

R. Mehmood et al. (Eds.): EuropeComm 2009, LNICST 16, pp. 23–34, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Enhancing Java RMI with Asynchrony through
Reflection

Orhan Akın and Nadia Erdoğan

Istanbul Technical University, Computer Sciences, Informatics Institute,
Maslak-34469, Istanbul, Turkey

orhan@engineer.com, nerdogan@itu.edu.tr

Abstract. Java RMI’s synchronous invocation model may cause scalability
challenges when long duration invocations are targeted. One way of overcom-
ing this difficulty is adopting an asynchronous mode of operation. An asyn-
chronous invocation allows the client to continue with its computation after
dispatching a call, thus eliminating the need to wait idle while its request is be-
ing processed by a remote server. This paper describes an execution framework
which extends Java RMI functionality with asynchrony. It is implemented on
top of RMI calls, using the thread pooling capability and the reflection mecha-
nism of Java. It differs from previous work as it does not require any external
tool, preprocessor, or compiler and it may be integrated with previously devel-
oped software as no modification of target remote objects is necessary.

Keywords: Asynchronous Communication, Asynchronous RMI, RMI, Reflection,
parallel programming, distributed programming.

1 Introduction

Communication is a fundamental issue in distributed computing. Middleware systems
offer a high level of abstraction that simplifies communication between distributed
object components. Java’s Remote Method Invocation (RMI) [1] mechanism is such
an abstraction that supports an object-based communication framework. It extends the
semantics of local method calls to remote objects, by allowing client components to
invoke methods of objects that are possibly located on remote servers. In RMI,
method invocation is synchronous, that is, the operation is blocking for the client if it
needs the result of the operation or an acknowledgement. This approach generally
works fine in LANs where communication between two machines is generally fast
and reliable [2]. However, in a wide-area system, as communication latency grows
with orders of magnitude, synchronous invocation may become a handicap. In addi-
tion, RMI’s synchronous invocation model may cause scalability challenges when
long duration invocations are targeted. One way of overcoming these restrictions is
adopting an asynchronous mode of operation. This type of invocation provides the
client with the option of doing some useful work while its call request is being proc-
essed, instead of being blocked until the results arrive. Asynchronous invocations
have the following advantages:

24 O. Akın and N. Erdoğan

• to overlap local computation with remote computation and communication
in order to tolerate high communication latencies in wide-area distributed
systems,

• to anticipate the scheduling and the execution of activities that do not com-
pletely depend on the result of an invocation,

• to easily support interactions for long-running transactions
• to enforce loose coupling between clients and remote servers.

We propose an execution framework which extends RMI functionality with asyn-
chrony. Clients are equipped with an interface through which they can make asyn-
chronous invocations on remote objects and continue execution without the need to
wait for the result of the call. They can later on stop to query the result of the call if it
is required for the computation to proceed, or they may completely ignore it, as some
invocations may not even produce a result.

Our framework focuses on the four most commonly used techniques, namely fire
and forget, sync with server, polling, and result callback for providing client-side
asynchrony. The design of the framework is based on a set of asynchrony patterns for
these techniques described in detail in [3]; actually implementing the asynchrony
patterns on top of synchronous RMI calls.

This paper describes the design and implementation issues of the proposed frame-
work. Java’s threading capability has been used to provide a mechanism for asyn-
chronous invocation. One contribution of this work is its use of run-time reflection to
do the remote invocation, thus eliminating the need for any byte code adjustments or a
new RMI preprocessor/compiler. Another contribution is the rich set of asynchronous
call alternatives it provides the client with, which are accessible through an interface
very similar to that of traditional RMI calls. As the framework is implemented on the
client side and requires no modification on server code, it is easily integrated with
existing server software.

2 Java RMI

Java RMI provides a remote communications mechanism between Java clients and
remote objects [1]. Java clients obtain references to these remote objects through a
third party registry service. These references allow transparent access to the remote
object’s methods by mirroring the remote interface. RMI hides all execution details of
communication, parameter passing and object serialization details by delegating them
to ‘stub’ objects at both sides, on the client and the server. Method invocation is syn-
chronous. This mode of communication may be satisfactory in applications where
execution time is not critical. However, many distributed applications may benefit
asynchronous invocations.

3 Asynchronous Invocation Patterns

Asynchronous invocation allows the client to continue with its computation after
dispatching a call, thus eliminating the need to wait idle while its request is being
process by a remote server. Several alternatives exist on how the results are passed to

 Enhancing Java RMI with Asynchrony through Reflection 25

the client. The client may be interrupted when the results are ready, it may receive the
results when it needs them, or it might not even be interested in the result. Multiple
method invocations may as well be interleaved, without retrieving the response in
between. There are four most commonly used techniques for providing client-side
asynchrony [3].

Fire and Forget: well suited for applications where a remote object needs to be noti-
fied and a result or a return value is not required.

Sync with Server: similar to fire and forget; however, it ensures that request has been
successfully transferred to the server application.

Polling: suitable for applications where a remote object needs to be invoked asyn-
chronously, and yet, a result is required. However, the client may continue with its
execution and retrieve the results later.

Result Callback: similar to Poll Object, a remote operation needs to be invoked asyn-
chronously and a result is required. The client requests to be actively notified of the
returning result.

4 Design Objectives for Asynchronous RMI Execution
Framework

• Independence of any external tools, preprocessors, or compilers
Our main objective has been to present an execution framework that is completely
compatible with standard Java, compilers, and run-time systems and does not require
any preprocessing or a modified stub compiler. We have used RMI as the underlying
communication mechanism and implemented asynchrony patterns on top RMI calls
(as depicted in Figure 1.). Therefore, as long as a client is able to access a remote
object using standard RMI, both invocation models, asynchronous /synchronous invo-
cations, are possible. The main benefit for the developer is that he may choose the
appropriate invocation model according to the needs of the application.

• No modification of existing server software
Another design objective is that the framework should require no modifications on the
server side so that previously developed remote objects can still be accessed, now
asynchronously as well. There is no necessity for a remote object to implement a
particular interface or to be derived from a certain class as the framework is located
on the client side.

• Performance related concerns
Performance issues have also been the focus of the implementation. As threading and
reflection produce extra runtime overhead, special care has been taken to keep their use
at minimum, so that they do not introduce a performance penalty on method execution.

5 Execution Framework Implementation

The asynchronous RMI execution model has been implemented by an execution
framework (Figure 1.) which is developed in Java. It consists of a Java package
itu.rmi.* containing the classes that provide the basic services for asynchronous
invocations. The classes that are visible to the client are depicted in Figure 2. The

26 O. Akın and N. Erdoğan

execution flow of an asynchronous invocation (arrows 1 through 7 in Fig. 1.) and its
implementation details are described below, assuming that a server has already regis-
tered a remote object with an RMI registry, making it available to remote clients.

Fig. 1. Asynchronous RMI Framework Execution Flow

Initialization Phase:
1. This step involves the determination of the remote host. The client queries

the lookup service rmi registry to retrieve a remote reference to the target
remote object.

2. The lookup call returns a remote reference and results in the placement of a
client stub which provides the interface to interact with the remote object.

Asynchronous Invocation Request:
3. An asynchronous invocation requires an instance of an invocation object to

be created for the specific type of asynchronous call (FireandForget,
SyncWithServer, Polling, Callback) the client wishes to make. The asyn-
chronous call is dispatched as the client invokes the public void call(Object
remoteObject, String methodName, Object params[]) overloaded call method
of the invocation object with the actual parameters that specify the client
stub reference, the name and the list of parameters of the remote method to
be called. The client resumes execution as soon as the call method returns.

Asynchronous Invocation Processing:
4. The call method receives an invocation request and calls the appropriate

method on the remote object transparently, applying the semantics of the
specific type of asynchronous call. For this purpose, it uses reflection to
assemble a method call during runtime. Once the method name and the
argument types are resolved, they are matched with those of the incoming
request to detect errors such as invoking a non-existing method, passing an
incorrect number of arguments, or passing incorrect argument types to a
method, raising exceptions that are caught by client. If no error exists, the
call method returns after starting a service thread which handles the
remainder of the invocation, allowing the client to resume execution while
the asynchronous call proceeds in the new service thread. The service thread,

 Enhancing Java RMI with Asynchrony through Reflection 27

called a delegate in the our framework, is activated from a thread pool with
parameters that include invocation details such as the remote object, method
name, and parameters.

5. The delegate simply executes an invoke method call in its run method,
(_remoteMethod.invoke (_remoteObject,_parameters);) which performs a
standard RMI for the requested method over the client stub.

6. This phase involves standard RMI activity following its parameter passing
semantics. The server stub passes the call request with its parameters to the
server stub, which in turn, executes the method call on the remote object and
returns the results back to the client stub over the network.

7. The client stub returns the result of the remote call to the delegate. The dele-
gate responds differently on retrieving the result, according to the specific
type of asynchronous call.

6 Types of Asynchronous Calls

Fig. 2 displays the public classes visible to user programs.

Fig. 2. Execution Framework Public Classes

The execution framework supports the four most commonly used asynchronous
calls. In the following sections, we describe their execution patterns and give code
samples to show how to utilize the framework for such calls, assuming the existence
of the remote server objects logger, docConverter, searchEngine, and Emergency on a
host with IP ‘192.168.1.3’.

Fire and Forget: Fire and forget is well suited for applications where a remote object
needs to be notified and a result or a return value is not required. Reliability is not a
concern for both sides. When the client issues such an invocation request, the call

28 O. Akın and N. Erdoğan

returns back to the client immediately. The client does not get any acknowledgment
from the remote object receiving the invocation.

The client invokes asynchronously the log method of the remote object logger with
the string parameter “my log message”. The call method returns right after dispatch-
ing the delegate with the call request. Thus, the client thread and the delegate thread
run concurrently, the client returning back to its execution while the delegate blocked
waiting for the call to return.

import itu.rmi.*;
import java.rmi.*;
public class TestAsyncRMI {
public static void main(String[] args) {
 // use standard rmi to get remote reference
 Logger logger = (Logger)

Naming.lookup ("rmi://192.168.1.3/logger");
 // get a ‘fire and forget’ invocation object
 FireAndForget fireAndForget = (FireAndForget)
AsyncComm.getAsyncCommObject

(AsyncCommPattern.FIRE_AND_FORGET);
 // asynch call over invocation object through call method
 fireAndForget.call(logger, "log", new Object[] {"my log

message"});
 // client continues execution immediately after call returns

}

Sync with Server: Sync with Server is similar to fire and forget; however, it ensures
that the invocation has been performed reliably. Again, a remote object needs to be
notified and a result of the remote computation is not required. The difference is that,
the call does not immediately return to the client but waits for an acknowledgement
from the remote object to ensure that the request has been successfully transferred to
the server application. Only then, control passes to the client. Meanwhile, the server
application independently executes the invocation.

The client invokes asynchronously the convert method of the remote object
docConverter with the input parameter msDoc. The call method blocks until the
server application docConverter returns an acknowledgement that it has successfully
received the request. From that point on, both the client and the server in parallel, the
client returning back to its execution while the docConverter proceeds with the
document conversion process.

import itu.rmi.*;
import java.rmi.*;
public class TestAsyncRMI {
public static void main(String[] args) {
 DocConverter docConverter = (DocConverter)
 Naming.lookup("rmi://192.168.1.3/docConverter");
 SyncWithServer syncWithServer = (SyncWithServer)

 Enhancing Java RMI with Asynchrony through Reflection 29

 AsyncComm.getAsyncCommObject
 (AsyncCommPattern.SYNC_WITH_SERVER);

 MSDoc msDoc = new MSDoc();
 // asynch call over invocation object through call method, blocking until server
 // returns an ack.
boolean b = ((Boolean)syncWithServer.call(docConverter,

"convert",new Object[] { msDoc })).booleanValue();
 //continue execution while server object converts the document
}

Polling: Polling is suitable for applications where a remote object needs to be in-
voked asynchronously, and yet, a result is required. However, as the results may not
be needed immediately for the client to proceed with its computation, the client may
continue with its execution and retrieve the results later. In such a case, a poll object
receives the result of remote invocations on behalf of the client. The client, at an ap-
propriate point in its execution path, uses this object to query the result and obtain it.
It may poll the object and continue with its computation if the result has not yet ar-
rived, or it may block on the object until the result becomes available.

The client issues a polling call to the search method with the keyword "java" as the
parameter. This time, the method call returns with a poll object as soon as it
dispatches the delegate with the call request, allowing the client to continue with its
execution while remote object processes the query and produces a result. When a
result is returned, the delegate thread retrieves it in the poll object, sets a flag in the
object to indicate that it is available and notifies any thread blocked on the object.
The resultAvailable() method of the poll object returns a boolean value and may be
checked by the client to see if a result has arrived. The client may also call the
getResult()method of the poll object to get the result. However, this is a blocking call
and does not return until the result actually becomes available.

import itu.rmi.*;
import java.rmi.*;
public class TestAsyncRMI {
public static void main(String[] args) {
 SearchEngine searchEngine = (SearchEngine)
 Naming.lookup("rmi://192.168.1.3/searchEngine");
 Polling polling = (Polling)
AsyncComm.getAsyncCommObject(AsyncCommPattern.POLLING);
// asynch call over invocation object through call method- the call returns a
// poll object
 PollObject pollObject = (PollObject) polling.call

 (searchEngine,"search", new Object[] {"java"});
 // query to find out if the result of the asynchronous call is available
 boolean b = pollObject.resultAvailable();
 // blocking call that returns the result if it is available
 // or blocks the client until it becomes available and resumes it with the result
List<String> result = (List<String>)

pollObject.getResult();

}

30 O. Akın and N. Erdoğan

Callback: Similar to Polling, a remote operation needs to be invoked asynchronously
and a result is required. However, in this case, the client needs to react to the result
immediately it becomes available, not at a future time of its choice. Therefore, the
client requests to be actively notified of the returning result. To this end, the client
passes a callback object together with the invocation request to the execution frame-
work. The call returns after sending the invocation to the server object and the client
resumes execution. Once the result becomes available, a predefined operation on the
callback object is called, passing it the result of the invocation.

Our implementation makes use of the Observer Pattern [5], therefore,
callbackObject, an instance of a class which implements Observer interface is created
before the client makes a call to the sendEmergency method, supplying a criterion
"pressure is below 10" and a callback object callbackObject. Once the result of the
remote call becomes, the update method of the observer object is invoked automati-
cally with result parameters by the delegate using built-in method notifyObservers.

import itu.rmi.*;
import java.rmi.*;
class CallbackObject implements Observer{
 public void update(Observable o, Object arg){
 // arg is the result returned by the remote object
 }
}
public class TestAsyncRMI {
public static void main(String[] args) {
 Emergency emergency = (Emergency)
 Naming.lookup("rmi://192.168.1.3/emergency");
 Callback callback = (Callback)

 AsyncComm.getAsyncCommObject(AsyncCommPattern.CALLBACK);
 // create callback object
 CallbackObject callbackObject = new CallbackObject();
 // asynch call over invocation object through call method, callback object
 // also passed as a param
 callback.call(emergency, "sendEmergency", new

Object[] {"pressure is below 10"}, callbackObject);

}

7 Performance Optimization

Performance of the framework has been a central concern during implementation.
We tried to determine the greatest sources of runtime overhead and observed them to
be related to threading facility and reflection mechanism of Java. Below, we describe
the optimizations we have done.

Thread Pool: The framework transfers each new asynchronous invocation request to
a new thread. Considering the overhead of spawning a new thread on each call, we
optimized the interaction with the thread package and switched to using a ThreadPool

 Enhancing Java RMI with Asynchrony through Reflection 31

Fig. 3. Thread Pooling Speedup

which creates new threads as needed, but reuses previously created threads when
they are available. Fig. 3. displays the performance gain in invocation response
time, which becomes evident especially with high number of simultaneous
requests.

Reflection: The second optimization we performed concerns reflection. When the call
method of an invocation object receives an invocation request, it uses reflection to
resolve the method name, the number of its arguments and their types. To minimize
the overhead introduced by reflection, we cash the recently resolved information in
private fields of the invocation object so thatsuccessive requests for a particular
invocation instantly use the local data, instead of reflection lookups. Figure 4. dis-
plays speed up gained through reflection optimization.

Performance Results: We have conducted experiments in order to measure the
performance of the framework and compare it with Java RMI. The test computer is

Fig. 4. Reflection speedup

32 O. Akın and N. Erdoğan

Intel Core 2 Duo CPU T8300 2.4 GHz, 2GB of RAM, Windows XP Professional OS,
Java build 1.6.0_11-b0. and the remote computer is Intel Pentium 4 Mobile CPU
1.70GHz, 512 MB of RAM. Java build 1.6.0_11-b03, Windows XP Professional OS.

Table 1 displays the execution cost for an asynchronous invocation of a remote
method with the signature ‘int add(int lhs, int rhs)’ that simply adds the two input
parameters and returns the result. For each invocation type, five test runs were exe-
cuted and their average is reported. Call Time is the elapsed time for the client to
make the call and resume execution. Result Retrieval Time is the time it takes for the
result to be available. For polling type of invocation, this is the time duration until the
blocking call getResult returns. For Callback, it is the duration until the update
method of the observer object gets invoked.

Table 1. Asynchronous invocation execuiton costs

 Fire and Forget Sync With Server Polling Callback
Call Time (ns) 3901948 11767026 3126207 2879528
Result Retrieval Time (ns) NaN 11767026 4229923 4486045

We have implemented the remote objects introduced in Section 6 to demonstrate
the different types of asynchronous calls and executed both standard RMI and asyn-
chronous RMI calls to compare their execution time values. We assume that it takes
400 ms for the remote search engine to find a given keyword and a criterion is met
every 2200 ms at the remote emergency object. Figure 6 illustrates the results, where
the idle waiting state of the client issuing a standard RMI is clearly seen.

Fig. 6. Standard RMI versus Asynchronous RMI

 Enhancing Java RMI with Asynchrony through Reflection 33

8 Related Work

Asynchronous RMI has been the focus of several projects in literature, which usually
focus only on selected aspects of the RMI, like communication performance, asyn-
chronous invocation, or interoperability. [4] presents a system which uses the concept
of a future object for asynchrony. A special compiler (armic) is used to generate stubs
that handle asynchronous communication. The stubs provide asynchronous communi-
cation by wrapping each remote invocation inside a thread. Server side of the connec-
tion must also be threaded; therefore the system can not be used with remote objects
already created. Furthermore, their approach is different from ours in that they do
their callbacks directly from the server. In comparison, our callbacks are local. The
Reflective Remote Method Invocation (RRMI) [5] is close to our approach as it
makes use of reflection and provides a mechanism for asynchronous invocation.
RRMI makes use of a dynamic class loader which is an extension to Java class loader
(NetClassLoader) to allow client/server applications to be built. The NinjaRMI pro-
ject [6] is a completely rebuilt version of RMI with extended features, including asyn-
chronous communication. However, it is not wire compliant with standard Java RMI.
It is intended to provide language extensions. The Ajents project [7] is a collection of
class libraries that implement and combine several features that are essential for dis-
tributed computing using Java. However, its asynchronous communication aspect
does not provide wide functionally; only the Polling pattern is implemented partially
using ‘future’ objects.

9 Conclusion

This paper presents an execution framework which extends Java RMI to support
asynchronous communication, mainly focusing on the techniques of fire and forget,
sync with server, polling, and result callback. We have used RMI as the underlying
communication mechanism and implemented asynchrony patterns on top of RMI
calls. The threading facility and reflection mechanism of Java has made it possible for
the framework to be independent of any external tools, preprocessors, or compilers.
Also, as the framework requires no modifications on the server side, therefore previ-
ously developed remote objects can still be accessed asynchronously. The results of
performance measurements show that, with optimizations on threading and reflection
activity, the enhanced asynchronous RMI communication we have described in this
paper produces a dramatic performance increase by removing unnecessary delays
caused by blocking on synchronous RMI invocations.

References

1. Sun Microsystems, Inc. Java (TM) Remote Method Invocation Specification (2004)
2. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms. Pearson-

Prentice Hall, ISBN:0-13-239227-5
3. Voelter, M., Kircher, M., Zdun, U., Englbrecht, M.: Patterns for Asynchronous Invocation

in Distributed Object Frameworks. In: The 8th European Conference on Pattern Languages
of Programs (EuroPlop 2003), Irsee, Germany, pp. 269–284 (2003)

34 O. Akın and N. Erdoğan

4. Raje, R., William, J.I., Boyles, M.: An Asynchronous Remote Method Invocation (ARMI)
Mechanism for Java. In: ACM 1997 Workshop on Java for Science and Eng. Comp. (1997)

5. Thiruvathukal, G.K., Thomas, L.S., Korczynski, A.T.: Reflective Remote Method Invoca-
tion. Concurrency: Practice and Experience 10(11-13), 911–926 (1998)

6. Welsh, M.: Ninja RMI: A Free Java RMI (1999),
http://www.cs.berkeley.edu/~mdw/proj/ninja/ninjarmi.html

7. Izatt, M., Chan, P., Brecht, T.: Ajents: Towards an Environment for Parallel, Distributed
and Mobile Java Applications. Concurrency: Pract. & Exper. 12, 667–685 (2000)

	Enhancing Java RMI with Asynchrony through Reflection
	Introduction
	Java RMI
	Asynchronous Invocation Patterns
	Design Objectives for Asynchronous RMI Execution Framework
	Execution Framework Implementation
	Types of Asynchronous Calls
	Performance Optimization
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

