
Optimizing Distributed Execution of WS-BPEL
Processes in Heterogeneous Computing Environments

Qishi Wu1, Yi Gu1, Liang Bao2, Wei Jia2, Huichen Dai2, and Ping Chen2

1 Dept of Computer Science, University of Memphis, Memphis, TN 38016, USA
{qishiwu,yigu}@memphis.edu

2 College of Software, XiDian University, Xi’an, Shanxi, 710071, China
{baoliang,weijia,huichendai,pingchen}@mail.xidian.edu.cn

Abstract. Workflow-structured Web service composition is an emerging com-
puting paradigm for constructing next-generation large-scale distributed appli-
cations within and across organizational boundaries. Mapping such application
workflows in heterogeneous environments and optimizing their performance in
terms of quick response and high scalability are vital to the success of these
distributed applications. Workflows with complex execution semantics and de-
pendencies are typically modeled as directed acyclic graphs. We construct cost
models to estimate data processing and transfer overheads and formulate the re-
stricted workflow mapping for minimum total execution time as an NP-complete
optimization problem. We propose a heuristic approach to this problem that re-
cursively computes and maps the critical path to network nodes using a dynamic
programming-based procedure. The performance superiority of the proposed ap-
proach is illustrated by an extensive set of simulations and further verified by
experimental results from a real network in comparison with existing methods.

Keywords: WS-BPEL, workflow mapping, optimization, heuristic algorithm.

1 Introduction

As the number of Web services of wide variety grows rapidly in the Internet, Web
service composition has become an important computing paradigm for constructing
next-generation large-scale distributed applications within and across organizational
boundaries. Successful business operations require an efficient and flexible scheme for
pooling globally available Web service-based resources together to quickly adapt to
various customer needs and dynamic market conditions. WS-BPEL (Web Service Busi-
ness Process Execution Language) is now a de facto specification for Web service
composition.

A WS-BPEL application based on composite Web services features complex execu-
tion semantics and is typically coordinated by a single node referred to as a centralized
orchestrator. The WS-BPEL process is usually designed by application developers ac-
cording to certain business logics and manually deployed on a WS-BPEL engine. Fig. 1
diagrammatizes a typical execution setup of WS-BPEL process: a request is sent to the
centralized WS-BPEL engine, which orchestrates the invocation of Web services lo-
cated in different Web containers. As pointed out in [7], instead of transferring data
directly from the point of generation to the point of consumption, this execution model

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 770–784, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Optimizing Distributed Execution of WS-BPEL Processes 771

invoke Web services

composite Web service
request

WS-BPEL engine

Client
Workflow description

Web services Web services

reply

Fig. 1. A typical execution setup of WS-BPEL process

uses the engine as a central intermediator to exchange data between Web services, re-
sulting in unnecessary network traffic. In addition, a Web service could generate a large
volume of data that are irrelevant to the composite service but still need to be transferred
to the engine where they are eventually discarded, hence causing unnecessary workload
in the network. This client-server communication model poses an inherent performance
limitation on scalability: the system performance degrades significantly as the traffic
and workload increase in heterogeneous and cross-organization environments.

We propose a distributed approach to execute a WS-BPEL process that overcomes
the above performance limitation by constructing and mapping a WS-BPEL workflow
with direct inter-web service data transfer to a set of network nodes. The workflow is
constructed by a static analyzer that takes three steps: (i) load a WS-BPEL process and
transform it into a customized memory structure of WS-BPEL process (Java classes);
(ii) load the generated memory representation of BPEL process and transform it into a
BCFG (BPEL Control Flow Graph) representation; and (iii) apply a revised algorithm
in [3] to remove control flow edges in BCFG and insert control and data dependence
edges, which generates the final Program Dependence Graph (PDG) representation of
the WS-BPEL process. We apply static analysis techniques of multi-threaded programs
to BPEL process and some composition structure patterns, such as AND split (fork),
XOR split (conditional), loop and AND join (merge), and XOR join (trigger), which
can be modeled and represented in our tCFG (threaded Control Flow Graph)-structured
BCFG [3, 10]. Note that loop operations can be managed by unfolding the cycles as
proposed in [31]. We would like to point out that the activities in BPEL considered here
are synchronous and stateless Web services invocations. Invocations of asynchronous
and stateful Web services are more complicated and are out of the scope of this paper.

The workflow mapping may be subject to some restrictions and involves two types of
graphs: (i) a Directed Acyclic Graph (DAG) that models the workflow of a WS-BPEL
process, where each vertex represents an activity and each directed edge represents
the data transfer or execution dependency between two activities (also referred to as
PDG [12]); (ii) a directed weighted graph that represents an underlying physical com-
puter network, where Web services are deployed on heterogeneous computing nodes
that are connected by network links with different bandwidths. The topology of the
computer network may not be complete in a dedicated network environment or even

772 Q. Wu et al.

in the Internet due to different administrative policies and firewall settings. Further-
more, the Web services in the Internet come and go dynamically while those deployed
in high-speed reliable enterprise intranet are more stable and predicable. Mapping such
workflows into heterogeneous computing environments and optimizing their end-to-end
performance are crucial to ensuring the success of business processes requiring quick
response and the maximum utilization of system resources.

The workflow-structured WS-BPEL process requires distributed execution of com-
plex Web service components with inter-component communications using massively
dispersed computing and networking resources to support business collaborations in
various domains. The workflow mapping objective is to strategically select an appro-
priate set of network nodes that host different Web services in the physical computer
network and assign each activity in the WS-BPEL process to one of those selected
nodes to achieve the Minimum Execution Time (MET) of the process for fast response.
Certain activities in a WS-BPEL process might be restricted to some specific com-
puting nodes providing the corresponding Web services. We refer to such activities as
restricted activities as opposed to free activities, which can be mapped onto any com-
puting nodes. We allow multiple activities to be mapped onto the same node and the
computing resources of that node are shared in a fair manner by those activities run-
ning concurrently on that node. Note that activities assigned to the same node do not
share computing resources if their executions do not overlap due to the dependency or
unavailability of input data. Similarly, the bandwidth of a network link is fairly shared
by multiple data transfers that take place concurrently on the same link. We formulate
the workflow mapping with arbitrary node reuse and certain mapping restrictions as an
NP-complete optimization problem, and propose a heuristic approach, restricted Re-
cursive Critical Path (rRCP), which is modified from the Recursive Critical Path (RCP)
algorithm in [29] by taking the mapping restrictions into consideration.

The rest of the paper is organized as follows. We conduct an extensive survey of WS-
BPEL processes and workflow mapping in Section 2. We construct mathematical mod-
els and formulate the problem in Section 3. In Section 4, we design the rRCP algorithm
for workflow mapping to achieve MET. The implementation details and performance
evaluations are presented in Section 5. We conclude our work in Section 6.

2 Related Work

Web services have found pervasive applications in different domains over wide-area
networks [17, 22, 27]. Guo et al. proposed the ANGEL model for service composition
and adopted a redundant mechanism in ANGEL to improve system availability [17].
In [27], Shin et al. proposed a simple heuristic solution to Web service composition
where the highest search priority is given to services providing the largest number of
new responses. Li et al. proposed a general purpose Web Service Management System
in [22] that enables execution optimization of composite services through multiple en-
gines. In the Symphony project [24], Mangla [25] partitioned a composite Web service
written as a single WS-BPEL program into an equivalent set of decentralized processes
using a new code partitioning algorithm based on PGD to minimize communication
costs and maximize the throughput of multiple concurrent instances of the input pro-
gram. However, Mangla’s work does not consider the situation where multiple services

Optimizing Distributed Execution of WS-BPEL Processes 773

may be executed on a single server. Yildiz et al. proposed an efficient process transfor-
mation technique that converts a process conceived for centralized execution to a set of
nested processes to be deployed on dynamically bound services [30]. Other research ef-
forts along this line include the static optimization of WS-BPEL process [3] and batch
invocation of Web services [10], where the former applies static analysis to the WS-
BPEL process to identify “concurrent branches” and the latter reduces the number of
connections by forming batch invocation request to implement “one request, many in-
vocations of Web services”. Security and performance issues of BPEL processes were
studied in [5] and [6], respectively.

The workflow mapping problem in distributed network environments under different
constraints has been extensively studied by researchers in various disciplines [4, 8, 9,
15, 28] and continues to be the focus of distributed computing due to its theoretical
significance and practical importance. Zhu et al. proposed a model of overlay network
with linear capacity constraints (LCC) [32], which incorporates correlated link capac-
ities by formulating shared bottlenecks as linear constraints of link capacities. Guerin
et al. tackled an all hops optimal path problem to minimize end-to-end delay or max-
imize bandwidth with a limit on the maximum number of possible hops [16]. Among
the traditional workflow mapping problems in theoretical aspects of computing, sub-
graph isomorphism is known to be NP-complete [14] while the complexity of graph
isomorphism still remains open. Many special cases of graph isomorphism under dif-
ferent topology constraints on the mapped (workflow) or mapping (network) graphs can
be solved in polynomial time, including isomorphism between planar graphs [18] and
bounded valence graphs [23]. The mapping computational complexity could also be
reduced by introducing an adequate representation of the search space and process, and
pruning unprofitable search paths in the search space [13].

Many research efforts have been focused on static scheduling algorithms for multi-
processors that are considered as identical resources. Kwok et al. proposed Dynamic
Critical-Path (DCP) scheduling algorithm [20] to map task graphs with arbitrary com-
putation and communication costs to a multiprocessor system with an unlimited number
of identical processors in a fully-connected network. A task graph scheduling scheme
for streaming data, Streamline, which places a coarse-grain dataflow graph on avail-
able grid resources, is proposed in [2] to improve the performance of graph mapping
for streaming applications with various demands in distributed network environments.
Most graph mapping or task scheduling problems in grid environments assume com-
plete networks with heterogeneous resources. Similar mapping problems are also stud-
ied in the context of sensor networks. Sekhar et al. proposed an optimal algorithm for
mapping subtasks onto a large number of sensor nodes based on an A∗ algorithm, and
also proposed a greedy A∗ algorithm to reduce the complexity of the original optimal
solution accounting for the limited energy of each sensor node [26].

3 Cost Model and Problem Formulation

We model the workflow of a WS-BPEL process as a task graph Gt = (Vt ,Et), |Vt | = m,
where vertices represent different computing activities: w0,w1, . . . ,wm−1. The data or
control dependency between a pair of adjacent vertices wi and wj is represented by a

774 Q. Wu et al.

directed edge ei, j with data size zi, j between them and the entire workflow is modeled
as a DAG starting from the source activity w0 and ending at the destination activity
wm−1. An intermediate activity wi cannot start any processing until it receives all re-
quired input data from its preceding activities. The computational complexity of an
activity is modeled as a function fwi(·) on the total aggregated input data zwi , and the
activity sends results to its succeeding activities once it completes the required process-
ing. We estimate the computing time of an activity wi running on network node v j as

Tcomp(wi,v j) =
fwi (zwi)

p j
. The actual runtime of an activity does not only depend on the

total aggregated incoming data size and computational complexity, but also the capacity
of system resources deployed on the selected nodes as well as their availability during
the runtime. Note that for an application with multiple source or destination activities,
we could convert it to this model by inserting a virtual starting or ending activity of
complexity zero connected to all source or destination activities with zero-sized output
or input data transfers.

Table 1. Workflow and network parameters

Parameters Definitions
Gt = (Vt ,Et) task graph

m number of activities in the workflow
wi the i-th computing activity
ei, j dependency edge from activity wi to w j

zi, j data size of dependency edge ei, j

zwi aggregated input data size of activity wi

fwi(·) computational complexity of activity wi

Gc = (Vc,Ec) computer network graph
n number of nodes in the network graph
vi the i-th network or computer node
vs source node
vd destination node
pi normalized computing power of vi

li, j network link between nodes vi and v j

bi, j bandwidth of link li, j

di, j minimum link delay of link li, j

Tcomp(wi,v j) computing time of activity wi running on node v j

Ttrans(zh,k,li, j) transfer time of data zh,k over link li, j

Ttotal total execution time required for a WS-BPEL process

The underlying computer network is modeled as an arbitrary weighted graph Gc =
(Vc,Ec) consisting of |Vc| = n computer nodes interconnected by directed communi-
cation links represented by a matrix L[n × n]. The processing power of a computer
node is a complex notion that combines a variety of host factors such as processor fre-
quency, bus speed, memory size, I/O performance, and presence of co-processors. For
simplicity, we use a normalized variable pi to represent the overall processing power
of a network node vi without specifying its detailed system resources. There are two

Optimizing Distributed Execution of WS-BPEL Processes 775

parameters, bandwidth (BW) bi, j and minimum link delay (MLD) di, j, associated with
a network link li, j ∈ L (i, j ∈ n) between nodes vi and v j. The estimated time of transfer-
ring the data zh,k between modules wh and wk over the network link li, j can be calculated
as Ttrans(zh,k, li, j) = zh,k

bi, j
+ di, j.

,j kl

,j kb
,j kd

ip

jp

kv

iv

jv kp

hw

lw

gw rw

tw

uw

,h re

Fig. 2. A mapping example

For convenience, we tabulate in
Table 1 the notations we define in the
above workflow and network models
to facilitate the problem formulation. A
mapping example is illustrated in Fig. 2,
where activities wh and wg are mapped
to network node vi, wl is mapped to v j,
and wr, wt and wu are mapped to vk. The
dashed arrows represent the data or con-
trol dependencies in a WS-BPEL pro-
cess and the solid arrows represent the
communication links between network
nodes. Activity wr cannot start its execu-
tion until it receives all required data from its preceding activities wh and wl . Note that
wr does not receive data directly from wh and wl in the centralized execution model,
where a central engine is responsible for all data communication. Activity wr aggre-
gates incoming data and performs a predefined computing routine whose complexity
is modeled as function fwr(·) on the total aggregated input data zwr and sends out the
results to its succeeding activities upon finishing its processing.

The mapping objective is to map all the activities of a WS-BPEL process onto an
appropriate set of computer nodes to minimize total execution time Ttotal , which is de-
termined by its critical path (CP), i.e. the longest path of the workflow. Once a mapping
scheme is determined, one may calculate Ttotal by adding up all the computing time and
transfer time incurred on the CP, which can be estimated as:

TTotal = ∑
wi∈CP

Tcomp(wi,vh)+ ∑
e j,k∈CP

Ttrans(z j,k, l f ,g)

= ∑
wi∈CP

fwi (zwi)
ph

+ ∑
e j,k∈CP

(
z j,k
b f ,g

+ d f ,g

) (1)

We assume that the inter-activity transfer time on the same node is negligible consider-
ing that the in-memory transfer rate is much faster than across networks.

The proposed workflow mapping problem considers node reuse and resource share.
In the underlying network, multiple services might be mapped onto the same node but
some services are only available on certain nodes. To simplify the time estimation of an
activity, we combine the time cost for service invocation and activity processing.

4 Restricted Workflow Mapping Algorithm

The workflow mapping or scheduling problem is known to be NP-complete [2, 21] even
on two processors without any topology or connectivity restrictions [1]. The mapping
problem in this paper considers mapping restrictions: some activities in the WS-BPEL

776 Q. Wu et al.

process can only be mapped onto certain nodes with specific resources to support the
execution of those restricted activities. We modify and adapt the Recursive Critical Path
(RCP) algorithm in [29] to this new problem and propose a restricted version of RCP
algorithm, referred to as restricted Recursive Critical Path (rRCP).

4.1 rRCP Algorithm

rRCP features a recursive optimization strategy. In each round, it chooses the CP based
on the previous round of calculation as shown in Fig. 3 and maps it to the network nodes
using a dynamic programming-based procedure until the mapping results converge to
an optimal or suboptimal point or a certain termination condition is met. The mapping
restrictions are taken into consideration when each activity is being mapped.

vs

v3

v1

vd
vq

vx

vp

…...

…...

w0 wm-1

w2

wl

wt

…...

…...

…...

…...

DAG-structured WS-BPEL process

Computer network

Critical path

N
et

w
or

k
m

ap
pi

ng
pa

th

w1

ws

vy

v2

v3

vx

v6,vp

vp,vq

Fig. 3. An example of WS-BPEL process map-
ping using rRCP algorithm

The pseudocode of the rRCP map-
ping scheme is provided in Alg. 1. The
initial mapping assumes resource homo-
geneity and connectivity completeness in
computer network, that is, the computer
network is considered as complete with
identical computer nodes and commu-
nication links. Thus, we only need to
consider the workflow when calculating
the initial computing and transfer time
cost components on each activity and
over each dependency edge, respectively.
With the initial time cost components in
workflow G1

t , we find its CP P1 using a
procedure defined in FindCriticalPath(),
which essentially finds the longest path
in a DAG. From this point on, we remove the assumption on resource homogeneity and
connectivity completeness, and map the current CP, i.e P1 to the real computer network
using a dynamic programming-based pipeline mapping algorithm MapCriticalPath()
with arbitrary node reuse as well as mapping restrictions for MET. The activities that
are not located on the CP, referred to as branch or non-critical activities, are mapped to
the network nodes using a procedure defined in MapNonCriticalActivity(). Based on
the current mapping, we compute a new CP using updated time cost components in Gi

t
and calculate a new MET. The above steps are repeated until a certain condition is met,
for example, the difference between two METs of two consecutive iterations is less than
a preset threshold.

The complexity of the rRCP algorithm is O(k(m + |Et |) · |Et |), where m represents
the number of activities in the WS-BPEL process, |Et | and |Ec| denote the number of
dependency edges in the workflow and communication links in the computer network,
respectively, and k is the number of iterations where CPs are calculated and mapped.

The algorithm for CP calculation is well studied and documented in the literature.
The algorithms for CP mapping MapCriticalPath() and non-critical activities map-
ping MapNonCriticalActivity() are similar to those proposed in [29] using a dynamic
programming-based and a greedy-based procedure, respectively. Note that when

Optimizing Distributed Execution of WS-BPEL Processes 777

Algorithm 1. rRCP(Gt ,Gc,vs,vd)
1: MET0 = METmax = MaxValue;
2: Create Gc

∗ by assuming resource homogeneity and connectivity completeness in Gc;
3: Calculate initial cost components for G1

t based on Gc
∗;

4: P1 = FindCriticalPath(G1
t ,w0,wm−1);

5: MET1(G1
t) =∑(Tcomp(P1)+Ttrans(P1));

6: i = 1;
7: while |METi −METi−1| ≥ T hreshold do
8: Call MapCriticalPath(Pi,Gc,vs,vd) to map the activities on CP Pi to network Gc with

mapping restrictions;
9: Call MapNonCriticalActivity(Pi,Gi

t ,Gc,vs,vd) to map the activities not on CP to network
Gn with mapping restrictions;

10: i = i+1;
11: Calculate new time cost for Gi

t based on the current mapping;
12: Pi = FindCriticalPath(Gi

t ,w0,wm−1);
13: METi(Gi

t) = ∑(Tcomp(Pi)+Ttrans(Pi));
14: return METi(Gi

t).

multiple activities are assigned to the same computer node, resources on this node are
shared among these activities only if they can run concurrently. Two activities are con-
sidered “independent” if there does not exist any path between them, and only indepen-
dent activities may run concurrently on the same node. It is worth pointing out that the
time calculation based on this resource share strategy is still an approximation since the
execution start time of an activity depends on the arrival time of its latest input data.
Therefore, even independent activities deployed on the same node may not run concur-
rently if their execution start and end times do not overlap. Note that some activities in
the WS-BPEL process can only be executed on a subset of computers in the network,
which imposes additional constraints for selecting nodes. In Fig. 3, the IDs listed under
an activity are the IDs of those computer nodes that have been ruled out for deploying
that activity. For example, activity w1 cannot be mapped to nodes v6 and vp.

5 Performance Evaluation

Despite the widespread application of WS-BPEL processes in a wide spectrum of fields,
there still lacks a standardized benchmark for evaluating their performances. We present
below the results from both simulations and real network experiments to illustrate the
performance superiority of the proposed mapping solution over existing algorithms.

5.1 Simulation Results

The proposed rRCP algorithm is implemented in C++ and runs on a Windows XP desk-
top PC equipped with a 3.0 GHz CPU and 2 Gbytes memory. For performance com-
parison purposes, we also implement the other three algorithms, namely, Greedy A∗,
Streamline, and Naive Greedy. A∗ algorithm is a static allocation scheme proposed by

778 Q. Wu et al.

Sekhar et al. [26], which maps the subtasks of a DAG-like workflow onto a large num-
ber of sensor nodes. A greedy A∗ algorithm, which is specifically designed to reduce the
complexity of the A∗ algorithm, explores only the least-cost path of the search tree in

Table 2. Simulation-based performance comparison of MET among four algorithms

Prb Problem Size MET (s)
Idx m, |Et |, n, |Ec| rRCP Greedy A∗ Streamline Naive Greedy
1 4, 6, 6, 35 1.05 1.08 1.15 1.08
2 6, 10, 10, 96 1.15 1.85 1.33 1.23
3 10, 18, 15, 222 1.59 1.89 1.95 1.92
4 13, 24, 20, 396 1.49 2.16 2.09 2.19
5 15, 30, 25, 622 2.29 2.57 2.67 2.32
6 19, 36, 28, 781 1.41 1.75 1.71 1.57
7 22, 44, 31, 958 1.17 1.43 1.61 1.74
8 26, 50, 35, 1215 3.14 3.76 3.83 3.57
9 30, 62, 40, 1598 4.40 5.38 5.41 4.92

10 35, 70, 45, 2008 4.24 5.19 5.99 4.48
11 38, 73, 47, 2200 3.21 3.64 5.16 4.40
12 40, 78, 50, 2478 2.69 3.73 4.31 3.17
13 45, 96, 60, 3580 1.41 1.52 2.07 1.81
14 50, 102, 65, 4220 1.99 5.01 3.87 4.59
15 55, 124, 70, 4890 7.64 12.35 9.49 10.84
16 60, 240, 75, 5615 9.98 11.45 15.07 13.55
17 75, 369, 90, 8080 11.57 19.37 14.68 15.13
18 80, 420, 100, 9996 24.83 31.73 30.69 28.50
19 90, 500, 150, 22496 17.33 24.74 20.77 21.37
20 100, 660, 200, 39990 35.79 41.37 38.66 39.29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020
0

5

10

15

20

25

30

35

40

45

Index of 20 problem sizes

M
E

T
 (

s)

rRCP
Greedy A*
Streamline
Naive Greedy

Fig. 4. Simulation-based MET performance comparison among the four algorithms

Optimizing Distributed Execution of WS-BPEL Processes 779

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Index of 20 problem sizes

P
er

fo
rm

an
ce

 s
pe

ed
up

s

Greedy A*
Streamline
Naive Greedy

Fig. 5. Performance speedups of rRCP over the other three algorithms

Table 3. Simulation-based MET performance comparison of mean and standard deviation

MET (s)
Prb Problem Size rRCP Greedy A∗ Streamline Naive Greedy
Idx m, |Et |, n, |Ec| Mean Std Div Mean Std Div Mean Std Div Mean Std Div
1 4, 6, 6, 35 0.5280 0.3824 0.5600 0.4121 0.5600 0.4105 0.5600 0.4121
2 10, 18, 15, 222 1.2750 0.4832 1.6120 0.4893 1.4680 0.7200 1.5530 0.6351
3 15, 30, 25, 622 2.0600 0.4323 2.0090 0.4967 2.4430 0.5029 2.3080 0.7288
4 22, 44, 31, 958 2.1160 0.5808 2.7720 0.8537 2.9720 0.8707 2.3200 0.7722
5 30, 62, 40, 1598 2.9780 1.4326 3.7160 1.8126 4.2450 1.4535 3.1270 1.4951
6 40, 78, 50, 2478 3.0360 1.2833 3.8980 1.4230 4.7650 1.5064 3.4040 1.8909
7 50, 102, 65, 4220 3.6840 1.1972 4.6110 1.6615 5.2930 1.3297 3.8940 1.2713
8 60, 240, 75, 5615 8.8360 2.0971 11.9580 3.0178 12.3640 2.2823 10.0900 2.3685
9 80, 420, 100, 9996 16.1200 2.5483 21.3010 2.9096 21.4230 3.6038 20.1380 5.1338

10 100, 660, 200, 39990 25.1450 4.4816 30.0550 6.6525 28.8300 5.1543 26.5470 6.5483

the solution space, instead of searching all feasible paths, assuming that the optimal so-
lution is most likely to be found on this path. Streamline works as a global greedy algo-
rithm that expects to maximize the throughput of a distributed application by assigning
the best resources to the most needy stages in terms of computation and communication
requirements at each step [2]. The greedy algorithm makes an activity mapping deci-
sion at each step only based on the current information without considering the effect
of this local decision on the mapping performance at later steps.

We conduct an extensive set of mapping experiments for MET using a large number
of simulated workflows for WS-BPEL processes and computer networks. These simu-
lation datasets are generated by randomly varying the parameters of the workflows and
computer networks within a suitably selected range of values: (i) the number of activi-
ties and the complexity of each activity, (ii) the number of inter-activity communications
and the data or control flow between two activities, (iii) the number of nodes and the

780 Q. Wu et al.

processing power of each node, and (iv) the number of links and the BW and MLD of
each link. The topology and size of 20 simulated computing workflows and computer
networks as well as the MET calculated by four mapping algorithms in comparison are
tabulated in Table 2, where the problem size is represented by a four-tuple: m activities
and |Et | edges in the workflow, and |n| nodes and |Ec| links in the computer network.
For a visual performance comparison, we plot in Fig. 4 the MET performance measure-
ments from these four algorithms for 20 different problem sizes ranging from small to
large scales. We observe that rRCP exhibits comparable or superior MET performances
over the other three algorithms. Note that the MET measurement points plotted along
the x axis (index of problem size) are independent of each other due to the random
generation of these 20 problem instances. However, since MET represents the total ex-
ecution latency from source to destination, a larger problem size with more network
nodes and computing activities generally, not absolutely though, incurs a longer map-
ping path resulting in a longer execution time, as the overall increasing trend indicates.

We also plot the MET performance speedup of rRCP over the other three algorithms

in Fig. 5, which is defined as: Speedup=
∣∣∣METrRCP−METother

METrRCP

∣∣∣, where METrRCP represents

the MET for rRCP and METother denotes MET for each of the other three algorithms
in comparison. We observe that rRCP achieves an average performance improvement
around 20%-80% in most of the cases and even more than 150% speedups in some
cases, which demonstrates the MET performance superiority of the rRCP algorithm.

To further investigate the robustness of these mapping algorithms, for each of 10
problem sizes chosen from the previous 20 cases, we randomly generate 20 problem in-
stances and run four mapping algorithms on them. We then calculate and plot the mean
value and standard deviation over 20 instances for each problem size in Table 3 and
Fig. 6. We observe that rRCP achieves the best MET performance in an expected sense
with the smallest standard deviation, which demonstrates the performance robustness
and optimization stability of rRCP in achieving MET in various workflows and com-
puter networks of disparate topologies and different scales.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Index of 10 problem sizes

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

of
 M

E
T

 (
s)

rRCP
Naive Greedy
Streamline
Greedy A*
rRCP
Naive Greedy
Streamline
Greedy A*

Fig. 6. Mean and standard deviation of MET performance of four algorithms

Optimizing Distributed Execution of WS-BPEL Processes 781

5.2 Experimental Results

We also conduct experiments on workflow deployment and WS-BPEL process execu-
tion in real networks. The experimental settings involve 10 Intel-based Windows ma-
chines labeled from 0 to 9, each of which runs ActiveBPEL, an open source WS-BPEL
engine [11]. The hardware and software configurations of each computer are provided
in Table 4. These computers are connected via a reliable and fast local-area network.

Table 4. Specifications of 10 computers used in
the experiments

No. CPU (GHz) RAM (GB) OS
0-5 2.5 x 2 1.99 Windows XP
6 1.8 x 2 0.99 Windows XP
7 2.8 1 Windows XP
8 2.8 1 Windows XP
9 2.8 1.5 Windows XP

We execute two groups of processes
in this experimental network environ-
ment: (i) The first group consists of
four example services defined in OA-
SIS WS-BPEL 2.0 Standard [19] with
slight modification, i.e. Shipping Ser-
vice, Ordering Service, Loan Approval
Service, and Auction Service. These
processes involve a relatively small
number of activities. (ii) The second
group consists of six typical WS-BPEL
processes, each of which falls in one of
these categories with unique characteristics: computation-intensive, service-invocation-
intensive, and the combination of them. For example, the Office Automation and Drain-
ing System processes, the Tool Integration and Travel Reserve, and the Online Book
Purchase and Train Tickets belong to the first, second and third category, respectively.

We deploy and execute the activities of each process to a computer according to
the mapping scheme computed by one of four mapping algorithms, and measure the
corresponding MET as shown in Table 5. We observe that rRCP algorithm outperforms
the other three algorithms in terms of real MET measurements, which is consistent
with the simulation results. Qualitatively similar results are obtained from larger-scale
processes in the second group. The experimental results based on these two groups
of processes illustrate the performance superiority of rRCP algorithm in real network
environments. Due to the limit on available physical resources, the problems of large
scales as in the simulations are not tested.

We also investigate the performance comparison between distributed BPEL pro-
cesses using the rRCP mapping scheme and traditional centralized execution (CntrExe)
processes. The MET measurements in real networks and their corresponding simula-
tion results are provided in Table 6. We observe that BPEL processes using the rRCP

Table 5. Experiment-based MET performance comparison of BPEL processes

Prb Problem Size MET (s)
Idx m, |Et |, n, |Ec| rRCP Greedy A∗ Streamline Naive Greedy
1 3, 2, 10, 98 70.03 70.03 83.52 70.03
2 5, 4, 10, 98 72.26 76.58 107.19 78.11
3 5, 5, 10, 98 105.76 113.16 134.52 113.14
4 14, 16, 10, 98 199.06 294.23 361.22 263.82

782 Q. Wu et al.

Table 6. MET comparison between distributed BPEL processes and centralized execution using
both experiments and simulations

Prb Problem Size MET (s) using rRCP
Idx m, |Et |, n, |Ec| BPEL Process CntrExe Process BPEL Process

(experiments) (experiments) (simulations)
1 3, 2, 10, 98 70.03 106 31.95
2 5, 4, 10, 98 72.26 215 32.71
3 5, 5, 10, 98 105.76 292 71.41
4 14, 16, 10, 98 199.06 355 102.04

mapping scheme achieve 2-3 times MET performance improvements over centralized
execution processes. The real MET measurements are generally larger than the simula-
tion results since the latter does not consider network overheads, system dynamics, and
the CP is an approximation of MET.

6 Conclusion

We tackled the problem of mapping the workflow of a BPEL process to the computer
network to achieve MET and formulated it as a restricted workflow mapping optimiza-
tion problem. We constructed mathematical models for BPEL processes and computer
networks, and proposed rRCP algorithm with mapping restrictions of certain activities.
The performance superiority of the rRCP algorithm was justified by both extensive sim-
ulation and experimental results. The activities considered in this paper are only syn-
chronous and stateless Web services invocations. We will investigate the invocations
of asynchronous and stateful Web services for performance improvement, and more
sophisticated performance prediction models to characterize real-time computing node
behaviors for more accurate activity execution time estimation. It will be also of our in-
terest to deploy a large network testbed to test large problem sizes in real environments.

Acknowledgment

This work is partially supported by U.S. National Science Foundation under Grant
No. CNS-0721980 with University of Memphis and the Defence Pre-Research Project
of the “Eleventh Five-Year-Plan” of China under contract No.513060601 with XiDian
University.

References

1. Afrati, F.N., Papadimitriou, C.H., Papageorgiou, G.: Scheduling DAGs to minimize time and
communication. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 134–138. Springer,
Heidelberg (1988)

2. Agarwalla, B., Ahmed, N., Hilley, D., Ramachandran, U.: Streamline: a scheduling heuristic
for streaming application on the grid. In: The 13th Multimedia Computing and Networking
Conf., San Jose, CA (2006)

Optimizing Distributed Execution of WS-BPEL Processes 783

3. Bao, L., Chen, P., Zhang, X.: Batch invocation of web services in BPEL process. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 511–516.
Springer, Heidelberg (2008)

4. Bashir, A.F., Susarla, V., Vairavan, K.: A statistical study of the performance of a task
scheduling algorithm. IEEE Trans. on Computer 32(12), 774–777 (1975)

5. Biskup, J., Carminati, B., Ferrari, E., Muller, F., Wortmann, S.: Towards secure execution
orders for composite Web services. In: Proc. of the IEEE International Conference on Web
Services, pp. 489–496 (2007)

6. Chafle, G., Chandra, S., Karnik, N., Mann, V., Nanda, M.G.: Improving performance of com-
posite Web services over a wide area network. In: Proc. of the IEEE Congress on Services,
pp. 292–299 (2007)

7. Chafle, G., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of composite
Web services. In: Proc. of ACM Int. Conference on World Wide Web (WWW 2004), May
17-22, pp. 134–143. ACM, New York (2004)

8. Chaudhary, V., Aggarwal, J.K.: A generalized scheme for mapping parallel algorithms. IEEE
Trans. on Parallele and Distributed Systems 4(3), 328–346 (1993)

9. Chen, L., Agrawal, G.: Resource allocation in a middleware for streaming data. In: Proc. of
the 2nd Workshop on Middleware for Grid Computing, Toronto, Canada (October 2004)

10. Chen, S., Bao, L., Chen, P.: OptBPEL: A tool for performance optimization of BPEL pro-
cess. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 141–148. Springer,
Heidelberg (2008)

11. A. Endpoints. Activebpel engine architecture (version 4.1) (2008),
http://www.activebpel.org/docs/architecture.html

12. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and System 9(3), 319–349
(1992)

13. Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms for graph
isomorphism. In: Proc. of 3rd IAPR-TC-15 Int. Workshop Graph-based Representations in
Pattern Recognition, pp. 188–199 (2001)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
completeness. W.H. Freeman and Company, New York (1979)

15. Gerasoulis, A., Yang, T.: A comparison of clustering heuristics for scheduling DAG’s on
multiprocessors. J. of Parallel and Distributed Computing 16(4), 276–291 (1992)

16. Guerin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Trans.
Networking 10(5), 613–620 (2002)

17. Guo, H., Huai, J., Li, H., Deng, T., Li, Y., Du., Z.: ANGEL: optimal configuration for high
available service composition. In: Proc. of IEEE Int. Conference on Web Services, July 2007,
pp. 280–287 (2007)

18. Hopcroft, J., Wong, J.: Linear time algorithm for isomorphism of planar graphs. In: Proc. of
the 6th Annual ACM Symp., Theory of Computing, pp. 172–184 (1974)

19. Jordan, D.: Web services business process execution language version 2.0. OASIS Specifi-
cation (2007)

20. Kwok, Y.K., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allo-
cating task graph to multiprocessors. IEEE Trans. on Parallel and Distributed Systems 7(5)
(May 1996)

21. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

22. Li, W., Zhao, Z., Fang, J., Chen, K.: Execution optimization for composite services through
multiple engines. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 594–605. Springer, Heidelberg (2007)

http://www.activebpel.org/docs/architecture.html

784 Q. Wu et al.

23. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
of Computer System Science, 42–65 (1982)

24. Mann, V.: Symphony: decentralized orchestration of composite Web services (2007),
http://domino.research.ibm.com

25. Nanda, M.G., Karnik, N.: Synchronization analysis for decentralizing composite Web ser-
vices. In: Proc. of ACM Symposium on Applied Computing (SAC 2003), Melbourne,
Florida, USA. ACM, New York (2003)

26. Sekhar, A., Manoj, B.S., Murthy, C.S.R.: A state-space search approach for optimizing re-
liability and cost of execution in distributed sensor networks. In: Proc. of Int. Workshop on
Distributed Computing, pp. 63–74 (2005)

27. Shin, K., Han, S.: Efficient Web services composition and optimization techniques. In: Proc.
of IEEE Int. Conference on Web Services, July 2007, pp. 1160–1161 (2007)

28. Shirazi, B., Wang, M., Pathak, G.: Analysis and evaluation of heuristic methods for static
scheduling. J. of Parallel and Distributed Computing (10), 222–232 (1990)

29. Wu, Q., Gu, Y.: Supporting distributed application workflows in heterogeneous computing
environments. In: Proc. of the 14th IEEE Int. Conf. on Parallel and Distributed Systems,
Melbourne, Australia, December 2008, pp. 3–10 (2008)

30. Yildiz, U., Godart, C.: Towards decentralized service orchestrations. In: Proc. of the 2007
ACM Symposium on Applied Computing, pp. 1662–1666 (2007)

31. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware
middleware for Web services composition. IEEE Tran. on Software Engineering 30, 311–327
(2004)

32. Zhu, Y., Li, B.: Overlay network with linear capacity constraints. IEEE Trans. on Parallel
and Distributed Systems 19, 159–173 (2008)

http://domino.research.ibm.com

	Optimizing Distributed Execution of WS-BPEL Processes in Heterogeneous Computing Environments
	Introduction
	Related Work
	Cost Model and Problem Formulation
	Restricted Workflow Mapping Algorithm
	rRCP Algorithm

	Performance Evaluation
	Simulation Results
	Experimental Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

