete as long 
as g+(t) is greater than a. For instance, let two nodes, i and j, carry context y with gi(y) 
= a/2 and gj(y) = a/4. Objectively, both nodes carry fresh context w.r.t. a. Therefore, 
node j carries fresher context than node i since node j will carry fresh context for 
longer time than node i. The convergence g+(to) value denotes a state in which some 
nodes obtain fresh context for t ≥ to and depends highly on a: a high value of a de-
notes a little time for context to turn obsolete. In that case, the nodes may stay for a 
long in S state. On the contrary, a low value of a (i.e., nodes are interested only for 
up-to-date context) results in values of g+(t) close to a; context turns obsolete with a 
high rate. It is of high interest to examine the efficiency of each behavior.  

Algorithm 2. The Context Discovery Problem Algorithm  

1. Set c1, c2, N, M, q
2. Set random xi(t), threshold iy = y, t  0
3. For i = 1: N
4. vi(t) ~ U(vmin, vmax), ki  O 
5. gi

*(y) (g1(y, t) + … + g|Ni|(y, t)) / |Ni |
6. xi

* xi(t)
7. gi

#(y) maxl{gl(y, t)}), l  {Ni}  {i}
8. xi

# xe: e = argmaxl{gl(y, t)}),
l {Ni} {i}, leaderi e

9. Next i
10. While (the end criterion is not met) Do
11. t t + 1; 
12. For i = 1: N
13. Calculate gi(y, t)
14. Validate gi

*(y), gi
#(y) //increase validity 

indicators
15. Next i

16. For i = 1: N
17. Set random unary vectors r1, r2

18. xi(t) xi(t – 1) + vi(t)
19. vi(t) vi(t – 1) + c1r1 (xi

* - xi(t-1)) + c2r2 (xi
# - xi(t-1))

20. gNi(y, t)  (g1(y, t) + … + g|Ni|(y, t)) / |Ni |
21. If gi

*(y) < gNi(y, t) Then
22. xi

* xi(t)
23. gi

*(y) gNi(y, t)
24. End
25. If gi

#(y) < maxl{gl(y, t)}), l  {Ni} Then
26. xi

# xe: e = argmaxl{gl(y, t)}), l  {Ni}, leaderi e
27. gi

#(y) maxl{gl(y, t)}), l  {Ni}
28. End
29. If gi

#(y) < gi(y) < y Then ki  O 
30. If gi(y) < gi

#(y) < y Then ki  P 
31. If y < gi

#(y) Then ki  S 
32. Next i
33. End While

 

5   Performance Evaluation 

In this section we assess the proposed behavior for the CDP. Our objective is to en-
able nodes to discover and maintain fresh context. However, the fact of locating 
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sources and leaders in an attempt to carry fresh context is at the expense of the inher-
ent network load due to communication of nodes. We define as efficiency e(t) of a 
certain behavior the portion of nodes n(t) being in state S out of the communication 
load l(t) among neighboring nodes exchanging information about context quality, i.e., 
e(t) = n(t) / l(t). We require that e(t) assumes high values minimizing the load l(t) and 
maximizing n(t) w.r.t. the adopted behavior.    

The parameters of our simulations are: a swarm of N = 100 nodes, M = 2 sources, a 
= 100 time units, a terrain of L = 100 spatial units, transmission range R = 0.01L, the 
random waypoint model for mobility behavior in [vmin, vmax] = [0.1, 2] ([13]), and 
1000 runs of the algorithm. Context turns obsolete every a time units and is sensed by 
the sources with q ranging from (2/a) Hz to 1Hz. We require that g+(t) be lower than a 
as time passes or, at least, lower than a between consequent intervals of a time units.  

Figure 2 depicts the g+(t) value (in time units –t.u.) when all nodes in the swarm 
adopt the dependent behavior for different values of q. It is observed that all nodes 
rapidly locate leaders and then carry fresh context denoting CDP algorithm conver-
gence. The g+(t) value converges to g+(to) ranging from 14.633t.u. to 40.882t.u. for q 
ranging from 1Hz to 0.02Hz, respectively. It is worth noting that, for q = 1Hz, the 
g+(to) is 14.633t.u. i.e., 14.633% of the validity threshold a indicating that most nodes 
can process context for 85.367% of the sensing time before it turns obsolete. More-
over, as q assumes low values (e.g., 0.02Hz), which means that the sources sense con-
text every 50t.u., the value of g+(t) swings around the 40.882t.u. This indicates that, 
nodes locate sources whose context turns obsolete after 50t.u. For that reason, the 
g+(t) value for such nodes exhibits that behavior. On the other hand, once q assumes 
high values (e.g., 1Hz), the sources constantly carry up-to-date context. Consequently, 
nodes that locate sources carry fresh context (g+(t) converges). The achieved maxi-
mum value for d(to) is 0.6952.104 for q = 1Hz, as depicted in Figure 3, compared to 
0.3854.104 w.r.t. independent behavior, as discussed later. Evidently, by adopting the 
dependent behavior, a large portion of the swarm follows leaders and/or sources carry-
ing objectively fresh context. However, such behavior requires that nodes communicate 
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Fig. 2. The g+(t) value of the dependent behavior for sensing rate q = 0.02Hz, q = 0.05Hz and  
q = 1Hz 



172 C. Anagnostopoulos and S. Hadjiefthymiades 

continuously in order to locate sources and leaders with more fresh context even if 
nodes are in state S for maximizing d(t). That leads to additional communication load 
thus keeping the efficiency to 50% as depicted in Figure 4. Specifically, Figure 4 de-
picts the value of ed(t) for the dependent behavior for q = 1Hz. Obviously, the inher-
ent communication load of such behavior is high since a large portion of nodes at-
tempts to carry fresh context. 
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Fig. 3. The d(t) value of the dependent and independent behavior with sensing rate q = 1Hz 

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration (time t in t.u.) Logarithmic scale

E
ffi

ci
en

cy
 v

al
ue

 e
(t

) 
fo

r 
bo

th
 b

eh
av

io
rs

 w
ith

 q
 =

 1
H

z

Efficiency value for dependent behavior
Efficiency value for independent behavior

 

Fig. 4. The values of ed(t) and ei(t) efficiency in logarithmic scale for q = 1Hz 

Figure 5 depicts the g+(t) value of nodes adopting the independent behavior. We il-
lustrate g+(t) for sensing rates q = 1Hz, q = 0.05Hz and q = 0.02Hz. Evidently, nodes 
seek for fresh context only when the existing context turns obsolete. This is indicated 
by the sharp bend of g+(t) between intervals of a time units for q = 1Hz. The periodic 
behavior of g+(t) reflects the idea of the independent behavior denoting that a node is 
about to seek for context only when needed. Hence, between intervals of a time units 
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nodes that are in S state save energy as long as they do not exchange information with 
others. When context turns obsolete, nodes re-start foraging but having the pbest solu-
tion as a candidate starting point. This means that, each time context turns obsolete 
nodes adjust its movement based on the last known pbest solution. Hence, they start 
moving “blindly” as long as their first direction might be the pbest position indicating 
“prolific” neighborhood. For that reason, the maximum value of g+(t) is close to a in 
each “period” as depicted in Figure 5. Moreover, the g+(t) value ranges from 40 t.u. to 
100 t.u. compared to the convergence value of g+(to) = 14.633t.u. in case of the de-
pendent behavior for q = 1Hz. It is worth noting that the value of gi

*(y) for pbest must 
denote valid context, otherwise node i has to move entirely at random. Moreover, 
consider the g+(t) value having q = 2/a = 0.02Hz. Specifically, g+(t) assumes the 
minimum value every (a/2) = 50 t.u., which is greater than the minimum value of g+(t) 
achieved for q = 1Hz every at.u. In the former case nodes re-start foraging sooner 
than in the latter case (practically two times more), thus, the adoption of the pbest 
solution seems more prolific. For that reason, g+(t) assumes higher minimum values in 
the former case even though the sensing rate is lower. In such cases, the adoption of 
the pbest solution is of high importance.       
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Fig. 5. The g+(t) value of the independent behavior for sensing rates q = 1Hz, q = 0.05Hz and q 
= 0.02Hz 

Figure 3 depicts also the d(t) value for the independent behavior. The d(t) assumes 
the maximum value (therefore lower than in the case of the dependent behavior) only 
when a large portion of nodes carry fresh context. In addition, d(t) assumes zero value 
regularly every a time units denoting the time that all nodes carry obsolete context. 
The mean value of d(t) is 0.3854.104, that is 44.56% lower than the convergence value 
of d(to) in the case of the dependent behavior (for the same sensing rate q = 1Hz). 
Hence, the adoption of the independent behavior for CDP results in 44.56% lower 
quality of context than that achieved by dependent behavior.   

By adopting the independent behavior we can achieve high values of efficiency 
ei(t) during intervals in which nodes carry fresh context. This is due to the fact that in 
such intervals nodes stop communicating with each other thus reducing the load l(t). 



174 C. Anagnostopoulos and S. Hadjiefthymiades 

However, when context turns obsolete then ei(t) assumes a very low value (mean 
value lower than 0.1) as long as a large portion of nodes do not carry fresh context 
thus reducing n(t). In Figure 4 the behavior of ei(t) for sensing rate q = 1Hz is also 
illustrated. We can observe that ei(t) ranges from 0.069 (mean value) to 0.93 (mean 
value) compared to the convergence value of ed(t) = 0.5.  

Each behavior can be applied on a context-aware application considering the spe-
cific requirements of the application. Once the application needs critically up-to-date 
context then the adoption of the dependent behavior is preferable. On the other hand, 
once we are interested in saving energy then nodes can adopt the independent behav-
ior. However, a hybrid scheme combining both behaviors can be adopted. For in-
stance, a portion of nodes can adopt the independent behavior for reducing energy 
consumption and the rest nodes adopt the dependent behavior maintaining up-to-date 
information. Another combination refers to the adoption of the dependent behavior 
for rapidly locating sources and leaders followed by the adoption of the independent 
behavior till context turns obsolete.   

6   Conclusions 

PSO is a simple algorithm with a wide application range on different optimization 
problems. We deal with the CDP by adopting the decentralized control and self-
organization of SI. We provide the mapping between PSO and CDP, and study how 
SI-inspired computing can facilitate context discovery. We introduce the time-variant 
context quality indicator g that refers to the fitness function f in PSO. Hence, each 
particle-node attempts to carry and maintain fresh context w.r.t. the g indicator. We 
propose the independent and dependent foraging behaviors (strategies) for mobile 
nodes The use of such behaviors in conjunction to the local fitness of the 
neighborhood enables node to discover sources and/or leaders that provide up-to-date 
contextual information. The proposed algorithm for the CDP supports such behaviors 
provided that context turns obsolete over time in a dynamic environment. We 
evaluated the efficiency and the effectiveness of each behavior. The adoption of each 
behavior relies on the context-aware application itself: for critically up-to-date context 
constrained applications the dependent behavior is preferable while, once energy 
savings are of high importance then the independent behavior exhibits satisfactory 
results. Our simulation results indicate the applicability of SI in context discovery and 
the proposed foraging behaviors provide useful tools in mobile computing. In 
addition, the adoption of SI for transmission range / power adjustment, so that 
context-aware nodes control their energy consumption, is a future work that can be 
considered in the CDP.      
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