
A-OSGi: A Framework to Support the

Construction of Autonomic OSGi-Based
Applications�

João Ferreira, João Leitão, and Luis Rodrigues

IST/INESC-ID
joao.elias.ferreira@ist.utl.pt, jleitao@gsd.inesc-id.pt, ler@ist.utl.pt

Abstract. The OSGi specification is becoming widely adopted to build
complex applications. It offers adequate support to build modular appli-
cations, where modules can be added and removed at runtime without
stopping the entire application. This paper proposes A-OSGi, a frame-
work that leverages on the native features of the OSGi platform to sup-
port the construction of autonomic OSGi-based applications. A-OSGi
offers a number of complementary mechanisms for that purpose, such
as: the ability to extract indicators for the performance of deployed bun-
dles; mechanisms that allow to have a fine grain control of how services
bind to each other and to gather this information in runtime; and support
for a policy language that allows the administrator to define autonomic
behavior of the OSGi application.

Keywords: Autonomic Computing, OSGi, Service Oriented Computing.

1 Introduction

The OSGi specification [1] (initials for the extinct Open Services Gateway ini-
tiative) defines a standardized component oriented platform for building Ser-
vice Oriented JavaTM applications. OSGi provides the primitives and runtime
support that allows developers to build applications from small, reusable and
collaborative components. The OSGi platform also provides the support for dy-
namically changing such compositions, without requiring restarts. To minimize
the level of coupling, the OSGi provides a service-oriented architecture that en-
ables components to dynamically discover each other for collaboration.

OSGi was first developed for embedded systems software and later automotive
electronics. However, its advantages also made the technology appealing also to
build flexible Desktop Applications [2], Enterprise Applications [3,4], and Web
Applications [5,6]. A key issue associated with the deployment and management
of complex web applications is to ensure the performance of the application in
face of changing workloads. The difficulties in forecasting accurately the demand
and in estimating the interference among the deployed applications, makes the
� This work was partially supported by FCT, through project Pastramy, PTD-

C/EIA/72405/2006.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 1–16, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

2 J. Ferreira, J. Leitão, and L. Rodrigues

configuration of web applications a significant challenge [7,8]. The concurrent
execution of multiple OSGi bundles, possibly developed by different teams, that
invoke each other in patterns which, due to the dynamics of the system evolution,
are difficult to predict at design time, makes this challenge even more daunting.

Autonomic computing has emerged as a viable approach to manage com-
plex systems such as the one described above [9]. The idea is that a system
must own autonomic management components, able to offer self-configuration,
self-optimization, self-healing and self-protection features. The ability to adapt
its own behavior in response to changes in the execution environment is the
fundamental ability of an autonomic system. The OSGi platform, by allowing
components to be removed, added, and replaced at runtime without stopping
the system, is particularly appealing for building autonomic web applications.

This paper proposes, describes and evaluates A-OSGi, a framework to sup-
port the construction of autonomic OSGi-based applications. A-OSGi offers a
number of complementary extensions to the basic OSGi framework that improve
its autonomic capabilities. Namely, A-OSGi includes the following features: the
ability to extract performance indicators of deployed bundles, mechanisms that
allow to have a fine grain control of how services bind to each other and to gather
this information at runtime, and support for the interpretation of a policy lan-
guage, that allows system administrators to define the autonomic behavior of
OSGi applications deployed over the A-OSGi framework.

The rest of the paper is organized as follows. Section 2 overviews related work.
The design and implementation of A-OSGi is described in Section 3 and Sec-
tion 4, respectively. The resulting system is illustrated and evaluated in Section 5.
Section 6 concludes the paper, providing some pointers for future work.

2 Related Work

In this section we provide a brief description of the OSGi platform architecture.
Then we describe the MAPE-K autonomic control loop in the context of the
OSGi architecture and, finally, we present some previous works that have ex-
plored strategies to enrich the OSGi platform with mechanisms to assist in the
creation of autonomic applications, for instance, by proposing adequate moni-
toring mechanisms.

2.1 OSGi Platform

The OSGi platform [1] is a container supporting the deployment of extensible
Java-based applications composed by components, usually named bundles. The
basic architecture of the platform is depicted in Figure 1. The platform is able to
install, update, and remove bundles without stopping or restarting the system.
Moreover, the platform supports a Service oriented Architecture (SOA), where
bundles interact in a publish/find/bind service model. SOA allow the developing
loosely coupled bundles that interact through service interfaces.

In more detail, a bundle can register with the OSGi platform a number of
services that it makes available to other bundles; the platform offers a service

A Framework to Support Autonomic OSGi-Based Applications 3

Fig. 1. OSGi Architecture

discovery mechanism that allows a bundle to dynamically find, at runtime, ser-
vices that it requires to operate.

The platform functionality is divided into the following four layers: i) The
Security Layer extends the basic Java security architecture specifically the per-
mission model to adapt it to the typical use cases of OSGi deployments; ii) The
Module Layer defines the modularization model employed by the platform, in-
cluding the Java packages visibility among bundles(bundle private packages); iii)
The Life Cycle Layer provides an API to support the mechanisms to install, up-
date, remove, start, and stop individual bundles; iv) The Service Layer owns the
responsibility of providing the mechanisms to support a service-oriented archi-
tecture (SOA) on top of the OSGi platform. This SOA support allows program-
mers to develop loosely coupled components that can adapt to the changing
environment in runtime, without restarting bundles. The SOA becomes even
more essential in OSGi due to the platform dynamic nature.

The OSGi platform was initially oriented to embedded systems and network
devices, however with its inclusion in the Eclipse IDE, OSGi is now widely used for
both desktop and server applications [2,3], and developing web applications [5,6].
OSGi based applications have increased in complexity over the years, however the
OSGi platform still lacks support for developing autonomic applications. Namely,
the platform does not provide mechanisms to monitor the operation of individual
bundles, or to take advantage on distinct service implementations that potentially
present different trade-offs between quality of service provided to the clients and
resource consumption required to provide that service.

iPOJO. One of the useful properties of OSGi, that can assist in developing
autonomic applications, is the Service Oriented Architecture support. However
managing the services dynamics in a system like OSGi rises dependencies man-
agement issues. For instance a service becomes available or unavailable, as a
result of bundle activation or deactivation. This problem is tackled by Service
Oriented Component Models that eases the registering of services and depen-
dencies management.

iPOJO is a Service Oriented Component Model that creates a clear separa-
tion between the bundle business logic and service oriented mechanisms such as
registering a service and binding to other services. This separation allows the

4 J. Ferreira, J. Leitão, and L. Rodrigues

bundle to be implemented as simple POJOs1. In [10], the authors specifically
apply the iPOJO solution over an OSGi platform. Although this approach can
ease the management of services binding in runtime, unlike A-OSGi, it lacks the
remaining components to build a autonomic system. However we rely in iPOJO
to build autonomic bundles on top of A-OSGi.

2.2 MAPE-K Control Loop

Many autonomic systems are modeled through a MAPE-K autonomic manage-
ment control loop [11]. This loop consists on the following operations: monitoring
(M), analysis (A), planning (P), and execution (E). The K stands for a shared
knowledge base that supports these operations. We now provide a brief descrip-
tion of each MAPE-K component and discuss how they can be implemented in
the context of the OSGi platform.

Monitoring. The monitoring component is responsible for managing the different
sensors that provide information regarding the system. In the OSGi context,
sensors can capture the current consumption of critical resources (such CPU and
memory) but also other performance metrics (such as the number of processed
requests per second and the request process latency). The monitoring metrics
must be fine grained, i.e. per bundle. Sensors can also raise notifications when
changes to the system configuration happen. Such sensors can be implemented
using the notifications provided by the OSGi platform during the life cycle of
bundles and services, and when bundles bind and unbind to services.

Analysis. The analysis component is responsible for processing the information
captured by the monitoring component and to generate high level events. For
instance, it may combine the values of CPU and memory utilization to signal an
overload condition in the OSGi platform.

Planning. The planning component is responsible for selecting the actions that
need to be applied to the system in order to correct some deviation from the
desired system state. The planning component relies on a high level policy that
describes an adaptation plan for the system. These policies may be described
using Event Condition Action (ECA) rules that are defined by a high level
language. A ECA rule describes for a specific event and a given condition what
action (or actions) should be executed. In the context of OSGi, the actions may
affect the deployed bundles, the registered services or the bindings to services.

Execution. The execution component applies the actions selected by the planning
component to the target components using the available actuators. In OSGi, we
consider three main action types, as follows: i) specify rules for service bindings,
in such a way that a specific bundle is prohibited, or obliged, to use some spe-
cific service implementation; ii) change service properties, for instance change
a parameter associated with a service implementation; and iii) control the life
cycle of a bundle, by either starting or stopping bundles.
1 Plain Old Java Objects.

A Framework to Support Autonomic OSGi-Based Applications 5

Knowledge Base. The knowledge base component maintains information to sup-
port the remaining components. In the context of OSGi, it maintains infor-
mation about managed elements, specifically which services a bundle is using,
which services a bundle provides, and other information about the dependencies
concerning services.

2.3 OSGi Monitoring

Several previous works have addressed the topic of monitoring OSGi applica-
tions [12,13]. Most of these solutions have focused on providing an adequate
bundle CPU consumption isolation. The work presented in [12] employs a thread-
based approach to monitor each OSGi bundle, by creating threads that are in-
ternally associated with an individual bundle. Another approach can be found
in [13], where the authors employ Isolates (or other execution environment ob-
jects) to achieve the required isolation (unfortunately, this solution only works
in specific, modified, JVMs). Other tools could also be applied to monitor the
resources, such as bytecode instrumentation for CPU accounting [14].

3 The A-OSGi Framework

The A-OSGi framework offers a number of extensions to the OSGi platform to
support the development of autonomic applications. In this section, we provide
an overall overview of the A-OSGi architecture followed by a detailed description
of each of its components.

The A-OSGi architecture follows the general MAPE-K model (introduced
previously in the Section 2.2). More specifically, we have augmented the OSGi
platform with functionalities that support monitoring, analysis, planning, exe-
cution, and the knowledge aspects of that model. As depicted in Fig. 2 these
functionalities are provided by four main components, namely: A-OSGi Mon-
itoring and Analysis component (MAC); A-OSGi Execution component (EC);
A-OSGi Knowledge component (KC); and A-OSGi Policy Interpreter and En-
forcer (PIE).

A-OSGi Monitoring and Analysis Component (MAC). The MAC com-
ponent is responsible for retrieving information from sensors; it interacts with
the OSGi service and module layers, as well as with the JVM. The MAC compo-
nent monitors resource consumption, performance metrics, and changes to both
bundle and service availability, as well as the binding of services by individual
bundles.

Whenever the MAC detects a relevant change in the system, it generates an
event to alert any interested component. Such events are routed to all compo-
nents that have previously subscribed them. In our current architecture, only the
PIE component subscribes all provided events. However, by exposing a publish-
subscribe interface, we facilitate the extension of our architecture with additional
functionalities.

6 J. Ferreira, J. Leitão, and L. Rodrigues

Fig. 2. A-OSGi Architecture

The MAC component is also responsible for generating new events from the
composition of other events. In the current prototype, there is no explicit support
to specify these using some form of domain specific language constructs: analysis
events have to be programmed directly in Java. This pragmatic design choice
allowed us to build a running prototype of the A-OSGi architecture that has
been used to assess the merits of our approach. As future work we will enrich
the analysis component, for instance, integrating previous work by others, such
as the Event Distiller described in [15].

A-OSGi Execution Component (EC). The EC component is responsible
for executing actions over bundles, individual services, and the OSGi kernel. Its
interface exports the primitives that allow to start and stop bundles, change
service binding rules in run-time (by adding or removing binding obligations
and prohibitions), and also change properties of individual services (for instance
by changing parameters associated with the operation of such services). In order
to perform these actions, EC interacts with both the service and the life cycles
layers of the OSGi architecture. In the current version of the architecture, only
the PIE component uses the services of the EC component.

A-OSGi Knowledge Component (KC). The KC component provides a set
of mechanisms that allow other components to consult information regarding
the state of the A-OSGi execution environment. In more detail, this compo-
nent maintains, and exports, information concerning the set of installed bundles
and registered services, and also on existing dependencies among bundles and
services. To maintain such information available, the KC component interacts
directly with the module and service layers of the OSGi architecture. In our
current architecture the information maintained by the KC is accessed by the
PIE component, which uses it to compute adaptation plans.

A Framework to Support Autonomic OSGi-Based Applications 7

A-OSGi Policy Interpreter and Enforcer (PIE). The PIE component in-
terprets the system policy, which is described by a set of ECA rules. The activity
of PIE is driven by events received from the MAC component, that notify the
need to perform adaptations. To select the best course of action, PIE uses the
the information about the system provided by the KC component. As a result
of its activation, PIE may request to the EC component the execution of one or
more actions.

4 Implementation of A-OSGi

In this section we describe in some detail the implementation of A-OSGi. The
components of the A-OSGi architecture are implemented, themselves, as OSGi
bundles. Naturally, these bundles need to be deployed to support the autonomic
behavior of the OSGi system. However, some of the functionality required to im-
plement these bundles requires small changes to the standard OSGi framework.
More precisely, we had to augment the life cycle and service layers of the basic
OSGi framework. These changes were necessary to support the monitoring and
execution components of the MAPE-K cycle.

In the following paragraphs, we first enumerate the technologies that we have
used to build our prototype of the A-OSGi framework and, subsequently, describe
in more detail the implementation of each component.

4.1 Underlying Technologies

The OSGi specification has several implementations, some of the most well-know
are: Eclipse Equinox [16], Apache Felix [17] and Knopflerfish [18]. For the work
presented in this paper we have selected the Apache Felix 1.6.0 implementation.
Notice however that changes performed over this implementation, and described
in this paper, can easily be ported to other existing implementations. Other im-
portant component of our architecture is a HTTP server/container that permits
the registering of resource and servlets to support the deployment of web ap-
plications. In this work we used the Pax Web bundle [19] that implements the
OSGi HTTP service specification [6], on top of Jetty HTTP Server [20].

The interfaces of the KC, EC, and MAC components are exported as JMX
Managed Beans [21]. Thus, any existing JMX client can use these components,
and subscribe the MAC events, or invoke the KC and EC methods. This allows
the services provided by these components to be used by third party components
and even other applications.

Moreover, the operation of the MAC component requires the inclusion of a
JVMTI Agent [22] at the JVM level. Finally, the PIE component is based on the
Ponder2 [23] policy interpreter for handling our ECA rules.

4.2 MAC Implementation

The MAC component monitors different aspects of the OSGi execution using
the available sensors. Each of these sensors has its own specific requirements in
terms of implementation. Namely:

8 J. Ferreira, J. Leitão, and L. Rodrigues

Performance Sensor. A Sensor that monitors the requests received by the
HTTP server and stores information concerning the bundle in charge of pro-
cessing the request. Therefore, this sensor is able to provide information about
the absolute number of requests processed by each bundle and the relative dis-
tribution of requests among bundles. It also stores the observed latency in the
processing of each request. To implement such functionalities, the HTTP server
bundle had to be changed in order to monitor the received requests.

Resource Consumption Sensor. A Sensor that monitors CPU usage and
memory consumption per bundle. In order to extract this information, some
sort of isolation among bundles is necessary. To implement our prototype, we
used a thread based approach to achieve the isolation, by creating a hierarchy
of ThreadGroups that associates a different ThreadGroup to each bundle. To
create this hierarchy of threads, we have altered the life cycle layer of OSGi such
that, whenever a bundle is started, the starting method is executed in a new
thread from the ThreadGroup of that bundle. As a result, all threads created
by the starting thread belong to the ThreadGroup associated with the bundle.
Furthermore, clients of a service are provided with a proxy that executes the
service methods in a thread associated to the bundle that registered the service.

We are aware that the thread based approach used in the current prototype
has a number of limitations. In first place, it has a non-negligible overhead as it
requires two context switch for each service invocation. Furthermore, it is unable
to isolate interactions that do not use the service interfaces (such as when a bun-
dle invokes methods of classes from another bundle). Finally, this approach may
cause deadlocks in services with synchronized methods. Therefore, the approach
requires a careful configuration of which services need to be isolated. Still, it its
able to provide enough feedback to support the required information to implement
many relevant autonomic behaviors. Given that the problem of providing isolation
among OSGi bundles is a challenging research topic on its own, we expect to in-
corporate in the future results from complementary on-going research[13].

With thread isolation, CPU usage can be calculated iterating over the threads
associated to a bundle ThreadGroup and sum all the threads CPU time. The same
approach can be extended to memory since its possible to detect the allocation of
objects and assign allocations to the thread that is performing that operation.

Table 1. A-OSGi MAC Events

Event Name Event Attributes

CPUUsage BundleID, value, oldvalue
MemoryUsage BundleID, value, oldvalue
RequestsPerSec BundleID, value, oldvalue
Latency BundleID, value, oldvalue
BundleStarted BundleID
BundleStopped BundleID
ServiceRegistered BundleID, ServiceID
ServiceUnregistered BundleID, ServiceID
ClientRegistered ClientBundleID, ServiceID
ClientUnregistered ClientBundleID, ServiceID

A Framework to Support Autonomic OSGi-Based Applications 9

OSGi Platform Sensor. This Sensor monitors notifications provided by the
OSGi platform concerning the service registration and bundle life cycle. The
binding between a bundle and a service is monitored by leveraging on the iPOJO
functionalities.

The complete list of events currently provided by the A-OSGi MAC is listed
in Table 1.

4.3 EC Implementation

The EC component not only provides an interface to start and stop bundles
(something that is directly supported by the standard OSGi implementation)
but, more importantly, provides interfaces to control how bundles bind to each
other and, as a result, to control which of multiple alternative implementations
of a given service can, or should, be used. For that purpose, the EC offers the
following mechanisms:

– bindings obligation: a binding obligation specifies that a bundle which op-
eration requires a given service will be obliged to use a specific service im-
plementation. The purpose of this mechanism is to force the use of a service
implementation by a bundle.

– binding prohibitions: a binding prohibition specifies that a bundle which op-
eration requires a given service cannot use a specific service implementation.
The purpose of this mechanism is to limit the use of service implementations
by bundles.

– service property configuration: the EC also provides support to change the
value of a property associated to a service implementation. This functionality
can be used to alter properties that the developer of the bundle exposed as
a service property.

The complete list of actions supported by the EC component is listed in Table 2.
In order to implement the EC component we have augmented the OSGi service
layer. In A-OSGi, this layer was modified to maintain, for each bundle, the
associated obligations and prohibitions. This information is used in run-time to
filter the services a bundle can bind, in order to satisfy the constraints defined
at each moment. We resort to iPOJO functionality to ensure the correctness of
bindings, accordingly to the prohibitions and obligations defined

Table 2. A-OSGi EC Actions

Action Name Parameters

StartBundle BundleID
StopBundle BundleID
SetClientProhibition BundleID, ServiceID
RemoveClientProhibition BundleID, ServiceID
RemoveClientProhibitionForServiceName BundleID, ServiceName
SetClientObligation BundleID, ServiceID
RemoveClientObligation BundleID, ServiceID
ChangeServiceProperty ServiceID, Property, Value

10 J. Ferreira, J. Leitão, and L. Rodrigues

4.4 KC Implementation

The KC provides a set of methods that allow to consult runtime information
about the installed bundles and the registered services, as well as the depen-
dencies between the client bundles and services. To implement these functions,
we use the module layer to extract information about services that a bundle is
using and the service layer to extract information about the bundles being used
by a service. The KC also provides methods to retrieve the current set of service
obligations or prohibitions. The full interface of the KC component is listed in
Table 3.

Table 3. A-OSGi KC functions

A-OSGi Bundle related functions

Function Parameters Returns

getAllBundles BundleID[]
getWebBundles BundleID[]
getBundleName BundleID BundleName
getBundleID BundleName BundleID
getUsedServiceNames BundleID ServiceName[]
getUsedServiceIDs BundleID ServiceID[]
getUsedServiceIDsbyName BundleID, ServiceName ServiceID[]
getAllUsedServicesIDs BundleID ServiceID[]
getProvidedServiceIDs BundleID ServiceID[]
getProvidedServiceNames BundleID ServiceName[]
getUsingBundles BundleID BundleID[]
getAllUsingBundles BundleID BundleID[]

A-OSGi Service related functions

Function Parameters Returns

getAllServices ServiceID[]
getServiceName ServiceID ServiceName
getServiceNames ServiceID ServiceName[]
getServiceBundle ServiceID BundleID[]
getServiceImplementations ServiceName ServiceID[]
getUsingBundles ServiceID BundleID[]
getAllUsingBundles ServiceID BundleID[]
getAllUsingWebBundles ServiceID BundleID[]
getClientProhibitions BundleID ServiceID[]
getClientObligation BundleID ServiceID
getServiceProperty ServiceID, Property Value

4.5 PEI Implementation

For implementing the PEI component we have used the Ponder2 policy inter-
preter [23]. With Ponder2 we implemented Managed Objects that we used as
adaptors to interact with the MAC, KC and EC components (using the corre-
sponding JMX MBeans). To describe ECA rules, Ponder provides a language
called PonderTalk. To create an ECA rule we have to specify an event from the
available MAC events, a condition using the KC functions, and actions provided
by EC. The use of Ponder2 also allows the dynamic definition of the policies,
a property very useful in a OSGi system due to the dynamic nature of the
platform.

A Framework to Support Autonomic OSGi-Based Applications 11

4.6 Framework Modifications

In order to implement A-OSGi, some modifications to the OSGi Framework
were necessary. These modifications can be summarized as follows: i) JVM level,
a JVMTI agent was implemented to support the monitoring of CPU and mem-
ory usage; ii) Life Cycle Layer, the execution of the bundle start method was
modified in order to execute this method in a new Thread with a corresponding
ThreadGroup; iii) Service Layer, to implement the prohibitions and obligations
mechanism in order to filter services a bundle can find, so the services that a
bundle can discover respect the defined constrains.

5 Evaluation

We now illustrate and evaluate the potential of A-OSGi to build autonomic
OSGi-based applications. Our case study uses a Web Application that has been
implemented using the architecture described in the previous section, and that
allows us to demonstrate some of the main features of A-OSGi.

The set of OSGi bundles used by our application is depicted in Figure 3. We
consider two web bundles that implement the presentation layer for an on-line
store that sells CDs and DVDs. These web bundles are implemented as individual
bundles that register with our altered version of the Jetty web server. Both web
bundles allow remote clients to: i) list a sub set of products, available in the store
and currently in stock, and ii) get details for a specific product. Information
about available items in stock is provided by a stock service that consults a
local database. There are two (independent) bundles that offer this service with
distinct trade-offs between quality of service and resource consumption. In more
detail, the first implementation of the stock service, simply named Basic, only
resorts to the internal database to provide information about products. The
second implementation of this service, named Premium, additionally relies on
on a costumer preferences service, to order the product list according to the
client preferences. Also, the premium service can offer suggestions about other

Fig. 3. Case Study Components

12 J. Ferreira, J. Leitão, and L. Rodrigues

products that may be of interest to the user and, therefore, returns additional
items when the client searches for either CDs or DVDs.

The functionality provided by the Premium implementation, by offering per-
sonalized content, can improve the costumer satisfaction and also generate more
revenue to the store. Unfortunately, this additional quality of service comes at
the expense of increased resource consumption. In situations where the server
becomes overloaded with requests, it may be preferable to satisfy more requests,
using the Basic implementation, than to provide the Premium service to a sub-
set of clients and drop the remaining requests. Naturally, when the load allows,
one would like to serve all requests using the Premium service. Furthermore, we
would like to have the possibility of making these adaptations for each service
independently of each other. For instance, if only the CD bundle is overloaded
with requests, it may be possible to adapt only the stock implementation used
by that service, and continue to use the Premium implementation for DVD buy-
ers. As we will show, the A-OSGi architecture provides support to specify and
implement this sort of policies.

5.1 Using A-OSGi

We now describe how A-OSGi can be used to implement the policy described
above for our case study. The policy can be described by only two rules, depicted
in Listing 1. The first rule simply prohibits any web bundle that is consuming
more than 35% of CPU from using the Premium implementation of the stock
service. The second rule removes this prohibition when a web bundle uses less
than 5% CPU. The adequate thresholds for the CPU usage were determined
experimentally. This policy ensures that the most expensive implementation is
used, if and only if, the resources are enough to sustain the current load.

Adaptation is performed with bundle-level granularity. The way the rules are
specified does not require the CD or DVD web bundles to be named explicitly.
Therefore, in run-time, depending on the system load, they may be applied to
just the CD service, to just the DVD service, or both. This is possible because the
KC component maintains updated information about each bundle, specifically on
their bindings. Also, since A-OSGi offers the flexibility to choose which services
should be monitored, it is possible to configure the platform in such a way that
only the CD and DVD services are monitored, reducing the monitoring overhead
to a minimum. Run-time adaptation is performed by restarting the target of the
rule. This forces iPOJO to reevaluate the bindings of the target bundle, taking
into consideration the new set of rules in the system.

5.2 Performance

To evaluate experimentally A-OSGi we used a workbench composed of two Intel
core-2 duo at 2.20 Ghz with 2Gb of memory. Both machines run Linux (Ubuntu
8.10 Desktop Edition) and the Sun Java Virtual Machine 1.6. Both nodes are
connected by a 100 Mbit switch. We deployed A-OSGi in one of these machines,
and loaded the policy depicted in Listing 1. The other machine is used to generate

A Framework to Support Autonomic OSGi-Based Applications 13

Listing 1. Policy

newpol icy := root / f a c t o ry / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock1bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Premium ”) .
(va lue > 35) & (usedstockbundle == stock1bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
s e r v i c e s s e tC l i e n tP r oh i b i t i o n : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles startBundle : bundleID .
] ;

a c t i v e : t rue .
newpol icy := root / f a c t o ry / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock2bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Bas ic ”) .
(va lue < 5) & (usedstockbundle == stock2bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
s e r v i c e s removeCl i entProh ib i t i on : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles startBundle : bundleID .
] ;

a c t i v e : t rue .

the workload using Apache JMeter 2.3.2 to emulate clients executing requests
to the server. Clients operate by requesting a list of either DVDs or CDs from
the server, and subsequently requesting details on one of the returned items.

During the experiments the web application is subject to 3 different workloads
that we have named, CD/DVD, CD/DVD+, and CD+/DVD+. The CD/DVD
workload imposes 50 requests per second to the CD service and another 50
requests per second to the DVD service. This load is low enough such that the
Premium implementation of the stock service can be used to answer all requests
without overloading the system. The CD/DVD+workload, in addition to the
previous requests, imposes an additional load of 1.500 requests per second to the
DVD service. To sustain this load, one is required to adapt the implementation
of the stock bundle used to process DVD requests (CD requests do not need to
be affected by the adaptation at this point). Finally, the CD+/DVD+ workload
includes an excess of 700 requests per second to the CD service. At this point,
both the DVD and CD requests are required to use the Basic implementation of
the stock service to sustain the heavy load.

The system is initiated with the CD/DVD workload. At time 60 the workload
is changed to the CD/DVD+ workload. Subsequently, at time 120 the workload
is increased again to CD+/DVD+. Finally, at time 180 the workload returns to
the baseline CD/DVD workload. Each individual workload was generated by a
group of 10 client threads. These workloads are illustrated in Figure 4 (time is
measured in seconds).

14 J. Ferreira, J. Leitão, and L. Rodrigues

Fig. 4. Workload Description

The results are depicted in Figure 5. The first plot compares the performance
of a static configuration (providing the premium service) against the autonomic
configuration. The adaptations that result from execution the policy can be in-
ferred by the quality of service provided to the user in plot 5(b). Clearly, the
autonomic configuration is able to ensure a much better throughput than the
static configuration, by dynamically changing to the less expensive implementa-
tion of the stock bundle. Plot 5(c) depicts the total number of requests processed
by both configurations. This last plot makes clear that the autonomic version
responds better to the increase in the workload.

0 50 100 150 200

time (s)

0

1000

2000

3000

4000

th
ro

ug
hp

ut
 (

re
qu

es
/s

)

OSGi
A-OSGi

(a) Throughput

0 50 100 150 200

time (s)

Ba
si

c

Q
ua

lit
y

of
 S

er
vi

ce

Pr
em

iu
m

OSGi
A-OSGi

(b) Quality of Service

0 50 100 150 200

time (s)

0

50000

100000

150000

200000

pr
oc

es
se

d
re

qu
es

ts

OSGi
A-OSGi

(c) Processed Requests

50 100 150 200

time (t)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

re
qu

es
t l

at
en

cy
 (

m
s)

OSGi
A-OSGi

(d) Overhead

Fig. 5. Performance with and without adaptation

A Framework to Support Autonomic OSGi-Based Applications 15

Finally, plot 5(d) compares the average request latency of the application
running in the A-OSGi framework against the same application, under the same
medium workload, running in a plain OSGi framework. This allows us to assess
the overhead induced by the current implementation of the A-OSGi mechanisms.
The difference is in the order of 25%, which is not surprising, given that many of
the A-OSGi components are not yet fully optimized (in particular the isolation
mechanisms required for detailed monitoring).

5.3 Other Policies

Due to lack of space, we have only discussed and evaluated one of several poli-
cies that could be applied to the case study. However, we would like to point
out some other alternatives that would also be supported by the A-OSGi frame-
work. Alternatively, or in addition to commuting between the Basic and Premium
implementation, the policy could also configure the operation of each of these
implementations (for instance, by changing the number of recommendations re-
turned to the client by the Premium service). This would require to write rules
specific for each bundle implementation, a feature that our simple case-study
does not illustrates. Also, instead of setting individual binding constraints, the
global behavior of the system could be controlled by simply installing or unin-
stalling bundles on the fly.

6 Conclusions

In this paper we have proposed A-OSGi, a framework that augments the OSGi
platform to support the implementation of autonomic OSGi-based applications.
A-OSGi offers a number of complementary mechanisms to this end, including
the ability to extract performance indicators about the execution of deployed
bundles, mechanisms that allow to have a fine grain control of how services bind
to each other, and support to describe the the autonomic behavior of the OSGi
application using a policy language.

The architecture has been implemented. Experimental results have illustrated
the benefits of the approach: we were able to selectively adapt the implemen-
tation of a bundle used by different services, in order to augment the system
performance in face of dynamic workloads. As future work, we plan to study
ways to optimize the performance of some of the A-OSGi components, such as
the MAC (by using more efficient isolation techniques), to reduce the overhead
imposed by the autonomic mechanisms.

References

1. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4, Version
4.1 (2007), http://www.osgi.org/Download/Release4V41

2. Gruber, O., Hargrave, B.J., McAffer, J., Rapicault, P., Watson, T.: The eclipse 3.0
platform: Adopting osgi technology. IBM Systems Journal (2005)

http://www.osgi.org/Download/Release4V41

16 J. Ferreira, J. Leitão, and L. Rodrigues

3. Sun Microsystems: Sun GlassFish Enterprise Server v3 Prelude Release Notes
(2008), http://docs.sun.com/app/docs/coll/1343.7

4. OW2 Consortium: Jonas - White Paper v1.2 (2008),
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/

Documentation/JOnAS5 WP.pdf

5. Spring Source: Spring Dynamic Modules for OSGi (2009),
http://www.springsource.org/osgi

6. The OSGi Alliance: OSGi Service Platform Service Compendium, Release 4, Ver-
sion 4.1 (2007), http://www.osgi.org/Download/Release4V41

7. Diao, Y., Gandhi, N., Hellerstein, J., Parekh, S., Tilbury, D.: Using mimo feedback
control to enforce policies for interrelated metrics with application to the apache
web server. In: Network Operations and Management Symposium, NOMS 2002.
2002 IEEE/IFIP, pp. 219–234 (2002)

8. van der Mei, R., Hariharan, R., Reeser, P.: Web server performance modeling.
Telecommunication Systems (2001)

9. IBM: Autonomic computing: Ibm’s perspective on the state of information tech-
nology. IBM Journal (2001)

10. Escoffier, C., Hall, R., Lalanda, P.: Ipojo: an extensible service-oriented component
framework, July 2007, pp. 474–481 (2007)

11. IBM: An architectural blueprint for autonomic computing, fourth edition. Techni-
cal report, IBM (2006)

12. Miettinen, T.: Resource monitoring and visualization of OSGi-based software com-
ponents. PhD thesis, VTT Technical Research Centre of Finland (2008)

13. Geoffray, N., Thomas, G., Clément, C., Folliot, B.: Towards a new Isolation Ab-
straction for OSGi. In: Proceedings of the First Workshop on Isolation and Inte-
gration in Embedded Systems (IIES 2008), Glasgow, Scotland, UK, April 2008,
pp. 41–45 (2008)

14. Hulaas, J., Binder, W.: Program transformations for light-weight cpu accounting
and control in the java virtual machine. Higher Order Symbol. Comput. 21(1-2),
119–146 (2008)

15. Kaiser, G., Parekh, J., Gross, P., Valetto, G.: Kinesthetics extreme: an external in-
frastructure for monitoring distributed legacy systems. In: Autonomic Computing
Workshop, June 2003, pp. 22–30 (2003)

16. Eclipse Equinox: Homepage, http://www.eclipse.org/equinox/
17. Felix Apache: Homepage, http://felix.apache.org/
18. Knopflerfish: Homepage, http://www.knopflerfish.org/
19. Pax Web: Homepage, http://wiki.ops4j.org/display/paxwev/Pax+Web/
20. Jetty HTTP Server: Homepage, http://www.mortbay.org/jetty/
21. Sun Microsystems: Java Management Extensions,

http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html

22. Sun Microsystems: Java Virtual Machine Tools Interface,
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html

23. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - a policy environment for
autonomous pervasive systems, June 2008, pp. 245–246 (2008)

http://docs.sun.com/app/docs/coll/1343.7
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf
http://www.springsource.org/osgi
http://www.osgi.org/Download/Release4V41
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.knopflerfish.org/
http://wiki.ops4j.org/display/paxwev/Pax+Web/
http://www.mortbay.org/jetty/
http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html

	A-OSGi: A Framework to Support the Construction of Autonomic OSGi-Based Applications
	Introduction
	Related Work
	OSGi Platform
	MAPE-K Control Loop
	OSGi Monitoring

	The A-OSGi Framework
	Implementation of A-OSGi
	Underlying Technologies
	MAC Implementation
	EC Implementation
	KC Implementation
	PEI Implementation
	Framework Modifications

	Evaluation
	Using A-OSGi
	Performance
	Other Policies

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

