
Towards the Integration of

Distributed Transactional Memories
in Application Servers’ Clusters�

Paolo Romano, Nuno Carvalho, Maria Couceiro,
Lúıs Rodrigues, and João Cachopo

INESC-ID, Lisbon, Portugal

Abstract. The transition to multicore architectures has raised the urge
to identify novel programming paradigms aimed at simplifying the de-
velopment of parallel programs.

Transactional Memories (TM) are regarded as one of the most promis-
ing approaches to address this issue, as highlighted by the huge inter-
est garnered in the research community over the last years. Distributed
Transactional Memories (DTMs) represent a very recent branching of
the research line on TMs, aimed at enhancing their scalability and
dependability.

In this paper, we review some of our recent results and research direc-
tions focused on the integration of DTMs in clusters of web application
servers and on the design of scalable and fault-tolerant DTM algorithms.

1 Introduction

Transactional Memories (TMs) have garnered considerable interest of late due to
the recent technological trend that has made of multi-core and many-core CPUs
the architecture-of-choice for mainstream computing. TMs represent an attractive
solution to spare programmers from the pitfalls of conventional explicit lock-based
thread synchronization, relying instead on proven concurrency-control concepts
used for decades by the database community to simplify concurrent programming
[1]. When using TMs, the programmers are simply required to specify which oper-
ations on shared data structures are to be executed within the scope of an atomic
and isolated transaction. By relinquishing the programmer from the burden of
managing locks or other error-prone low-level concurrency control mechanisms,
TMs have been shown to enable a sensible boost in productivity, as well as in code
reliability, e.g., [6].

Even though the study of TMs has garnered a large interest in the research
community over the last 5 years, the problem of how to enhance their scalability
and fault-tolerance via distribution and replication has started to receive atten-
tion only very recently [2, 4, 12, 23]. This is actually a major gap, which becomes
pretty manifest when TMs start to be adopted in real world applications, as they

� This paper was partially supported by the Pastramy (PTDC/EIA/72405/2006)
projects.

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 755–769, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

756 P. Romano et al.

are faced with harsh scalability and dependability challenges that cannot be ef-
fectively tackled, due to the current lack of efficient Distributed Transactional
Memory (DTM) solutions.

Web applications represent an important class of the systems that would sig-
nificantly benefit from the adoption of TM-based solutions, provided that these
are able to ensure adequate levels of scalability and failure resilience. Modern
Web-based applications, in fact, tend to be structured according to a three-tier
(or, more in general, multi-tier) architecture that relies on relational DBMSs for
persisting the application data, whilst exploiting object-oriented programming
platforms (e.g., J2EE) hosted by dedicated application servers for implementing
the business logic. This allows reflecting at both the software and hardware level
the logical decomposition of applications, permitting to achieve high modular-
ity and flexibility. On the other hand, the partitioning of the application into
multiple tiers generates an obvious increase in the system’s complexity, generat-
ing performance and reliability pitfalls and hindering developers’ productivity.
Accessing the data on remote DBMSs, in fact, imposes incurring into onerous
round-trips that may significantly hamper performance, especially for the case
of complex operations. Further, the multiplicity and diversity of the employed
components, and their interdependencies, makes reliability a complex issue to
tackle, exposing the system to a spectrum of hazardous state inconsistencies in
the presence of failures [14, 32]. Finally, rather than being a completely trans-
parent aspect, relational-based persistence affects the programming model, hin-
dering the successful implementation of an object-oriented rich domain model.

To overcome these problems, in [6, 9], we introduced a novel, TM-centric
approach to architect web applications. In such an approach, the application’s
state is hosted in memory by the application servers, and locally persisted for
scalability and durability purposes. The increased locality between the appli-
cation logic and data alleviates the aforementioned performance and reliability
issues. Accesses to the application state are handled, in a totally transparent
manner for the developers, by a DTM layer that (i) enforces the atomicity and
the isolation of any state updates triggered by the application, (ii) guarantees
the consistency of the application state replicated across the nodes of the cluster,
and (iii) triggers, when necessary, the update of a lightweight persistent storage
system that is also replicated across the cluster.

In this paper we describe some of our recent results towards the realization
of the envisioned TM-centric architecture, focusing in particular on the issues
related to the design and implementation of scalable and dependable DTMs
(rather than, e.g., on the aspects related to persistence).

We start by reporting our experiences with the development of the FénixEDU
application, which represents, to the best of our knowledge, the first web applica-
tion to have leveraged on TM technology. Next, we report the results of a work-
load characterization study of FénixEDU, whose results have driven some of our
main choices in the design space of the algorithms architected to ensure the con-
sistency of DTM platforms. We then describe BFC (Bloom Filter Certification), a
novel TM replication protocol, which we recently proposed in [12], that exploits an

Towards the Integration of DTMs in Application Servers’ Clusters 757

efficient Bloom Filter-based encoding technique to reduce the overhead associated
with the cluster-wide certification of transactions. Finally, we point out some of
our current research directions in this area.

This paper is organized as follows. Section 2 presents related work. Section 3
introduces the FénixEDU system, describing its current architecture and high-
lighting some key aspects of its workload. In Section 4 we illustrate the proposed
architecture. The BFC replication protocol is overviewed in Section 5. Section 6
concludes the work and points to future research directions.

2 Related Work

One way to implement a web application domain model is to use an object-
oriented paradigm. A common approach is, for instance, to use a multi-tier J2EE
architecture where the business logic and data are modeled using Enterprise Java
Beans, being the data stored in databases by means of an Object/Relational
mapping tool. The solution proposed in [29] presents a way to replicate such
systems by adding fault tolerance mechanisms on both the application server
and the database. The authors rely on a locking based approach. In our case, by
relying on a DTM to synchronize concurrent accesses directly at the application
server’s tier, we are able to avoid error-prone, explicit locking schemes, and to
rely on much simpler, and more lightweight, persistence solutions rather than
on fully-fledged relational databases.

The only DTM solutions that we are aware of are those in [2, 4, 23]. However,
the solutions proposed so far have not addressed the important issue of how
to exploit replication not only to improve performance, but also to enhance
dependability. This is clearly a central aspect of DTM’s design, as the probability
of failures increases with the number of nodes, becoming impossible to ignore in
large clusters.

The problem of replicating a TM is closely related to the problem of database
replication, given that both TMs and DBMSs share the same key abstraction of
atomic transactions. The fulcrum of modern database replication schemes [27, 28]
is the reliance on an Atomic Broadcast (ABcast) primitive [13, 19], typically pro-
vided by some Group Communication System (GCS) [25]. Roughly speaking, an
ABcast service ensures that the broadcast messages are received by all or none
of the participants, and in the same order, despite the occurrence of failures.
ABcast plays a key role to enforce, in a non-blocking manner, a global trans-
action serialization order without incurring in the scalability problems affecting
classical eager replication mechanisms based on distributed locking and atomic
commit protocols, which require much finer grained coordination and fall prey
of deadlocks [16]. Certification-based approaches, such as [28, 29, 30] are consid-
ered as some of the most efficient solutions among the plethora of ABcast based
replication schemes [12]. Therefore, they represent natural candidates also in the
context of TM systems. In these schemes, transactions are locally processed on
a single replica and validated a posteriori of their execution through an ABcast
based certification procedure aimed at detecting remote conflicts between con-
current transactions. The certification based approaches may be further classified

758 P. Romano et al.

into voting and non-voting schemes, where voting schemes, unlike non-voting
ones, need to ABcast only the writeset (and not the readset which may be very
large), but on the other hand incur in the overhead of an additional uniform
broadcast [19] along the critical path of the commit phase. As highlighted in our
previous work [31], the replica coordination latency has a significantly amplified
cost in TMs when compared to conventional database environments, given that
the average transaction execution time in TM settings is typically several orders
of magnitude shorter than in database ones. To maximize efficiency, it is there-
fore highly desirable to design novel mechanisms capable of minimizing the costs
associated with the replica coordination schemes. This represents an important
goal of our current research activities.

Our work is also related to the large body of literature on Distributed Shared
Memories (DSM). To overcome the strong performance overheads introduced
by classic DSM implementations [24, 35], which ensure strong consistency guar-
antees with the granularity of a single memory access, several DSM systems
provide relaxed memory consistency guarantees, e.g., [21]. Unfortunately, de-
veloping software for relaxed DSM’s consistency models may be challenging for
programmers because they need to master complicated consistency properties.
Conversely, the simplicity of the atomic transaction abstraction, at the core
of (D)TMs, allows to increase programmers’ productivity [6] with respect to
both locking disciplines and relaxed memory consistency models. Further, the
strong consistency guarantees provided by atomic transactions can be supported
through efficient algorithms that incur only in a single synchronization phase per
transaction (typically taking place at commit time), effectively amortizing the
communication overheads across a set of (possibly large) memory accesses.

3 The FénixEDU System

The FénixEDU system is a web application that supports a wide range of
academic activities in the Lisbon’s Instituto Superior Técnico (IST) campus
(management of web pages for different courses, student enrollment, etc). The
FénixEDU system started as a typical web application, with the application
logic implemented in Java and hosted by a single application server, and its
data stored in a relational DBMS. In its first version, FénixEDU relied on an
Object/Relational mapping tool [26] to store the objects in the database, while
maintaining a local cache of the database data. To control the concurrent ac-
cess to the domain entities, FénixEDU relied on explicit lock-based interfaces to
synchronize read and write operations [11]. Unfortunately, this lock-based ap-
proach to concurrency was highly error-prone, as programmers often forgot or
misplaced the acquisition of locks, causing frequent consistency problems into
the domain data. Moreover, with the increased usage of the system, also the first
performance problems appeared. After some performance profiling, these were
attributed to the overheads incurred in the acquisition and in the management
of locks by the operations that accessed many thousands of objects.

To address these issues, across 2005 the FénixEDU codebase was adapted
to permit transparent integration with a TM layer, called JVSTM [7]. JVSTM

Towards the Integration of DTMs in Application Servers’ Clusters 759

relies on a software based implementation of a multiversion concurrency control
scheme [3], providing excellent performance for read-only transactions (largely
predominating in reference benchmarks for Web applications [36, 37], as well
as in the FénixEDU’s workload), because they incur in negligible book-keeping
overheads and are sheltered from the possibility of blocks or aborts. The in-
tegration of JVSTM within the architecture of the FénixEDU application was
designed so to achieve total transparency from the developer’s perspective, and
provided benefits not only in terms of performance (thanks to the elimination
of the overheads associated with lock acquisition and management), but also in
terms of robustness (thanks to the avoidance of the error-prone manual man-
agement of locks) and simplification of the programming model (quantifiable in
terms of reduction of lines of code to be developed and debugged [6]).

Serving a population of 12000 students, 900 faculty and 800 administrative
members and faced with a steadily increasing traffic volume, the FénixEDU
system was eventually forced to address the problem of scaling out the TM-
enabled application server. As a first step in this direction, a very simple replica
synchronization scheme orchestrated by a centralized back-end database is cur-
rently being employed. Essentially, each application server is required to access
the database every time it starts a new transaction (whether read-only or not)
to check whether its local cache is still up-to-date. The detection of any con-
flict developed during transactions’ execution is performed at commit time via
a sequential validation phase performed by checking whether the readset of the
committing transaction T intersects with the writesets (stored by the database)
of any transaction that has committed before T. Unfortunately, even though
this approach is very simple, the reliance of the current replication solution on
an external data storage causes large performance overheads, strongly limits
concurrency, and suffers of a single point of failure.

To drive the design phase of an efficient DTM platform capable of effectively
matching the characteristics of the FénixEDU application, the system was instru-
mented to collect information on the nature of the workload generated by the ap-
plication towards the TM layer. The workload data was collected over a period of
two years (from June 2007 to July 2009), gathering information concerning around
390 millions of transactions. A first result that we observed is that write transac-
tions are approximately only 2% of the total number of transactions in the system.
This ratio supports the choice of a TM layer, such as JVSTM, particularly opti-
mized for read-only transactions. Further, it suggests to bias the design of a DTM
platform so to require synchronization exclusively for write transactions, unlike
the currently operational solution that demands a remote synchronization with
the back-end also when a read-only transaction is started.

In Figure 1 we plot the probability density functions of the readset’s and
writeset’s sizes for write transactions, as these factors may have a big influence
on the amount of information exchanged among the replicas of a DTM. From
these plots we can draw two main considerations. On one side, we observe that,
on average, writesets are several orders of magnitude smaller than readsets (more
precisely the average readset’s size is of 5575, whereas the average writeset’s size

760 P. Romano et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

101 102 103 104 105 106 107

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Number of Items Accessed by Write Transactions

Readset’s size
Writeset’s size

Fig. 1. Probability density functions for the readset’s and writeset’s size of write trans-
actions

is of 36). This suggests that DTM solutions should strive to avoid communicating
the whole readset and, whether possible, should exclusively propagate informa-
tion concerning the transactions’ writeset. On the other hand, the sizes of the
readset and the writeset are far from being concentrated around their average
values: the maximum readset’s and writeset’s sizes, in fact, are from three to
four orders of magnitude larger than the corresponding average values. In other
words, the FénixEDU’s workload comprehends very heterogeneous components,
which makes it extremely challenging to identify a “one-size-fits-all-solution”
capable to deliver optimal performances in every scenario.

4 System Architecture

To address the above discussed inefficiencies and limitations affecting the DTM
solution currently supporting the FénixEDU application, in [9] we have recently
proposed a new architecture that neatly decouples the issues related with the
synchronization of the replicated TM layer with those concerning the persistence
of data. In the envisioned architecture, which is depicted also in Figure 2, the
consistency of the TM-enabled application server replicas is no longer dependent
on a centralized DBMS. Conversely, the application server replicas coordinate
the execution of transactions by directly communicating among them, leveraging
on the services provided by a Group Communication System to propagate the
updates and reach cluster-wide agreement on the outcome (commit/abort) of
transactions.

Coping with the issues related to the concurrent execution of distributed trans-
actions directly at the application server replicas’ level, rather than relying on
the assistance of a standard relational DBMS, provides two main advantages.

First, the achievement of a neater separation of logical concerns: once the
TM tier has autonomously ensured the consistency of a transaction, the back-
end just has to be able to atomically persist the corresponding updates. This

Towards the Integration of DTMs in Application Servers’ Clusters 761

Network

Appl Server

Appl
Serv 2

Appl
Serv 3

Appl
Serv n

Load Balancer

Replicated Storage System

...Replica 1 Replica n

RP

TM

PSI

CMRM

GCS

Fig. 2. The proposed DTM based architecture

permits to rely on much simpler, and more lightweight, persistence solutions
than fully-fledged relational databases (which incur in the unnecessary overheads
associated with SQL or complex concurrency control mechanisms [34]).

Further, the reliance on a standard, relational DBMS as the coordinator of
the TM replication protocol forces to implement the whole replication protocol
by exploiting exclusively standard SQL interface. Being SQL designed for other
purposes, it can significantly hinder the development of even basic mechanisms
typically employed by any transactional replication scheme (e.g., synchronous
propagation of state updates to other replicas).

Let us now analyze more in detail the architecture illustrated in Figure 2. The
incoming requests are dispatched by a load-balancer (see [8] for a comprehen-
sive survey on load-balancing in web clusters) to a set of replicated application
servers, which rely on a replicated persistent storage for ensuring durability. Note
that the latter is depicted as a logical independent component, even though it
could be physically colocated in the same machines also hosting the application
server to enhance locality between the application logic and the (persistent) data.
In the remainder, we will concentrate on the description of the modules compos-
ing the DTM layer, which represents the actual focus of this paper, postponing
a thorough analysis of the replicated persistence storage to a future paper.

Each application server hosts the following components: a Request Proces-
sor (RP), responsible for receiving the requests and activating the transactional
logic; a TM instance, extended with a reflective interface that externalizes key
information about the transactions’ execution state (e.g., transactions’ readsets
and writesets), which are normally encapsulated by existing TM implementa-
tions; a Cache Manager (CM), responsible for implementing caching policies
(e.g., prefetching, eviction strategies) based on the application access patterns;

762 P. Romano et al.

a Replication Manager (RM), implementing the distributed coordination proto-
col required for ensuring replica consistency (an overview of the TM replication
protocols currently under development/evaluation will be provided in the re-
mainder of this paper); a Persistent Store Interface (PSI), providing APIs to in-
teract with a replicated storage system; a Group Communication Service (GCS),
responsible for maintaining up-to-date information regarding the membership of
the group of application servers (including failure detection) and providing the
required communication support for the coordination among the servers.

5 The BFC Protocol

The Replication Manager, being in charge of ensuring the consistency of the
DTM layer, represents a fundamental building block of the architecture described
in Section 4. In this section we present one of our recent results concerning the
design and evaluation of TM replication mechanisms, namely the Bloom Filter
Certification (BFC) protocol [12].

As already discussed in Section 2, the abundant literature on database replica-
tion protocols, and in particular the recently proposed family of AB-cast based
replication schemes [28, 29, 30], represents a natural source of inspiration for
the design of TM replication solutions. However, the efficiency of any trans-
actional replication scheme is much more strained in TMs than in databases,
given that the average transaction’s execution time in TMs is typically several
orders of magnitude smaller than in databases (in [31], for instance, we’ve shown
that 50% of write transactions complete in less than 200µsecs when consider-
ing standard TM benchmarks). This translates into a corresponding increase of
the overhead associated with the inter-replica coordination activities, urging for
novel solutions aimed at minimizing such costs.

The BFC protocol aims at achieving exactly this goal, requiring just a sin-
gle ABcast to commit a transaction, like in non-voting certification protocols
and differently from voting ones, which incur in the costs of an additional Uni-
form Reliable Broadcast. On the other hand, analogously to voting certification
protocols, and unlike non-voting ones, BFC avoids to flood the network with
large messages carrying the whole transaction’s readset. The latter aspect is
particularly important given that it is well-known that the ABcast latency is
significantly affected by the size of transmitted messages [18, 20] and that the
transactions’ readsets are frequently very large in web applications. This is also
confirmed by the results of the workload characterization study of the FénixEDU
application reported in Section 3.

BFC achieves such a result by exploiting the space-efficient encoding proper-
ties of Bloom Filters (BF), whose fundamentals we briefly recall in the following
for the sake of clarity (the interested reader may refer to [5] for a recent survey
on BF and on their applications). BFs are data structures that permit to test
whether an element is a member of a set, avoiding the encoding of the whole set,
but rather permitting to store a much more compact representation of it. This
comes, however, at the cost of incurring in false positives (i.e., an element may

Towards the Integration of DTMs in Application Servers’ Clusters 763

appear to be present in the set, whereas it is not), albeit false negatives are, on
the other hand, not possible. More in detail, a Bloom Filter representing a set
S = {x1, x2, . . . , xn} of n elements from a universe U consists of an array of m
bits, initially all set to 0. The filter uses k independent hash functions h1, . . . , hk

with range {1, . . . , m}, which map each element in the universe to a random
number uniformly over the range. To add an element x ∈ S to a BF, x is fed to
each of the k hash functions. The array positions output by the k hash functions
are then all set to 1. To determine whether an item y belongs in S, the values
of the hi(y) bits are checked. If even only one of these bits is 0, it means that y
is not a member of S (with no possibility of mistakes). If all hi(x) are set to 1,
then x may be in S, although this may be wrong with some probability, called
false positive probability. Interestingly, the probability of a false positive f for
a single query to a Bloom Filter can be known beforehand, once the number of
bits used per item m/n and the number of hash functions k are fixed, by using
the following formula:

f = (1 − e−kn/m)k (1)

We may now start describing the BFC scheme. Similarly to existing certification-
based transactional replication schemes, in BFC incoming transactions are lo-
cally processed in an optimistic fashion, avoiding any inter-replica synchroniza-
tion scheme during transaction execution. Further, by leveraging on the JVSTM
multi-version scheme, the BFC ensures that read-only transactions are always
provided with a consistent committed snapshot. This spares them from the risk
of aborts and permits to obviate the need for replica coordinations even during
the commit phase. Overall, the overhead incurred in by read-only transactions
due to the replication scheme is in practice almost nullified.

For what concerns update transactions, at commit time these are first locally
validated to detect any local conflicts. If the local validation phase is successfully
passed, the Replication Manager encodes the transaction’s readset (i.e., the set
of identifiers of all the objects read by the transaction) in a BF, and ABcasts it
along with the transaction writeset.

As in classical non-voting certification protocols, update transactions are val-
idated by all replicas once they are ABcast-delivered. At this stage, replicas
check whether the BF of the validating transaction contains any item updated
by any concurrent transactions. If no match is found, given that a BF provides
no false negatives, then the transaction may be safely committed. Otherwise the
transaction is aborted.

Given that the occurrence of false positives leads to the generation of unneces-
sary aborts, the BF size is set so to ensure that the probability pabort for a false pos-
itive to induce a transaction abort is bounded by a user-tunable threshold, which
we denote as maxAbortRate. The problem here is that pabort is a function of the
number of queries q that will be performed on the BF during the transaction’s
validation phase, but the BF has to be constructed when the transaction enters
the commit phase. At this time, however, it is not possible to predict the value of
q, which is determined by the number of transactions that will commit before the
transaction is ABcast-delivered and by the size of the writesets of each of these

764 P. Romano et al.

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

 1

 10

 100

 1000

 5

 10

 15

 20

 25

Compression Factor

maxAbortRate

q

 5

 10

 15

 20

 25

Fig. 3. Compression factor achieved by BFC considering the ISO/IEC 11578:1996
UUID encoding

transactions. Neither of these are known when the BF is created. On the other
hand, it is important to highlight that any error in estimating q does not compro-
mise consistency, but may only lead to deviations from the target maxAbortRate
threshold. To tackle this problem, BFC uses a lightweight heuristic that estimates
q through the moving average across the number of BF queries performed during
the validation phase of the last c transactions to have been ABcast-delivered. Once
q is estimated, we can then determine the number m of bits in the BF by consider-
ing that the false positives for any distinct query are independent and identically
distributed events which generate a Bernoullian process where the probability of
occurrence of a single event (namely, a false positive during a single query) is given
by Equation 1. After some simple maths, we obtain the following expression for
the BF’s size:

m =

⌈
− n

log2(1 − (1 − maxAbortRate)
1
q)

ln 2

⌉

The striking reduction of the amount of information exchanged, achievable by
the BFC scheme, is clearly highlighted by the graph in Figure 3, which shows the
BFC’s compression factor (defined as the ratio between the number of bits for
encoding a transaction’s readset with the ISO/IEC 11578:1996 standard UUID
encoding, and with BFC) as a function of the target maxAbortRate parameter
and of the number q of queries performed during the validation phase. The
plotted data shows that, even for marginal increases of the transaction abort
probability in the range of [1%-2%], BFC achieves a [5x-12x] compression factor,
and that the compression factor extends up to 25x in the case of 10% probability
of transaction aborts induced by a false positive of the Bloom Filter.

To evaluate the scalability of the BFC protocol, and quantify the performance
gains achievable with respect to conventional certification based protocols, we de-
veloped a prototype implementation. Differently from the architecture described
in Section 4, the current implementation of BFC is not yet interfaced with a

Towards the Integration of DTMs in Application Servers’ Clusters 765

STMBench7 - Throughput (ops/sec)

maxAbortRate=1%

 1

 2

 3

 4

Threads

 2 3 4 5 6 7 8

Replicas

 0

 50

 100

 150

 200

 250

(a) Throughput

STMBench7 - % Execution Time Reduction of Write Transactions

 1

 2

 3

 4

Threads

 2 3 4 5 6 7 8

Replicas

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

(b) % Execution Time Reduction

Fig. 4. STMBench7, read dominated with long traversals, maxAbortRate=1%

persistent storage system and assumes that each replica maintains a whole copy
of the DTM (hence not needing the Cache Manager component). Extending our
current prototype to incorporate these modules represents an important direc-
tion for our future work. On the other hand, the current prototype permits us
to evaluate empirically the performance of the BFC scheme without incurring in
possible interferences generated by the coexistence of other components, such as
the Persistent Storage and the Cache Manager, which address orthogonal issues
with respect to BFC.

The target platform for our experimental performance study is a cluster of 8
nodes, each one equipped with an Intel QuadCore Q6600 at 2.40GHz equipped
with 8 GB of RAM running Linux 2.6.27 and interconnected via a private Gigabit
Ethernet. We use Appia [10, 25] as the GCS and select a classic sequencer-based
implementation [13, 19] for the ABcast service.

766 P. Romano et al.

We consider a standard, and rather complex, benchmark for TM systems,
namely STMBench7 [17], which features a number of operations with different
levels of complexity over an object-graph with millions of objects. Specifically, we
consider the “read dominated with long traversals” configuration of the bench-
mark, which generates a workload closely resembling the one of the FénixEDU
application (large readsets, much smaller writesets, predominance of read-only
transactions). Also, we set the maxAbortRate parameter to the very conservative
value of 1%, which should be in practice acceptable for most web applications.

In Figure 4(a) we plot the throughput (committed transactions per second)
while varying the number of replicas, and the number of threads per replica.
The plot shows linear speedups as the number of threads and replicas increases,
highlighting the scalability of the BFC protocol. Figure 4(b) shows the perfor-
mance gains achievable by BFC with respect to a classic non-voting certification
scheme in terms of reduction of the execution time of write transactions, which
fluctuates in the range from around 20% to around 40% and is imputable to a 3x
message compression factor. This points out how the BFC scheme can achieve
significant performance gains even for a negligible (i.e., 1%) additional increase
of the transaction’s abort rate. This makes the BFC scheme viable, in practice,
even in abort-sensitive applications.

In conclusion, the BFC scheme makes it possible to use additional replicas to
improve the throughput of the system and, last but not the least, permits to use
(faster) non-voting certification approaches in the presence of workloads with
large readsets.

6 Conclusions and Future Work

In this paper we have overviewed some of our recent results concerning the
integration of DTMs in clusters of web application servers. In particular we
have reported our experiences with the development of a complex, real web
application, namely FénixEDU, which is, to the best of our knowledge, the first
web application in production to rely on (D)TM technology.

We have then focused on the description of BFC, a recently introduced
certification-based transactional replication scheme that permits to reduce sig-
nificantly the cost of the inter-replica synchronization phase by exploiting the
space-efficient encoding of Bloom Filters.

For what concerns our ongoing and future work, we are currently pursuing
several orthogonal, yet complementary, research directions, which we overview
in the following.

Speculative transaction execution. The average latency of ABcast is, even
for very small messages, in the order of at least a few milliseconds in typical data-
center environments, see, e.g., [18, 20]. The completion time of (not replicated)
TM transactions, on the other hand, is often two or three orders of magnitude
smaller. Hence, in any ABcast based replication protocol, it is highly likely that
transactions complete and stall (relatively) long before the ABcast is concluded.

Towards the Integration of DTMs in Application Servers’ Clusters 767

This may lead to severe under-utilization of the available computing resources.
Given the above considerations, we are currently pursuing the idea of specu-
latively exploring multiple alternative transaction serialization orders (rather
than just the one suggested by the spontaneous order delivery as suggested in,
e.g., [22]) so to maximize the utilization of any CPU core waiting idle for the
termination of an ABcast’s run.

The main challenge here is related to the fact that the number of possible
serialization orders over a set composed of n elements is n!, which drastically
reduces the probability to blindly select the correct final serialization order as the
number of messages to be ordered grows. This issue raises the need for ingenious
heuristics that are able to maximize the probability to drive the speculative
exploration of the serialization orders towards useful trajectories.

Lease based replication mechanisms. Another orthogonal approach that
we are currently pursuing is based on the idea of taking advantage from the
application’s data access pattern locality to reduce the frequency of activation
of the ABcast-based replica synchronization schemes (and hence their inherent
overhead) and to decrease the likelihood of remote conflicts.

The underlying intuition is to rely on consensus-like coordination primitives
(such as the Atomic Broadcast) only to establish the ownership of a “lease”
on the data items accessed by a committing transaction. On the other hand,
transactions accessing data items for which the local replica already owns a lease
are guaranteed not to be aborted due to a remote conflict (at least in absence of
failure suspicions) and may be committed in a considerably more efficient way,
avoiding the costs of ABcast-based synchronization.

By introducing the Weak Mutual Exclusion abstraction, see [33], we have
already provided a formal specification of the lease mechanism underlying the
proposed approach. At this stage, the challenge is to design and implement prag-
matical, highly efficient, Weak Mutual Exclusion protocols, as well as lightweight
load balancing strategies aimed at maximizing the data access pattern locality
of TM applications.

Adaptive replication strategies. We hypothesize that no single universal
replication scheme exists that is able to effectively cope with the high hetero-
geneity characterizing TM workloads. Therefore, we advocate the need for de-
veloping self-adapting TM replication schemes, able to identify in a timely and
automatic way the optimal replication strategy for each incoming transaction
on the basis of the (estimated) size of its readset and writeset, as well as of its
conflict probability.

Implementing a polymorphic replication strategy requires facing two main
challenges: on one hand, ensuring the consistent interaction of different repli-
cation algorithms and, on the other hand, engineering lightweight and timely
mechanisms to identify automatically the characteristics of incoming transac-
tions [15] and the corresponding preferable replication scheme.

768 P. Romano et al.

References

1. Adl-Tabatabai, A.-R., Kozyrakis, C., Saha, B.: Unlocking concurrency. ACM
Queue 4(10), 24–33 (2007)

2. Amza, C., Cox, A.L., Zwaenepoel, W.: Data replication strategies for fault tol-
erance and availability on commodity clusters. In: Proc. of the Conference on
Dependable Systems and Networks (DSN), pp. 459–472 (2000)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading (1987)

4. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory
for large scale clusters. In: Proc. of the Symposium on Principles and Practice of
Parallel Programming (PPOPP), pp. 247–258. ACM, New York (2008)

5. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey.
Internet Mathematics 1(4), 485–509 (2003)

6. Cachopo, J., Rito-Silva, A.: Combining software transactional memory with a do-
main modeling language to simplify web application development. In: Prof. of the
International Conference on Web Engineering (ICWE), pp. 297–304 (2006)

7. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

8. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in
locally distributed web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002)

9. Carvalho, N., Cachopo, J., Rodrigues, L., Rito Silva, A.: Versioned Transactional
Shared Memory for the FenixEDU Web Application. In: Proc. of the Workshop on
Dependable Distributed Data Management (WDDDM). ACM, New York (2008)

10. Carvalho, N., Pereira, J., Rodrigues, L.: Towards a generic group communication
service. In: Proc. of the International Symposium on Distributed Objects and Ap-
plications, DOA (2006)

11. Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F. (eds.): The Object Data Standard – ODMG
3.0. Morgan Kaufmann Publishers, Inc, Los Altos (2000)

12. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable Dis-
tributed Software Transactional Memory. In: Proc. of the Pacific Rim International
Symposium on Dependable Computing (PRDC). IEEE Computer Society Press,
Los Alamitos (2009)

13. Defago, X., Schiper, A., Urban, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys 36(4), 372–421 (2004)

14. Frølund, S., Guerraoui, R.: e-Transactions: End-to-end reliability for three-tier ar-
chitectures. IEEE Transaction on Software Engineering 28(4), 378–395 (2002)

15. Garbatov, S., Cachopo, J., Pereira, J.: Data access pattern analysis based on
bayesian updating. In: Proc. of the 1st Simpósio de Informática (INForum), Lisbon,
Portugal (September 2009)

16. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. In: Proc. of the Conference on the Management of Data (SIGMOD), pp.
173–182. ACM, New York (1996)

17. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev. 41(3), 315–324 (2007)

18. Guerraoui, R., Levy, R.R., Pochon, B., Quema, V.: High throughput total order
broadcast for cluster environments. In: Proc. of the International Conference on
Dependable Systems and Networks, pp. 549–557. IEEE Computer Society, Los
Alamitos (2006)

19. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer, Heidelberg (2006)

Towards the Integration of DTMs in Application Servers’ Clusters 769

20. Kaashoek, M., Tanenbaum, A.: An evaluation of the Amoeba group communica-
tion system. In: Proce. of the International Conference on Distributed Computing
Systems (ICDCS), p. 436. IEEE Computer Society, Los Alamitos (1996)

21. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy release consistency for software dis-
tributed shared memory. In: Proc. of the International Symposium on Computer
Architecture (ISCA), pp. 13–21. ACM, New York (1992)

22. Kemme, B., Pedone, F., Alonso, G., Schiper, A.: Processing transactions over op-
timistic atomic broadcast protocols. In: Proc. of the International Conference on
Distributed Computing Systems (ICDCS), p. 424. IEEE Computer Society, Los
Alamitos (1999)

23. Kotselidis, C., Ansari, M., Jarvis, K., Lujan, M., Kirkham, C., Watson, I.: DiSTM:
A software transactional memory framework for clusters. In: Proc. of the Interna-
tional Conference on Parallel Processing (ICPP), pp. 51–58 (2008)

24. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. In: Proc.
of the Symposium on Principles of Distributed Computing (PODC), pp. 229–239.
ACM, New York (1986)

25. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel supporting
multiple coordinated channels. In: Proc. International Conference on Distributed
Computing Systems (ICDCS), pp. 707–710. IEEE, Los Alamitos (2001)

26. OJB. Object/Relational Bridge - OJB (2007), http://db.apache.org/ojb
27. Patino-Mart́ınez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Scalable replica-

tion in database clusters. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp.
315–329. Springer, Heidelberg (2000)

28. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distributed and Parallel Databases 14(1), 71–98 (2003)

29. Perez-Sorrosal, F., Patino-Martinez, M., Jimenez-Peris, R., Kemme, B.: Consistent
and scalable cache replication for multi-tier J2EE applications. In: Cerqueira, R.,
Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp. 328–347. Springer,
Heidelberg (2007)

30. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData
fault-tolerant replicated distributed object database. In: Shafazand, H., Tjoa, A.M.
(eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 426–433. Springer, Heidelberg (2002)

31. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software transac-
tional memory systems. In: Proc. of the Workshop on Large-Scale Distributed
Systems and Middleware, LADIS (2008)

32. Romano, P., Quaglia, F., Ciciani, B.: A lightweight and scalable e-Transaction pro-
tocol for three-tier systems with centralized back-end database. IEEE Transactions
on Knowledge and Data Engineering 17(11), 1578–1583 (2005)

33. Romano, P., Rodrigues, L., Carvalho, N.: The weak mutual exclusion problem. In:
Proc. 23rd IEEE International Parallel and Distributed Processing Symposium.
IEEE Computer Society Press, Los Alamitos (to appear)

34. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,
P.: The end of an architectural era: (it’s time for a complete rewrite). In: Proc. of
the 33rd international conference on Very Large Data Bases (VLDB), pp. 1150–
1160. VLDB Endowment (2007)

35. Terracotta Inc. Terracotta, http://www.terracotta.org/
36. Transaction Processing Performance Council. TPC BenchmarkTM W, Standard

Specification, Version 1.8. Transaction Processing Perfomance Council (2002)
37. Transaction Processing Performance Council. TPC BenchmarkTM TPC-APP, Stan-

dard Specification, Version 1.0. Transaction Processing Perfomance Council (2004)

http://db.apache.org/ojb
http://www.terracotta.org/

	Towards the Integration of Distributed Transactional Memories in Application Servers' Clusters
	Introduction
	Related Work
	The F\'{e}nixEDU System
	System Architecture
	The BFC Protocol
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

