
Optimal Service Selection Heuristics in Service

Oriented Architectures

Emiliano Casalicchio1, Daniel A. Menascé2, Vinod Dubey3, and Luca Silvestri1

1 Dipartimento di Informatica Sistemi e Prod.
Università di Roma “Tor Vergata”, Roma, Italy
{casalicchio,silvestri}@ing.uniroma2.it

2 Department of Computer Science,
George Mason University, Fairfax, VA, USA

menasce@gmu.edu
3 The Volgenau School of Information Technology and Engineering,

George Mason University, Fairfax, VA, USA
vdubey@gmu.edu

Abstract. Service Oriented Architectures allow service brokers to exe-
cute business processes composed of network-accessible loosely-coupled
services offered by a multitude of service providers, at different Quality of
Service (QoS) and cost levels. To optimize their revenue and the offered
QoS level, service brokers need to solve the problem of finding the set of
service providers that minimizes the total execution time of the business
process subject to cost and execution time constraints. This optimization
problem is clearly NP-hard. Optimized algorithms that find the optimal
solution without having to explore the entire solution space have been
proposed to solve problems of moderate size. A heuristic search of the
sub-optimal solution scales to problems of large size and is appropriate
for runtime service selection. This paper evaluates the performance of
three heuristic service selection algorithms that are candidates for im-
plementation in scalable service brokers. Our goal is to identify which
algorithm provides the solution closest to the optimal and how many
selections are evaluated to find the solution. The comparison is made
over a wide range of parameters including the complexity of the business
process topology and the the tightness of the QoS and cost constraints.

Keywords: Service Oriented Architecture, Web services, service com-
position, QoS, heuristics.

1 Introduction

The Service Oriented Architecture (SOA) model enables a market of services,
where service providers (SPs) provide services at different QoS levels and at
different cost. In this emerging market it makes sense to investigate mechanisms
to properly select a set of services, characterized by different QoS and cost levels,
that when composed together satisfy the QoS needs and cost constraints of the
resulting business process (BP). This problem is referred in the literature as the

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 785–798, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009



786 E. Casalicchio et al.

QoS-aware Service Selection or Optimal Service Selection problem [1,2,3,4,8,9,
10, 12, 13, 14].

The execution of a business process is coordinated by a service broker (or
broker for short). The broker needs runtime and scalable mechanisms to solve
the optimal service selection problem and to exploit the dynamics of the ser-
vice marketplace characterized by potential and rapidly changing conditions in
workload intensity, QoS level, and cost.

In [8], the authors provided a performance model that takes into account the
business process structure, including cycles, parallel activities, and conditional
branches, and computes the end-to-end execution time and cost for the business
process. For some performance metrics (e.g., cost, availability, reputation) the
composition is a trivial linear combination of the performance measure of the
composing services. On the contrary, for other metrics such as execution time,
we have a non linear function of the performance level of the services being
composed. In that paper, we also provided an efficient algorithm, called JOSeS
algorithm, that finds the optimal solution without resorting to an exhaustive
search of the of solution space. This efficient optimal algorithm can only handle
problems of small to moderate size. That paper also presented and throughly
evaluated a heuristic solution that is compared here with other two proposed
heuristics.

Several approaches can be used to solve the service selection problem. Current
proposals use exact algorithms or heuristics (e.g., [2] or genetic algorithms [3])
to solve the QoS-aware (optimal) service selection problem for each request,
whose exact solution has an exponential complexity. In [12], the authors define
the problem as a multi-dimension multi-choice 0-1 knapsack one as well as a
multi-constraint optimal path problem. A global planning approach to select an
optimal execution plan by means of integer programming is used in [13]. In [1],
the authors model the service composition as a mixed integer linear problem
where both local and global constraints are taken into account. A linear pro-
gramming formulation and flow-based approach is proposed in [4]. There, the
authors consider not only sequential composition of services but also cycles and
parallel activities. Algorithms for the selection of the most suitable candidate
services to optimize the overall QoS of a composition are also discussed in [7]. A
different approach, based on utility functions as the QoS measure, is used in [9],
where the authors propose a service selection mechanism based on a predictive
analytical queuing network performance model. Other contributions to the issue
of service selection and composition can be found in [6, 11].

This paper presents a performance comparison of runtime heuristic algorithms
to evaluate their accuracy in finding the sub-optimal solution and their scalability
to large size problems. The algorithms we consider conduct a heuristic search of
the solution space in order to find a sub-optimal solution that is very close to
the optimal solution but is obtained by examining a drastically reduced number
of selections. In fact, the experimental studies reported in this paper show that
the heuristic solutions come very close to the optimal solution (less than 9.6%



Optimal Service Selection Heuristics in Service Oriented Architectures 787

worse) after having examined a very small number of possible solutions (less
then 9.45 on average versus 125,794 for the efficient optimal search).

The paper is organized as follows. Section 2 introduces the problem formula-
tion. The optimal solution approach is described in Section 3. The heuristic solu-
tions are described in Section 4. Experimental results are discussed in Section 5.
Section 6 concludes the paper.

2 Problem Formulation

We use the average execution time of the business process (BP) as its main
QoS metric. As previously discussed, this metric is a nonlinear function of the
execution times of individual business activities and depends on the BP structure
and composition constructs used. The extension to other performance metric is
straightforward.

We assume that the probability density function (pdf) and cumulative distri-
bution function (CDF) of the execution times of each SP are known. We also
assume that the execution cost of each business activity provided by the SPs is
given.

Let,

– A business process B be composed of N business activities ai, i = 1, · · · , N .
– Rmax be the maximum average execution time for B.
– Cmax be the maximum cost for the execution of B.
– Ri,j be the execution time for business activity ai when implemented by

service provider sij ∈ Si. Ri,j is a random variable with a probability density
function pi,j and a cumulative distribution function Pi,j .

– Ci,j be the execution cost of business activity ai when it is implemented by
service provider sij ∈ Si.

– Z be the set of all possible service provider selections of the business activities
of B.

– z ∈ Z be a service selection of N service providers that support the execution
of business process B.

– z(k): service provider allocated to activity ak in service selection z.
– R(z) and C(z) be the average execution time and the cost for associated

with service selection z, respectively.

The Optimal Service Selection problem is formulated as a nonlinear program-
ming optimization problem where the objective is to find a service selection z
that minimizes the average execution time subject to cost constraints:

min R(z)
subject to

R(z) ≤ Rmax

C(z) ≤ Cmax

z ∈ Z



788 E. Casalicchio et al.

R(z) is, in general, a complex nonlinear function that can be obtained from well
known results from order statistics.

The Optimal Service Composition problem formulated above can be solved
using two different approaches. The first is an optimal solution approach (Op-
timal Service Selection) that avoids doing an exhaustive search of the solution
space Z (e.g., the JOSeS algorithm proposed by the authors in [8]).

The second approach (Heuristic Service Selection) adopts a heuristic solution
that reduces the problem complexity. In the following we compare the perfor-
mances of three heuristics that scale to large size problems.

The first required step for both the optimal reduced search and the heuristic
is to be able to extract from the BPEL code that describes the business process,
an expression for the global average execution time and another for the total
execution cost. This expression needs to take into account the structure of the
business process as well as the execution times and cost of the individual business
activities.

3 Optimal Service Selection

BPEL offers different constructs to combine business activities into a business
process. The business logic is a structured activity obtained by putting together
elementary business activities (in the following, the term business process and
business logic are used alternatively). Each business activity is essentially a syn-
chronous or asynchronous invocation of a Web service operation. The main con-
struct a structured BPEL activity includes are: sequential control (<sequence>,
<switch>, and <while>), non-deterministic choice (<pick>), and concurrency
and synchronization of elementary activities (<flow>).

In [8], the authors showed how one can obtain an expression for the execu-
tion time R of a business process and its execution cost C directly from its
structure described in BPEL or an equivalent tree-like representation. While the
execution cost of a business process is the sum of the execution costs of the
activities of the business process (plus eventually some additional overhead),
the execution time depends on how the business activities are structured. For
example, if we have a sequence of business activities a1, . . . , an, and a service
selection z, the execution time of the business process is R(z) =

∑
i=1,...,n Ri,j

where sij is the service provider assigned to activity ai in z. The execution
time of an activity ai that is repeated n times and that is supported by service
provider si,j is simply R(z) = n × Ri,j . In the case of deterministic or non de-
terministic choices, the computation of the total execution is easily computed as
R(z) =

∑
i=1,...,n qi ×Ri,j where qi is the probability that activity ai is invoked.

Finally, the execution time of the parallel execution of n business activities is
given by R(z) = maxi=1,...,n{Rij}.

The computation of the average execution time for a business process that
has <flow>) constructs is quite involved, especially in the case where execution
times are random variables, and is described in [8].

Optimal service selection can be done in a naive way by enumerating all pos-
sible service selections and computing their execution time and cost. A more



Optimal Service Selection Heuristics in Service Oriented Architectures 789

efficient approach avoids generating selections such that their subselections al-
ready violate the execution time and cost constraint. Such an algorithm, called
JOSeS algorithm, was presented in [8], and is used here for comparing the
heuristic algorithms presented in the next section.

4 Heuristic Service Selection

We present two new heuristics—Fastest First (FF) and Cheapest First (CF)—
and compare them with the high reduction in execution cost, low increase in
execution time ratio (hrCliR) heuristic presented by the authors in [8]. The goal
of the proposed heuristic solutions is to reduce the cost of finding the optimal
solution, providing a sub-optimal selection as close as possible to the optimal.

Figure 1 shows the solution space and the feasible solution space of our prob-
lem. The solution space is the area delimited by the dashed lines, which indicate
the lower and upper bounds for cost and execution time of the business process.
The lower bound CC for the execution cost is the cost obtained by selecting the
cheapest service providers for each activity. Similarly, the upper bound RS for
the execution time can be obtained by selecting the slowest service provider for
each business activity. On the contrary, the upper bound CE for the execution
cost is obtained by selecting the most expensive service provider for each ac-
tivity, and the lower bound RF for the execution time is obtained by selecting
the fastest service provider for each activity. The feasible solution space is repre-
sented by the dotted area and is the the portion of the solution space delimited
by the lower bound for execution time and execution cost and by the time and
cost constraints (bold lines). We assume that the execution cost of a service
provider is inversely proportional to its execution time.

R

CC CE

RS

(Ciii ,Riii)Rmax

Cmax

(CE,RF)
(Ci ,Ri)

(Cii ,Rii)

RF

C

Fig. 1. A conceptual representation of the solution space and of the feasible solution
space



790 E. Casalicchio et al.

4.1 Fastest First

The proposed heuristic is based on the following idea (see Fig. 1). We start from
the service selection z0 characterized by the lowest execution time, i.e., the point
(CE , RF ). Assume that this point is outside the feasible solution space and that
the cost constraint is violated. To find a feasible solution as close as possible to
the optimum, we have to choose a selection z′ that moves the problem solution
inside the dotted area, say the point (C′, R′). To choose the solution z′, we
determine the activity ak such that the service provider allocated to ak in z0,
i.e., z0(k), provides the lowest average execution time among all allocated service
providers in z0. We then replace z0(k) with the second fastest service provider
for ak.

We then evaluate the execution cost and execution time for the new service
selection z′. If the constraints are satisfied we have a suboptimal solution (see
point (C′, R′)). Otherwise, there are two possibilities: if the cost constraint is
still violated and the time constraint is not yet violated, we are in a point such
as (C′′, R′′) and we have to repeat the above mentioned process, i.e., the replace-
ment of the fastest service provider for the new allocation z′.

If the execution time constraint is violated but the cost constraint is satisfied,
we are at point (C′′′, R′′′) and we cannot accept such solution as we would
continue to violate the execution time constraint at any further attempt of cost
reduction. Then, we go back to the previous allocation (z0 in this case) and we
replace the service provider that has the second lowest execution time by its
next fastest.

The details of this heuristic are shown in Algorithm 1. The function
GetFastest (z, h) returns the service provider in allocation z that has the h-th
smallest average execution time when h ≤ N and returns NULL when h > N .
The function next (k) returns the next, not yet evaluated, service provider in
the list of service providers for activity ak. This list is assumed to be sorted in
increasing order of average execution time. This function returns NULL if all
the providers for activity ak have been already evaluated. We use the following
notation in the algorithm. Let z �k s stand for the operation of removing from
solution z provider s for activity k. Similarly, let z ⊕k s denote the addition to
solution z of provider s to activity k.

4.2 Cheapest First

The CF heuristic is based on the same criteria used in the Fastest First. The
main difference is that the search for a sub-optimal solution starts from the
point (CC , RS) in Fig. 1, which is the cheapest and slowest selection of service
providers. Assume that this point is outside the feasible solution space and that
the execution time constraint is violated. To find a feasible solution we have to
choose a selection z′ that moves the problem solution inside the dotted area.
To choose the solution z′, we determine the activity ak such that the service
provider allocated to ak in z0, i.e., z0(k), provides the lowest cost among all
allocated service providers in z0. We then replace z0(k) with the service provider
with the second lowest for ak.



Optimal Service Selection Heuristics in Service Oriented Architectures 791

Algorithm 1. Fastest First Algorithm Solution
1: function FFHeuristic()

2: Find z such that E[R(z)] = RF ;
3: if (E[R(z)] ≤ Rmax) and (C(z) ≤ Cmax) then
4: return z
5: end if
6: while C(z) > Cmax do
7: h← 1;
8: while (ski ← GetFastestSP(z, h)) �= NULL) do
9: if (skj ← next(k)) �= NULL then

10: z ← z �k ski ;
11: z ← z ⊕k skj ;
12: if C(z) ≤ Cmax then
13: if E[R(z)] ≤ Rmax then
14: return z;
15: else
16: z ← z �k skj ;
17: z ← z ⊕k ski ;
18: h← h + 1;
19: end if
20: end if
21: else
22: h← h + 1;
23: end if
24: end while
25: end while
26: return infeasible solution
27: end function

We then evaluate the execution cost and execution time for the new service
selection z′. If the constraints are satisfied we have a suboptimal solution. Other-
wise, there are two possibilities: if the execution time constraint is still violated
and the cost constraint is not violated, we have to repeat the above mentioned
process, i.e., the replacement of the cheapest service provider for the new allo-
cation z′.

If the cost constraint is violated but the execution time is satisfied we cannot
accept such solution as we would continue to violate the cost constraint at any
further attempt of cost increase. Then, we go back to the previous allocation
and replace the service provider that has the second lowest cost to be replaced
by its next cheapest.

4.3 hrCliR Algorithm

This heuristic, proposed in [8], starts evaluating the service selection z0 charac-
terized by the lowest execution time, i.e., the point (CE , RF ). Assume that this
point is outside the feasible solution space and that the cost constraint is vio-
lated. To find a feasible solution as close as possible to the optimum, we have to



792 E. Casalicchio et al.

choose a selection z′ that moves the problem solution inside the dotted area, say
the point (C′, R′). To choose the solution z′ we replace the service provider that
provides the highest reduction in the execution cost C with the lowest increase
in the execution time R. To determine such provider, we need to compute the
ratio

∆i,j,j′ = pi × Ci,j − Ci,j′

Ri,j′ − Ri,j
j
′
> j (1)

for each activity ai (i = 1, · · · , N). In Eq. (1), j represents the service provider
allocated to activity ai, j′ represents an alternate service provider for ai, and
pi is the probability that activity ai is executed in the business process. This
probability is a function of the structure of the business process and its branching
probabilities. We then select the activity for which there is an alternate provider
that maximizes the value of the ratio for all such ratios. More precisely,

(k, m) = argmaxi=1,··· ,N ;j′ �=j {∆i,j,j′} . (2)

According to Eq. (2), the service provider m when replacing service provider j
in activity k yields the maximum value for the ratios ∆.

We then evaluate the execution cost and execution time for the new service
selection z′. If the constraints are satisfied we have a suboptimal solution. Other-
wise, there are two possibilities: if the cost constraint is still violated and the time
constraint is not yet violated, we are in point such as (C′′, R′′) and we have to
repeat the above mentioned process, i.e., the selection of a new service provider
that maximizes the ratio ∆ among all activities. If the execution time constraint
is violated but the cost constraint is satisfied, we are at point (C′′′, R′′′) and
we cannot accept such solution as we would continue to violate the execution
time constraint at any further attempt of cost reduction. Then, we select the
service provider that has the second best ratio ∆. The process is repeated until
a feasible solution is found.

5 Experiments

We implemented the heuristics and the optimal JOSeS algorithm [8] to conduct
experiments aimed at evaluating the efficiency of the former. In particular, we
wanted to: 1) determine how close the heuristics solution are to the optimal, 2)
compare the number of points in the solution space examined by each algorithm,
3) compare the three heuristics, CF, FF and hrCliR, over a wide range of param-
eters including the complexity of the business process topology, the tightness of
the response time and cost constraints, and the number of SPs per activity.

5.1 Description of the Experiments

The experimental methodology and metrics computed mirrors pretty closely
what the authors did in [8]. Fifty business processes were randomly generated and
the expression for the average response time and execution costs were computed



Optimal Service Selection Heuristics in Service Oriented Architectures 793

according to section 3. The process for the generation of business processes
determined randomly when to generate sequences, flows, switches (and their
switching probabilities) as well as the number of branches of flows and switches.

The number of activities for the randomly generated business processes varied
from 6 to 10. The number of flows and switches in these business processes varied
in the range zero to three and zero to two, respectively.

The experiments assumed that the execution time of each service provider
s is exponentially distributed. The cost of obtaining an average execution time
E[Rs] from service provider s was assumed to be equal to 1/E[Rs]. In other
words, the cost decreases with the inverse of the average service time offered by
a service provider.

For each experiment, the number of SPs per activity nspa was the same for
all activities and that number was varied as follows: 2, 3, 4, 5, 6, and 7.

The complexity C(B) of a business process B is defined as

C(B) = #activities + #flows +
∑

∀ switch i

fanouti (3)

using an adapted version of the control flow complexity and other metrics dis-
cussed in [5]. After all business processes are generated, we compute for each a
normalized complexity C′

(B) as follows

C′
(B) =

C(B) − min∀s C(s)
max∀s C(s) − min∀s C(s)

. (4)

It can be easily seen that 0 ≤ C′
(B) ≤ 1 for any business process B.

We then apply the k-means, with k = 3, clustering algorithm on all business
processes using | C′

(B) − C′
(q) | as the distance between business processes

B and q. The business processes in the cluster with the smallest centroid are
called simple business processes, the ones in the cluster with the largest centroid
are called complex , and the remaining ones medium business processes. The
performance of the heuristics are also compared along this dimension.

For a given business process p and for a given number of SPs per activity, we
compute the coordinates of the feasibility region (CC , RF ), (CE , RF ), (CC , RS),
and (CE , RS). We then compute three sets of values for the constraints Rmax

and Cmax according to how tight they are. We call them strict, medium, and
relaxed constraints, and their values are:

Cmax = CC + (CE − CC)/3 for tight,
Rmax = RF + (RS − RF )/3 for tight,
Cmax = CC + (CE − CC)/2 for medium,

Rmax = RF + (RS − RF )/2 for medium,

Cmax = CE − (CE − CC)/6 for relaxed, and
Rmax = RS − (RS − RF )/6 for relaxed.

We also carried out a set of experiments to evaluate the scalability of the algo-
rithms. The number of activities was set to 10 and nspa ranged from 5 to 40.



794 E. Casalicchio et al.

For the complexity of the experiments the heuristics were evaluated only in the
medium constraints scenario.

5.2 Results of the Experiments

The following metrics are used to evaluate the heuristic algorithms discussed
here.

– εR: absolute relative percentage average execution time difference defined as

εR = 100 × | Rh − Ro |
Ro

(5)

where Rh and Ro are the average execution times obtained using the heuristic
and JOSeS algorithm, respectively.

– εC : absolute relative percentage average execution cost difference defined as

εC = 100 × | Ch − Co |
Co

(6)

where Ch and Co are the average execution costs obtained using the heuristic
and JOSeS algorithm, respectively.

– δ: the percentage of not feasible solutions found, defined as

δ = 1 − Nh

No
(7)

where No is the number of optimal solutions found by the JOSeS algorithm
(equal to the number of experiments) and Nh is the number of sub-optimal
solutions found by the heuristic algorithm. Note that while No is equal to
the number of exeriments, Nh could be less than No because heuristics are
not able to find a solution for all the constraints combination.

In [8], after conducting an exhaustive ANOVA analysis, we showed that both
εR and εC depend on nspa and on the business process complexity (C′

(p)).
Therefore, in the experiments, we compare the performance of the proposed
heuristics for different value of the number of SPs per activity and for the three
different classes of the normalized business complexity.

Our results can be summarized as follows:

1. The Fastest First and hrCilR heuristic algorithms have a comparable be-
haviour with an absolute relative percentage average execution time differ-
ence εR less then 7.3%±3.3% at a 95% confidence interval on average and less
then 9.6%± 4.2% at worst. The value of εC is always less then 4.8%± 1.7%
at a 95% confidence interval.

2. The Fastest First and hrCilR heuristic algorithms need a similar number
of iterations to find the sub-optimal solution (9.15 ± 1.35 for hrCilR and
9.45±0.98 for FF in the worst case, that is for tight constaints). This number
is five orders of magnitude less then the optimal JOSeS’s algorithm (125,794
iterations on average).



Optimal Service Selection Heuristics in Service Oriented Architectures 795

3. The Fastest First and hrCilR heuristic algorithms find a sub-optimal (or
optimal in some cases) solution in 95.6 percent of the cases and in 97.8%,
respectively. On the contrary, the cheapest first has a high percentage of not
found solutions (17.7%). We should mention that the heuristics are not able
to find the optimal solution only when the constraints are tight.

4. The Cheapest First heuristic algorithm shows very high values of εR and εC ,
regardless of the type of constraints, the number of SPs per activity and the
BP complexity. For example, in the case of nspa = 5 and relaxed constraints
εR = 123%± 15.6% at a 95% confidence interval.

5. FF and hrCliR scale for a wide range of nspa (from 5 to 40) and the number
of iterations to find a sub-optimal solution was always less than 6 ± 0.66 at
a 95% confidence level.

Figures 2 and 3 show the performance of the heuristics for the three types of
constraints and for nspa = 3 and nspa = 5, respectively. The results show that
while Fastest First and hrCilR heuristic have the same behaviour in terms of rel-
ative percentage average execution time difference, the Cheapest First heuristic
shows a very high value of εR, regardless of the type of constraints. This be-
havior can be explained as follows. The CF heuristic, starting from the cheapest
solution, tries to find a sub-optimal solution that has a lower cost. Therefore,
the goal of the Cheapest First is opposite to the optimization problem defined
by Equation 1. Usually, the solution determined by the CF has a cost lower
then the optimum, and the high value for εC is due to values of Ch less then Co.
On the contrary, the sub-optimal execution time is significantly higher than the
optimum. From the experiments, it emerges also that the performance of CF
drastically improves for tight constraints. In this scenario, the number of feasi-
ble allocations is reduced and the distance between the solutions is very small;
therefore the probability of finding a solution near the optimum is higher.

Figures 4 and 5 show the values of εR for different values of business process
complexity. Also along this dimension, the trend is confirmed, i.e., FF and hrCilR
achieve very similar performance and outperform the Cheapest First algorithm.

Fig. 2. εR as funtion of the type of con-
straints. In this scenario nspa = 3.

Fig. 3. εR as function of the type of con-
straints. In this scenario nspa = 5.



796 E. Casalicchio et al.

Fig. 4. εR as function of the business pro-
cess complexity. In this scenario nspa = 3.

Fig. 5. εR as function of the business pro-
cess complexity. In this scenario nspa = 5.

In the last set of experiments we evaluated the scalability of FF and hrCliR
when the selection is done over a large set of SPs (from nspa from 5 to 40 ) and
for complex business processes. Figure 6 shows that the number of iterations to
find a sub-optimal solution is always less then 6 ± 0.66 at a 95% at a confidence
level. The hrCliR performs better then FF (at worst it takes 5.28 ±0.54 iterations
to find a solution). The weakness of this set of experiments is that it is impossible
(with the systems we have access to) to compute the optimal solution and then
the values of εR and εC . Therefore we are not certain of the goodness of the
solutions found in the case of a large set of SPs.

Fig. 6. Number of Iterations for medium constraints and complex BP



Optimal Service Selection Heuristics in Service Oriented Architectures 797

6 Concluding Remarks

The SOA model enables re-use and sharing of components through dynamic dis-
covery. The benefit of service composition stimulates also the growth of a market
of heterogeneous and volatile services. Service brokers are aware that: each pos-
sible service selection of services brings different levels of QoS and cost; and
that the service marketplace environment is highly heterogeneous and volatile.
Therefore, brokers need scalable mechanisms that can be used for runtime service
selection among a set of service providers.

This paper presented two such efficient mechanisms that, in all experiments
reported and all experiments carried out and not-reported due to lack of space,
come very close to the optimal solution (less than 7.3% worse) after having
examined a very small number of possible solutions (less than 9.45 worse).

Acknowledgment

The work of Daniel Menascé is partially supported by grant CCF-0820060 from
the National Science Foundation.

The work of Emiliano Casalicchio and Luca Silvestri is partially supported
by the PRIN project D-ASAP founded by the Italian Ministry of Education,
University and Research.

References

1. Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selec-
tion. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46.
Springer, Heidelberg (2006)

2. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics
for QoS-aware Web Service Composition. In: Proc. Int’l Conf. on Web Services
(September 2006)

3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-
aware Service Composition Based on Genetic Algorithms. In: Proc. Genetic and
Computation Conf. (June 2005)

4. Cardellini, V., Casalicchio, E., Grassi, V., Francesco, L.P.: Flow-based service se-
lection for web service composition supporting multiple qos classes. In: ICWS 2007.
IEEE Intl. Conf. Web Services, July 9-13, pp. 743–750 (2007)

5. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on Complexity
of Process Models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS,
vol. 4103, pp. 117–128. Springer, Heidelberg (2006)

6. Fung, C.K., Hung, P.C.K., Wang, G., Linger, R.C., Walton, G.H.: A Study of
Service Composition with QoS Management. In: Proc. of the IEEE ICWS (2005)

7. Jaeger, M., Muhl, G., Golze, S.: Qos-aware composition ofweb services: A look
at selection algorithm. In: Proc. 2005 IEEE Intl. Conf. Web Services, ICWS 2005
(2005)

8. Menascé, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in Service
Oriented Architectures. In: Performance Evaluation (in press)



798 E. Casalicchio et al.

9. Menascé, D.A., Dubey, V.: Utility-based QoS brokering in service oriented archi-
tectures. In: Proc. of the IEEE ICWS, Application Services and Industry Track,
Salt Lake City, Utah, July 9-13, pp. 422–430 (2007)

10. Menascé, D.A., Ruan, H., Gomma, H.: QoS management in service oriented archi-
tectures. Performance Evaluation Journal 64(7-8), 646–663 (2007)

11. Serhani, M.A., Dssouli, R., Hafid, A., Sahraoui, H.: A QoS Broker based Architec-
ture for Efficient Web Service Selection. In: Proc. 2005 IEEE ICWS (2005)

12. Yu, T., Lin, K.J.: Service Selection Algorithms for Composing Complex Services
with Multiple QoS Constraints. In: Proc. of 3rd Int’l Conf. on Service Oriented
Computing, December 2005, pp. 130–143 (2005)

13. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

14. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS driven
runtime adaptation of service-oriented architectures. In: Proc. of the 7th ACM
SIGSOFT ESEC/FSE 2009, Amsterdam, The Netherlands (August 2009)


	Optimal Service Selection Heuristics in Service Oriented Architectures
	Introduction
	Problem Formulation
	Optimal Service Selection
	Heuristic Service Selection
	Fastest First
	Cheapest First
	hrCliR Algorithm

	Experiments
	Description of the Experiments
	Results of the Experiments

	Concluding Remarks



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




