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Abstract. Wireless sensor networks are emerging as a convenient mech-
anism to constantly monitor the physical world. The volume of informa-
tion in such networks can be extremely large. And, to be meaningful
to applications, this information must be processed at the right level
of accuracy. However, there is an inherent trade-off between achieving a
high degree of data accuracy and the communication overhead associated
with achieving it. We present a simple mechanism for spatially approxi-
mate query processing. We present a protocol that leverages gossip based
routing to collect network data from a randomly selected set of nodes
at a user-defined level of accuracy. We extend this protocol to address
persistent queries, long running queries where network data is collected
periodically, by treating a persistent query as a temporal aggregate of
individual queries. Finally, we provide a novel protocol that dynamically
adapts its accuracy based on the quality of the responses to individual
requests in the persistent query. We describe this protocol in detail and
evaluate its performance through simulation.

Keywords: Adaptive fidelity, gossip.

1 Introduction

Sensor networks have been deployed in a wide range of applications that monitor
the physical world in real time such as intelligent construction sites, habitat
monitoring, and industrial sensing [19]. When sensor networks are deployed on a
large scale, however, there is an explosion in the amount of data to observe and
analyze. Requirements on the quality of data collected varies by application and
environmental changes. For example, a foreman might evaluate the safety of a
construction site by observing the movement of equipment in the site. A periodic
summary of data in the site may suffice until a construction truck moves into
the danger circle of a crane. At this point, more information should be obtained
and the worker should be warned about the danger in his environment. The data
fidelity should be increased only when behavior of interest is detected. In this
paper, we present a technique that automatically tunes the fidelity of data based
on user specifications for such applications.

We address two types of queries that are of value in sensor networks: one-
shot queries and persistent queries. A one-shot query is a one-time occurrence
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in which the application requests data values from some or all of the nodes
in the network. This query has no relationship to other queries that may be
issued by the application. On the other hand, a persistent query is a long-lived
operation that provides periodic responses. We implement persistent querying as
a temporal aggregation of component one-shot queries. Doing so allows us to use
results of component one-shot queries to influence the behavior of subsequent
component queries.

Sensors are typically battery operated and hence extremely resource-
constrained. Communication costs account for a large amount of the battery
drain during operation, and sending large amounts of unnecessary data reduces
the network lifetime substantially. Two approaches have been proposed to re-
duce the query communication overhead—in-network aggregation (e.g., [14]) and
approximate querying (e.g., [17]). In-network aggregation techniques typically
build and maintain a tree over the network and distribute the aggregation op-
eration along all non-leaf nodes of the tree. In approximate query processing,
the response is typically provided to the user as an estimation of the correct
answer with deterministic or probabilistic guarantees quantifying the confidence
in the estimate. Both, in-network aggregation and approximate query process-
ing (AQP) have some attractive properties. In-network processing uses actual
data collected from sensors. AQP typically models the data at a base station
and periodically updates the stored model using values from the network [4].
Other approaches [20] form spatially correlated groups, and one node per group
participates in the query resulting in fewer messages being transmitted.

In networks with dynamic data values, it is beneficial to retrieve actual data
values and be less reliant on an a priori model. In this paper, we present a
querying technique that provides approximate querying by selecting a subset of
nodes and using actual data from these nodes at query time. This frees our ap-
proximation protocol from maintaining state information on the nodes and also
alleviates the need for all nodes to participate in every query. While it is possible
to accomplish this approximation using any number of underlying networking
protocols, we choose gossip routing [3,11]. In its basic form, on receiving a packet,
a node chooses to retransmit or drop a packet based on a threshold parameter,
p. When a node receives a query, if it chooses to retransmit the query, it actively
takes part in resolving the query; otherwise it drops the packet and reduces the
likelihood that its downstream neighbors participate. Such a protocol is inher-
ently approximate, as the number of nodes participating varies probabilistically
depending on parameter p. In addition to adapting itself nicely to AQP at a
conceptual level, gossip routing is robust to changes. Current in-network aggre-
gation and approximate algorithms tend to maintain a tree or a cluster based
overlay in which the failure of an intermediate node can lead to significant over-
head in rebuilding the aggregation framework. Gossip routing does not impose
any hierarchy on the network, and the overhead of performing successive queries
is impacted less by the node failures that are fairly common.

Another advantage of using gossip routing is that it allows us to make no
assumptions about the data or network characteristics. Some approximation
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algorithms cluster nodes with highly correlated sensor values [20] which requires
a priori knowledge of the range of data values in the network. Since we make no
assumptions about the data or network characteristics, we instead associate data
quality metrics with query responses. These metrics may include the number of
nodes participating, the variance of sampled data, and the spatial distribution
of the sampled nodes. For one-shot queries, the user can use this quality metric
as a yard stick by which to analyze his results [15]. For persistent queries, where
the query measures sensed conditions over a period of time, we use these data
quality metrics to adapt the query’s intended fidelity automatically. In this pa-
per, we present a mechanism to perform adaptive approximate query processing.
Because we view a persistent query as an aggregate of one-shot queries, we use
the data quality metrics associated with individual one-shot queries to adapt the
fidelity of the protocol for subsequent one-shot queries. Sensor network queries
can be broadly classified into two types— aggregate and stream queries. Aggre-
gate queries provide a single aggregated answer, like the average value of the
sensor network. Stream queries typically return a stream of data values from
different nodes in the network. In this paper, we focus on providing a protocol
for adaptive approximate query processing for aggregate queries. Previous work
on gossiping [1,5,16] has focused on computing aggregates in a completely dis-
tributed fashion. In contrast, we employ gossiping to retrieve a subset of data
and control the degree of hosts involved by analyzing the collected data (answers
to component queries in the persistent query) in a centralized manner.

The novel contributions of this work are as follows. First, we propose a proto-
col that incorporates gossip routing for spatially approximate query processing.
Second, we discuss the impact of exposing various data quality metrics and un-
derscore how an application can use them to interpret the quality of a response.
Third, we show how to incorporate data quality metrics to adapt the accuracy
of the AQP algorithm for persistent queries. Finally, we evaluate our protocols
and verify their utility.

The rest of this paper is organized as follows. Section 2 adapts gossip routing
to AQP. Section 3 evaluates gossip routing for the task of AQP. Section 4 provides
a mechanism to expose data quality and uses it to provide context. Using the
insights gained from evaluating the AQP protocol, Section 5 provides a protocol
that performs adaptive AQP, and Section 6 evaluates its performance. Section 7
discusses related work, and Section 8 concludes.

2 Gossip Routing Based AQP

In this section, we describe how gossip routing provides approximate responses
to applications’ queries. Gossip routing is based on probabilistic broadcasting, in
which a predetermined threshold, p, determines whether a node rebroadcasts or
drops a received packet. If p is one, then the behavior is equivalent to flooding. In
most networks, setting p to a value smaller than one can still result in a packet
reaching all nodes in the network with a very high probability. In gossip routing,
only a subset of nodes are involved in query execution. If the query is executed
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several times, this subset is likely to be different each time, thereby spreading
the load more evenly. However, since all nodes in the network do not participate
in every query, the result obtained is inherently approximate. In the rest of this
section, we explain how we adapt gossip routing to suit our needs.

id – A’s unique host identifier
neighbors – A’s logically connected neighbors
parent – A’s parent in the tree
p – A’s probability threshold for

broadcasting an incoming query
data – A’s data value obtained from its sensors

Fig. 1. State Variables for Protocol on Node A

We first evaluate a
basic gossip protocol
for providing approx-
imate query results.
The state variables for
each host in our pro-
tocol are shown in
Fig. 1. Only the state
for a single query is
shown; each query has
a duplicate set. Our
protocol uses two types of packets: Query packets and QueryReply packets. A
Query packet looks like:

〈query id , p, data request , sender , originator 〉.
The query id is used to ensure a node does not respond to or forward the same
query twice. The p value is the probability with which a receiving node should
retransmit the packet. The data request contains the application’s data needs
(e.g., the type of sensor reading desired). The sender of a query is the node
that forwarded the packet, while a query’s originator is the query issuer. A
QueryReply packet simply contains the data that is the response, the unique
query id number, and the id of the destination host (i.e., the query issuer):

〈query id , data, destination〉.
These two packet types are kept necessarily simple to accommodate resource-
constrained networks. To define the protocol’s behavior, we use I/O Automata
notation [13]. We show the behaviors of a single host, A, indicated by the sub-
script A on each behavior. Each action (e.g., QueryReceivedA(q) in Fig. 2) has
an effect guarded by a precondition. Actions without preconditions are input
actions triggered by another host. Each action executes in a single atomic step.
We abuse I/O Automata notation slightly by using, for example “send Query to
neighbors” to indicate a sequence of actions that triggers the QueryReceived
action on each neighbor.

The basic gossip protocol is very simple. When a node receives a query, it
first logs the query’s sender (q.sender ) as its parent and sends its sensor data
through its parent to the query issuer. It then uses the probability p to de-
termine whether it will forward this query to its neighbors. To prevent nodes
from processing the same query multiple times, a node checks whether it has
received the query previously (based on the query’s unique id) before processing
it. Fig. 2 shows this behavior in I/O Automata form. Also shown in the figure
is a node’s behavior in response to receiving a QueryReply; the node checks if
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it is the targeted destination; if not, the node forwards the packet to its parent.
This is a slightly simplified version of the protocol that only considers a single
query from a single application that is active at a given time in the network. The
protocol’s implementation maintains additional state to sort out the forwarding
information associated with different active queries.

Fig. 3 illustrates the pro-

QueryReceivedA(q)
Effect:

if !received(q.query id) then
parent := q .sender
r = 〈q.query id , data , q.originator 〉
send QueryReply(r)
p := rand()
if p ≥ q.p then

q.sender = A
send Query(q) to neighbors

end
end

QueryReplyReceivedA(r)
Effect:

if r.destination = A then
//*** send r.data to application ***//

else
send QueryReply(r) to parent

end

Fig. 2. Gossip based AQP

tocol with an example. The
value inside a circle is
a node’s data value. The
client is the node in the
center—the circle contain-
ing a PDA. In the figure,
the dashed lines correspond
to query replies, while the
thick lines indicate a query
being forwarded. The tu-
ples next to the response
line show the sensor read-
ings carried by the query
reply packets. Nodes with
concentric circles dropped
the packet. On receiving a
query from the application,
the client broadcasts it to
its neighbors {c, f, g and
h}. The query contains a
probability threshold spec-
ified by the application. In

this example, nodes f and h decide to drop the query. They each create a reply
packet containing their node identifier and data value and send it back to the
client. (The query identifier has been omitted from the figure for brevity.) Based
on the probability p, nodes c and g choose to forward the query. Both create
reply packets they send back to the client. Node c forwards the query to b and
d. When node c receives a reply from b or d, it simply forwards it to its parent,
the querier.

An application can aggregate the collected values or use individual readings
depending on its needs. A biologist checking the number of animals in the habitat
might be satisfied with an aggregate sum value. On the other hand, he might
want to build a map of their movement by using information from all the data
in his query response. Each query might probabilistically choose a different set
of sensors and, over a period of time, the biologist can build a complete picture
without having to query all the nodes every time. Since imprecision is an inherent
part of any approximate algorithm, we expose data quality metrics to provide
context to the query response. A very simple data quality metric is the number
of nodes that participated in the query. Consider a query where the user is
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Fig. 3. Protocol example

interested in sensor readings from nodes placed on cranes in an industrial site.
If he receives a stream response with just two crane values, when there are
10 cranes visible, he might choose to reissue the query with a higher p. While
counting the number of animals, the biologist will feel a lot more secure about
the query response he receives if he is provided a confidence interval along with
the average humidity. This can be done by exposing the data’s variance and the
number of nodes sampled. In the rest of this paper, we focus on situations where
it is beneficial to aggregate the data values returned from the sensor nodes. This
protocol works on the assumption that the client device provides the probability
p as an input. In the next few sections we show that changing p does in fact
affect the accuracy of the results. We also show how this simple protocol can be
leveraged to adaptively tune the accuracy of the result for persistent queries by
using the data quality metrics exposed.

3 Effectiveness of Using Gossip Routing for AQP

Our gossip protocol assumes that,

Fig. 4. Correlation of Sensor Grids

given a good value of p, one can
leverage gossip routing to perform
approximate query processing. In
this section we study the impact of
changing p and ascertain whether
this assumption holds in different
environments. We also develop in-
sights on how to manipulate p to
accommodate different application
requirements. To thoroughly evalu-

ate our protocol, we used the TOSSIM network simulator [12], which allows
direct simulation of TinyOS [6] code written for MICA2 motes.



Adaptive Data Quality for Persistent Queries in Sensor Networks 137

3.1 Data Set

For modeling sensor data we used a tool provided by Jindal and Psounis [9]1. The
tool generates spatially correlated synthetic data for sensor networks of varying
sizes. The data traces generated have been shown to be very close to physical phe-
nomenon observed in the real world. Since our goal is to investigate the feasibility
of using gossip routing to perform approximate query processing, this tool pro-
vides us a convenient way to test under different simulated environments. We gen-
erated spatially correlated sensor data for a 150m x 150m grid. The tool takes in
an input parameter β which allows us to manipulate the degree of spatial correla-
tion in the sensor network. A higher value of β makes a node more likely to choose
a data value independent of its neighbors’, thus producing spatially uncorrelated
data. We varied the value of β to 0.001, 0.018 and 0.33, producing sensor networks
with high, medium and low data correlations respectively. Fig. 4 shows example
surface plots of two data traces we used; the plot on the left shows highly corre-
lated data, while the right shows a data trace that is significantly less correlated.

3.2 Simulation Setup

We generated synthetic traces cor-
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responding to the distribution of
temperature data in a sensor net-
work field. Given the synthetic
data, we explore whether using gos-
sip routing is effective in perform-
ing approximate query processing.
The protocol is used to query data
from the network and compute the
value of the average temperature.
We used a uniform random place-
ment of sensor nodes. To model
the radio transmissions, we used
TOSSIM’s disc model with a radius of 10 feet. The number of sensor nodes
in the network was set to 100. Error bars indicating 95% confidence intervals are
included in the graphs whenever possible.

We posit that increasing p will increase the accuracy of our protocol. Fig. 5
confirms that the relative mean error across all responses does decrease as p
becomes larger. The accuracy increases because the number of nodes responding
with a data value increases as p gets larger. It increases from about 5 to 23 nodes
as p varies between 0.1 and 1. The figure plots the normalized error against
different values of p for data sets with three different correlation levels. The
absolute error is the difference between our protocol’s computed average and
the actual average provided by an oracle. The normalized error is the absolute
error normalized by the correct average provided by an oracle. The normalized
error decreases as p increases, regardless of the data distribution, although the
1 The source code for the tool is provided at http://www-scf.usc.edu/~apoorvaj/

tool.html

http://www-scf.usc.edu/~apoorvaj/
tool.html
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decrease is much more pronounced when the underlying data is less correlated.
This is intuitive because, when all nodes have more or less the same data value,
sampling more nodes will not produce a large change in the final answer. We
can infer from this graph that using a large p is of limited value when the data
is highly correlated. Even when querying very few nodes, by setting p to a low
value, a gossip protocol can produce an answer very close to the correct response.
This is one of the key insights we use in Section 5 to automatically adapt the
protocol for persistent queries even when there is no.
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However, increasing the number
of nodes involved in a query comes
with the overhead of increased num-
ber of transmitted messages. Fig. 6
plots the increase in overhead asso-
ciatedwith raising the value ofp. For
example, when p is increased from
0.5 to 1, the number of messages
transmitted increases almost seven
fold. As radio transmission accounts
for a large amount of the energy
consumption in battery powered de-
vices, choosing the right value of p
provides a good lever to trade en-
ergy for accuracy while performing
approximate query processing.
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In addition to the number of
nodes participating, an important
factor to consider is the spatial dis-
tribution of the nodes that respond.
Fig. 7 shows the spatial distribu-
tion of the nodes participating in a
query. The bins on the horizontal
axis represent the distance from of
the responding nodes the querier.
For example 20-30 represents nodes
between 20m and 30m from the
query issuer. The vertical axis is the percentage of nodes that responded out
of all nodes that were reachable from the querier at that distance range. When
the retransmission probability is low, the response obtained is a local one, i.e.,
it is biased towards nodes close to the querier. However, even when the retrans-
mission probability is high, the percentage of nodes responding to the query
decreases as we move away from the querier. This effect is not only due to the
value of p but is also impacted by packet collisions. This is confirmed by the fact
that the percentage drops to a low value even when the network is being flooded.
The farther a node is from the querier (e.g., nodes in the 80-90 bin are about 9
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Fig. 8. Difference between Ideal and Observed Spatial Distribution

hops away on average), the greater the chance of a collision related packet drop
either during query or response prorogation.

To isolate the impact of p alone on the spatial distribution of the query, we
wrote a version of our protocol in Java and compared the results with the results
generated using TOSSIM. Fig. 8 plots the difference between what we achieved
and what we could have achieved ideally. Each data point represents 100 runs in
the simulator. From the figure we can see that collisions have significant impact
when the value of p is high. This behavior is acceptable for the immersive sensor
network applications we target since the nature of the query is often localized
around the query issuer. Remote distributed sensing applications, like long term
industrial monitoring, require a smooth sampling of nodes by using fine-grained
notions of location to route sampling messages. However, this requires the proto-
col to have prior knowledge of the application scenario, the physical confines of
its operating area, and fine-grained location information for every node. While
our approach to approximate query processing can be adapted for remote dis-
tributed sensing applications by setting a relatively high value of p, it is better
suited to a vast number of immersive sensor network applications, that can be
deployed in an ad hoc fashion to create a picture of more local data.

4 Data Quality Metrics

Imprecision is an intrinsic part of any approximate query processing system. Dif-
ferent quality metrics such as the number of nodes participating in the query, the
variance of the underlying data, and the spatial distribution of the nodes pro-
vide the application different types and amounts of confidence when interpreting
a query response. While this information can be useful for one-shot queries in
helping the application determine the usefulness of the returned data [15], it
can be even more beneficial to persistent queries that can adapt their querying
behavior over time. We expose data quality metrics associated with a collective
response to a query that can influence the subsequent course of action. Some
example data quality metrics for aggregate sensor queries are:
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– Number of Nodes Participating (N): Knowing that a large number of nodes
participated in the query may be sufficient to represent the quality of a
returned query result. If the number of nodes is too low, an application may
choose to re-issue the query with a higher p.

– Variance (V): Knowing the variance across the returned data samples can
also be very useful to an application. If the variance is low, the application
may issue subsequent similar queries with a much lower value of p to reduce
overhead. A high variance within data that is expected to be correlated indi-
cates a poor sampling, and subsequent queries will benefit from a larger p.

– Locality (L): When sensor nodes are able to attach location to their readings,
exposing the data’s spatial distribution can add useful context. An easy
alternative is to expose the distribution of the hop counts from the querier.
This can give a good intuition for how spatially distributed are the nodes
contributing to the response. A user might be able to fine tune his results
successfully by just varying p. Alternatively, he may decide that the best
way to get non-local results is to flood the network or use a sophisticated
adaptation function (discussed in detail in Section 5), if he is interested in
long term sensing style results.

These quality metrics can be exposed with very little additional computation or
communication overhead. In the next section, we focus on using these metrics
to dynamically tune the sequence of queries that constitutes a persistent query.

5 Adaptive Approximate Querying Protocol for
Persistent Queries

We implement a persistent query as a sequence of one-shot queries. We refer to
a particular one-shot query within a persistent query as a round. In our adaptive
model, the protocol can use the data quality metrics associated with the previ-
ous rounds to parameterize the protocol’s execution for the next round. Using
the data quality metrics exposed, an application developer can write an adapta-
tion function that dynamically changes the behavior of a protocol for persistent
queries, after considering data dynamics and user preferences. In this section
we demonstrate the feasibility of our approach using an example adaptation
function.

5.1 Adaptation Function

One can write complex functions in which combinations of locality and variance
influence adaptation. However it becomes difficult for the application to express
domain knowledge in a straightforward manner. Often, a simple function can
capture the essence of the required adaptation. For example, an application that
monitors chemical leaks must decide if the data obtained in any given round is
significantly different from the previous rounds and change the query behavior
accordingly. A good adaptation function should specify the value beyond which
a chemical leak becomes dangerous, and tune the next round of the query based
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on the response obtained. We present one such adaptation function; it is con-
ceptually simple and yet shows a high degree of success during adaptation. In
this section, we focus on queries that obtain the approximate average value of
the network, as it is the most typical summary statistic used in long term moni-
toring applications. Our adaptation function uses the confidence intervals of the
average to change the retransmission probability in the next round if necessary.
Confidence intervals, are often used to signify the likely range of an estimated
value based on some samples from the data. The standard formula for computing
the confidence length:

ConfidenceLength(CL) = 1.96 ∗ σ/
√

(n)

σ is the standard deviation of the data, and n is the number of samples. The
constant 1.96 indicates 95% confidence in the computed estimate.

Confidence lengths can be calculated easily but are an unintuitive way to
express user preferences. It is easier for an application to express the extent of
error it is willing to tolerate. We call this the Tolerable Error :

TolerableError (TE ) = 100 ∗ CL/µ

TE can be easily expressed by the application as a single value. For example,
a value of 10% indicates that the confidence length computed from a query
response should be no more than 10% of the mean of the samples. A confidence
length is small only when a large number of nodes participate or when the data
is highly correlated (i.e., the standard deviation is small). Consequently, the
error for a query round will be small for the same reasons. We now show how to
use a simple adaptation function that employs this Tolerable Error to perform
adaptive approximate query processing for persistent queries. Fig. 9 updates
our query processing algorithm to of expanded state. First, the node stores the
application-specified Tolerable Error (TE) for each persistent query. The state
variable p becomes a list of p values, one for each round of the persistent query.
They are indexed by i, the number of the round with which the particular p is
associated. We also introduce a timer, queryTimer, which fires when it is time to
issue a new round of the persistent query. It is at this time that the results for the
previous round are delivered to the application. Finally, the variable replyList
stores the samples constituting a round until the round is complete. The protocol
shown in Fig. 9 is a simplified version of the actual implementation. We check
the query-id before processing a node’s reply packet to ensure that all responses
belong to the same round.

The figure shows the replacement behavior for the QueryReplyReceived
action. Instead of immediately forwarding replies to the application, our pro-
tocol stores them in the replyList, and waits to aggregate the replies for the
application before the next query round. We add the action SendPersistent-
QueryRound to the formalization. This action is timer driven; when the timer
expires indicating it is time to send the next one-shot query for this persistent
query, this behavior is enabled. It first computes the average and the error for
the samples received in the previous round and sends the result to the applica-
tion. It then compares the error to the application-specified tolerable error TE.
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QueryReplyReceived(r)
if r.destination = A then

replyList := replyList ∪ r
else

send QueryReply(r) to parent
end

SendPersistentQueryRound()
Precondition:

queryTimer expires
Effect:

average := computeAverage(replyList)
error := computeError(replyList)
//*** send average and error to application ***//
diff := TE − error
if |diff | < 1 then

increment := 0.05
else

increment := 0.20
end
if diff > 0 then

increment := −increment
end
pi+1 := pi + increment
if pi+1 > 1 then

pi+1=1
end
if pi+1 < 0.1 then

pi+1=0.1
end
reset queryTimer

Fig. 9. Updated Query Processing Algorithm

Our example protocol uses the TE very simply. If the error is close the tolerable
error, the protocol makes only a small adjustment in the value of p (an adjust-
ment with a magnitude of 0.05). Otherwise the protocol makes a bigger step (an
adjustment with a magnitude of 0.20). A more sophisticated adaptation would
use a continuous adjustment scale, where the magnitude of the increment is com-
puted relative to the magnitude of the TE directly. The increment is adjusted
based on whether p should be raised or lowered, and then pi+1 is calculated.
Finally, the value of p is adjusted if it went outside the range of 0 − 1. This
is a simplified example that matches what was used in our experiments. Other
adaptation algorithms can be designed that use a larger history (more than just
the error in the last round) so that the changes are not as abrupt. Our goal
was to demonstrate the efficacy of the technique even when using a relatively
simple adaptation function. In the next section, we show that even this simple
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adaptation protocol is quite capable of dynamically trading message overhead
for desired accuracy.

6 Evaluation

In this section, we evaluate the performance of the simple adaptation mecha-
nism outlined in Section 5. This provides an example of how a combination of a
parameterizable protocol and data quality metrics can generate a protocol that
incurs the least amount of overhead possible while still satisfying application-
defined requirements. We assume the application is sampling a field of sensors
all measuring the same thing (e.g., the temperature of animals in a farm). The
application expects the values to be similar; therefore the deviation of the re-
sults from a mean is a reasonable adaptation point. The application provides a
Tolerable Error (as described in the previous section), and the protocol adapts p
to dynamically target this Tolerable Error. We use the same experimental setup
as outlined in Section 3. Once again, we have three types of data sets represent-
ing data with correlation varying from high to low. We provide 95% confidence
intervals for our results. A persistent query is run for 300 seconds, and a new
query round is issued every 25 seconds.
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a Persistent Protocol

Fig. 10 shows the num-
ber of nodes responding to
the query as the required
Tolerable Error is increased.
A low value of tolerable er-
ror indicates an application
that requires a high degree
of accuracy. Conversely, a
high Tolerable Error indi-
cates that the application
does not require high fidelity
data. When the Tolerable
Error is very low (left of the
graph), a large number of
nodes need to be involved
to satisfy this requirement.
When the requirement is less
restrictive, receiving results
from far fewer nodes will suffice. In our experiments, p is set to 0.5 during the
first round. As the rounds progress, the adaptation function enforces a change in
p based on the computed error. If the error is low, p is progressively increased;
if it is high, p is decreased. The average value of p for the persistent query
varies from 0.92 (1% TE) to about 0.16 (20% TE). Fig. 10 clearly shows that
our protocol changes the number of nodes involved (and hence the communi-
cation overhead) progressively while taking into account application constraints
regardless of the nature of the underlying data. However, it also shows that the
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underlying data can impact the number of nodes required to successfully match
user expectations. In most cases, the number of nodes required to get the same
result quality when the data is loosely correlated is much more than when the
data is highly. When the data is loosely correlated, the standard deviation is
high, resulting in a large computed error value.

Fig. 11 takes a deeper look at the adaptation process when the application
specifies that the Tolerable Error is 5%. The X axis shows the round number of
the persistent query. The Y axis in the top figure shows the computed error at
each round. The bottom figure shows the retransmission probability (expressed
as a percentage) used by the query for each round. The first round’s one-shot
query is issued with a probability of 50%. When the data is not correlated, the
application is unable to meet the required error of 5% (dashed line in the top
graph), and consequently ends up increasing its retransmission probability to
100% very quickly . Even when p is set to 1, the protocol is still unable to attain
the user required error, but it does manage to reduce the error from 11% to 8%.
The same algorithm behaves differently when the data is moderately correlated.
It is relatively close to the desired Tolerable Error at about 50% retransmis-
sion probability. Consequently, it reduces its retransmission probability in small
amounts until it reaches the desired degree of data quality. Once it satisfies the
application’s accuracy requirements, it hovers around that value for the remain-
ing rounds. Given highly correlated data, our adaptive protocol can achieve the
application’s Tolerable Error easily with the starting value of p set to 50%. Con-
sequently, it tries to minimize the number of nodes involved in query processing.
As can be seen from the top graph, the computed error increases slightly as the



Adaptive Data Quality for Persistent Queries in Sensor Networks 145

rounds progress but remains well below the Tolerable Error. The bottom graph
shows that the retransmission probability drops drastically from 50% to about
17% by the end of 12 rounds. This translates to only about six nodes being
involved in the query. Thus, the protocol has adaptively traded a slight loss in
accuracy for a large savings in communication overhead because the accuracy
loss was well within application tolerable levels.

The data used in our experiments is not jointly Gaussian. In spite of that,
confidence intervals have proven to be a good point of adaptation. This suggests
that gossip routing can be successfully parametrized for a large number of data
distributions. From these results it can be seen that there is a large benefit to be
gained from dynamically adapting the behavior of a persistent protocol based
on results gathered in the previous rounds. Allowing the application to specify
accuracy constraints and using that as a benchmark to adapt a protocol’s be-
havior dynamically can lead to an ideal number of nodes answering a query. This
helps answer the query effectively within the bounds of application tolerability
and reduce communication overhead.

7 Related Work

Our work is broadly related to three classes of systems that exist in the literature.

Approximate Query Processing: Since performing in-network aggregation [14]
by distributing the computation through out the network can be quite expen-
sive, approximate querying techniques were designed to provide estimates of an-
swers. CAG [20] creates clusters where nodes with highly correlated data form a
group, and only the cluster head is involved in transmitting data. CAG’s empha-
sis is network structure maintenance while ours is to adapt the approximation
technique based on the dynamics of the network. Also, we avoid the overhead
associated with maintaining grouping mechanisms like trees or clusters. Other
approximate query processing algorithms [4,7] create models of data at the base
station, and the querier interacts with the base station. The base station main-
tains estimates of the data at the sensor nodes and employs different techniques
to keep its estimate accurate with the actual data. Our approach queries actual
data at query time and also does not require any state maintenance mecha-
nism to compute the estimates. In addition, we expose data quality metrics to
add context to a query response. Finally, Backasting [18] is a technique where
adaptive sampling is used to perform estimation of a spatial field and identify
interesting objects, e.g., the boundary of a physical space. Adaptation is used
to determine if a region is of interest by sampling a few nodes initially and then
imposing a hierarchy. We focus on using adaptation over an extended period of
time for persistent queries and impose no hierarchy.

Gossip Routing: We chose a gossip routing based protocol because it naturally
lends itself to selectively sampling data from nodes. There has been extensive re-
search in using the concept of gossiping for a variety of tasks. Several researchers
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have incorporated gossip routing in the sensor networks domain [3,5]. Their fo-
cus is typically on studying the coverage of gossip routing for different network
topologies. In contrast, we focus on using gossip routing as a mechanism to per-
form adaptive approximate query processing. One interesting variant is where
nodes update the probability of retransmission based on the relationship be-
tween nodes in the network hierarchy [11]. Nodes are inferred to be organized
as parents, children or siblings and these relationships are used to tune the re-
transmission probabilities. This is complementary to our work and can be used
in conjunction to adapt our protocol to network topology and data distribu-
tion simultaneously. Gossip routing has also been used to perform distributed
aggregate computation [10] by making nodes gossip which leads to an eventual
convergence on a common value. The convergence rates of these algorithms is
typically pretty slow.

Query Consistency: There has been some recent work in assessing the validity of
a query response highlighting how network disruptions can render the answer to
a query completely arbitrary [2,8,15]. Most of these systems use validity metrics
to give an idea of the correctness of the response in the presence of node failure.
Our data quality metrics provide relatively cheap context along with a query
response and use this context directly for automatic adaptation in persistent
queries.

8 Conclusion and Future Work

We presented a simple yet effective protocol to perform approximate query pro-
cessing by leveraging gossip routing. We exposed meta-data in the form of qual-
ity metrics and demonstrated how they add context to a query response in both
one-shot and persistent queries. Finally, we provided a protocol that uses the
data quality metrics to automatically adapt approximate query processing for
persistent queries. Our results demonstrate that we can effectively trade off user
defined accuracy for overhead. In future, we plan to run our protocol on a real
sensor network deployments and plan to incorporate temporal approximation.
In addition we plan to incorporate the benefits of geographic scoping as shown
in [5,16] into our adaptive algorithm.
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