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Abstract. In data-centric sensor networks each device is like a minimal
computer with cpu and memory able to sense, manage and transmit data
performing in-network processing by means of insertions, querying and
multi-hop routings. Saving energy is one of the most important goals,
therefore radio transmissions, which are the most expensive operations,
should be limited by optimizing the number of routings. Moreover the
network traffic should be balanced among nodes in order to avoid prema-
ture discharge of some devices and then network partitions. In this paper
we present a fully decentralized infrastructure able to self-organize fully
functional data centric sensor networks from local interactions and learn-
ing among devices. Differently from existing solutions, our proposal does
not require complex devices that need global information or external help
from systems, such as the Global Positioning System (GPS), which works
only outdoor with a precision and an efficacy both limited by weather
conditions and obstacles. Our solution can be applied to a wider number
of scenarios, including mesh networks and wireless community networks.
The local learning occurs by exploiting implicit cost-free overhearing at
sensors. The work reports an extensive number of comparative experi-
ments, using several distributions of sensors and data, with a well-know
competitor solution in literature, showing that an approach fully based
on self-organization is more efficient than traditional solutions depending
on GPS.

1 Introduction

Self-organization is becoming a promising paradigm to cope with complex sys-
tems and to reduce their costs, in fact it leads, in general, to properties like the
self-configuration, self-administration and self-healing etc., namely to systems
that work without, or drastically limiting, the human interventions. Applica-
tion scenarios where it can be inconvenient or unfeasible to set up a system by

� Work partially funded by the european project DORII: Deployment of Remote In-
strumentation Infrastructure Grant agreement no. 213110.

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 627–643, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009



628 G. Monti and G. Moro

configuring or implementing every single component are also emerging in large
wireless ad-hoc networks.

Examples of ad-hoc networks are mesh networks, sensors networks and wire-
less community networks (i.e. static or quasi-static networks), while vehicular
networks are an interesting example of MANET (mobile ad-hoc networks). Com-
pared to wired networks, wireless networks have unique characteristics. In wire-
less networks, node failures may cause frequent network topology changes, which
instead are rare in wired networks. In contrast to the stable link capacity of wired
networks, wireless link capacity continually varies because of the impacts from
transmission power, receiver sensitivity and interference. Additionally, wireless
sensor networks have strong power restrictions and bandwidth limitations.

In this paper we focus on self-organizing sensor networks, though our work
is easily suitable for all static (or quasi static) wireless ad-hoc networks, as we
highlight in some rows. Several kinds of sensor applications have been developed
in recent years. In some applications, a large volumes of data or events are con-
tinuously collected, aggregated/synthesized and stored by sensors for in-network
processing. Data-Centric Storage (DCS) scheme emerged from the sensor net-
work literature as the most efficient one for storing and processing data directly
within a sensor network. This kind of networks are possible thanks to a new
generation of sensors equipped with memory for storing data and processors for
executing moderately demanding algorithms. In other words such sensors are
similar to minimal computers but with more restrictions, hence the solution pre-
sented in this paper is also suitable to the mentioned above networks composed
by more powerful devices.

In DCS, events are placed according to their event types, which refers to pre-
defined attribute’s values (temperature and pressure, for instance). Hence data
or events can be named by attributes and logically represented as relations in
distributed databases [7] [1] [4].

In this paper we present a new solution based on a local learning method
that improves the performance of W-Grid infrastructure [10] [11] [9] [8], both
in terms of routings up to 12% and of traffic balancing, without affecting en-
ergy consumptions; we highlight that it is difficult to gain both performance on
routing and on balancing just because there is a trade-off between them. The
solution does not require GPS because each device receives a virtual coordinate
reflecting its local connectivity with other neighbour devices and each of them
uses this information to perform routings and to forward exact match query,
namely a query to search a single exact data. This means a greater applicability
than existing solution based on GPS. The work also present how the infrastruc-
ture manages range queries, which are more complex searches involving two or
more attributes/dimensions. The in-network data management occurs sponta-
neously by observing that each device receives a set of multiple unique virtual
coordinates, each of which represents also a portion of the data indexing space
for which a device is assigned the management responsibility.

Section 2 describes the related works, in Section 3 we briefly present the
main features of the infrastructure. Section 4 illustrates the management of
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data and queries. Section 5 introduces the cost-free local learning capability.
Section 6 describes an extensive number of comparative experiments according
to several scenarios; the performances are compared with the preceding version
of W-Grid and with a well-known competitor solution in literature that requires
GPS. Section 7 reports final considerations.

2 Related Works

Routing is necessary whenever a data sensed (generated) must be transmitted
elsewhere in the network, including an external machine, proactively or reactively
according to periodic tasks or queries submitted to the network system.

As stated before, we do not consider sensor networks which simply trans-
mit data externally at a remote base station, we focus on advances wireless
sensor networks in which data or events are kept at sensors, are indexed by
attributes and represented as relations in a virtual distributed database. For in-
stance in [4,15], data generated at a node is assumed to be stored at the same
node, and queries are either flooded throughout the network [4].

In a GHT [13], data is hashed by name to a location within the network, en-
abling highly efficient rendezvous. GHTs are built upon the GPSR [5] protocol
and leverage some interesting properties of that protocol, such as the ability to
route to a sensors nearest to a given location, together with some of its limits,
such as the risk of dead ends. Dead end problems, especially under low density
environment or scenarios with obstacles or holes, are caused by the inherent
greedy nature of the algorithm that can lead to situation in which a packet gets
stuck at a local optimal sensors that appears closer to the destination than any
of its known neighbors. In order to solve this flaw, correction methods such as
perimeter routing, that tries to exploit the right hand rule, have been imple-
mented. However, some packet losses still remain and furthermore using perime-
ter routing causes loss of efficiency both in terms of average path length and of
energy consumption. Besides, another limitation of geographic routing is that
it needs sensors to know their physical position adding localization costs to the
system. In DIFS [3], Greenstein et al. have designed a spatially distributed index
to facilitate range searches over attributes.

Our solution is more similar to the multi-dimensional distributed indexing
method for sensor networks developed in [6] and [14], but differently from our ap-
proach they require nodes to be aware of their physical location and of network
perimeter; moreover they employ GPSR for the physical routing. GPSR routing
performances are heavily affected by network topology (e.g nodes density or ob-
stacles) and it cannot work in indoor environments since it relies on GPS. Our so-
lution behaves like a multi-dimensional distributed index, but its indexing feature
is cross-layered with routing, meaning that no physical position nor any external
routing protocol is necessary, routing information is given by the index itself.

In [6] and [14] data space partitions, whose splitting method derives from [12],
follow the physical positions of nodes, instead of the distribution of data. The
consequence is that the storage load per node is, in general, unbalanced, because
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it depends on the physical network topology; this leads to an unbalanced number
of routings among nodes, particularly with not random data as shown by the
experiments, and consequently to a rapid network break-up caused by premature
turning off of most loaded sensors. In W-Grid the storage load balancing has
been achieved thanks to two key points: (i) the multi-dimensional data space
partitions occur according to the actual data distribution and (ii) each partition
has the same maximum bucket size. Another key difference is that data partitions
in [6] and [14] are disjoint, while in W-Grid they are nested. The main difference
between [6] and [14] is that the latter requires a fewer number of sensors with
GPS.

3 W-Grid

From now on, in this paper we will use the term nodes and sensors interchange-
ably. The main idea is to map sensors on a binary tree so that the resulting
coordinate space reflects the underlying connectivity among them. Basically we
aim to set parent-child relationships to the sensors which can sense each other,
in this way we are always able to route messages, in the worst cases simply fol-
lowing the paths indicated by the tree structure. Using virtual coordinates that
do not try to approximate node’s geographic position we eliminate any risk of
dead-ends. Basically W-Grid can be viewed as a binary tree index cross-layering
both routing and data management features in that, (1) by implicitly generating
coordinates and relations among nodes allows efficient message routing and, at
the same time, (2) the coordinates determine a data indexing space partition for
the management of multi-dimensional data. Each node has one or more virtual
coordinates on which the order relation is defined and through which the rout-
ing occurs, and at the same time each virtual coordinate represents a portion of
the data indexing space for which a device is assigned the management respon-
sibility. W-Grid virtual coordinates are generated on a one-dimensional space
and the devices do not need to have knowledge of their physical location. Thus,
differently from algorithms based on geographic routing (see section 2), W-Grid
routing is not affected by dead-ends. Since in sensor networks the most impor-
tant operations are data gathering and querying it is necessary to guarantee the
best efficiency during these tasks.

3.1 Generation of Virtual Coordinates

When a device, let us say d turns on for the first time, it starts a wireless channel
scan (beaconing) searching for any existing W-Grid network to join (namely any
neighbor device that already holds W-Grid virtual coordinates). If none W-Grid
network is discovered, d creates a brand new virtual space coordinate and elects
itself as root by getting the virtual coordinate “∗”1. On the contrary, if beaconing
returns one or more devices which hold already a W-Grid coordinate, n will join
the existing network by getting a virtual coordinate.
1 It is conventional to label “ ∗ ” the root node.



Improving the Applicability and Efficiency of Data-Centric Sensor Networks 631

Coordinate Setup. Whenever a node needs a new W-Grid coordinate, an ex-
isting one must be split. A new coordinate is given by an already participating
node dg, and we say that its coordinate c is split by concatenating a 0 or a 1 to
it. The result of a split to c will be c′ = c+1 and c′′ = c+0. Then, one of the new
coordinates is assigned to the joining node, while the other one is kept by the
giving node. No more splits can be performed on the original coordinate c since
this would generate duplicates. In order to guarantee coordinates’ univocity even
in case of simultaneous requests, each asking node must be acknowledged by the
giving one dg. Thus, if two nodes ask for the same coordinate to split, only one
request will succeed, while the other one will be canceled.

Coordinate Selection. At coordinate setup, if there are more neighbors which
already participate the W-Grid network, the joining sensor must choose one
of them from which to take a coordinate. The selection strategy we adopt is to
choose the shortest coordinate2 in terms of number of bits. If two or more strings
have the same length the sensor randomly chooses one of them. Experiments have
shown that this policy of coordinate selection reduces as much as possible the
average coordinates length in the system. In Figure 1 there is a small example
of a W-Grid network. In the tree structure, parent-child relationships can be set
only by nodes that are capable of bi-directional direct communication.

n1

n2

n5

n4

n3

n7

n6

n5 *011 

n2 *1 

n1 * 

n3 *00 

n7 *101     n6 *111 

n4 *11 

a

b
n1 *0 

n1 *01 n2 *10 

n2 *100 n4 *110 n1 *010 

Fig. 1. Physical (a) and logical (b) network. Empty circles represent split coordinates,
full black circles are coordinates that can still be split.

3.2 Formal Model: Network Properties

The sensor network is represented as a graph S:

S = (D, L)

2 Among the ones that still can be split, see Coordinate Setup.
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in which D is the set of participating devices and L is the set of physical con-
nectivity between couples of devices:

L = {(di, dj) : two − way connection between di and dj}

Each device is assigned one or more (virtual) coordinate(s). We define C as the
set of existing coordinates. Each coordinate ci is represented as a string of bits
starting with �. According to the regular expression formalism coordinates are
defined as follows:

C = {c : c = �(0 | 1)∗}
E.g. �01001 is a valid W-Grid coordinate. Given a coordinate ci and a bit b their
concatenation will be indicated as cib. E.g. considering ci = �0100, b = 0 then
cib = �01000. Given a bit b its complementary b is defined. E.g 1 = 0. Some
functions are defined on C:

length(c) : C → � (1)

Given a coordinate c, length(c) returns the number of bits in c. (� excluded).
E.g. length(�01001) = 5.

bit(c, k) : (C,�− {0}) → {0, 1} (2)

Given a coordinate c and a positive integer k ≤ length(c), bit(c, k) returns the
k-th bit of c. Position 0 is out of the domain since it is occupied by �.

pref(c, k) : (�,�) → C (3)

Given a coordinate c and a positive integer k ≤ length(c), pref(c, k) returns
the first k bits of c. E.g. pref(�01001, 3) = �010. We define the complementary
(buddy) of a coordinate c as:

c = pref(c, length(c) − 1)bit(c, length(c)) (4)

E.g. �01001) = �01000.

father(c) : (C − {�}) → C

father(c) = pref(c, length(c)− 1) (5)

lChild(c), rChild(c) : (C) → C

lChild(c) = c0 (6)

rChild(c) = c1 (7)
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E.g. Given a coordinate ci = �011, father(�011) = �01, rChild(�011) = �0111,
lChild(�011) = �0110. A function M maps each coordinate c to the device
holding it:

M : C → D

A W-Grid network is represented as a graph:

W = (C, P )

P is the set of parentships between coordinates.

P = {(ci, cj) : cj = ci(0 | 1)}
E.g. pi = (�010, �0101). We define the complementary (buddy) of a parentship
p = (ci, cj) as:

p = (ci, cj) (8)

E.g. p = (�010, �0101), p = (�010, �0100). A graph W is a valid W-Grid network
if both the following properties are satisfied:

1. ∀p = (ci, cj) ∈ P, (M(ci) = M(cj)) ∨ ((M(ci), M(cj)) ∈ L)
2. ∀p = (ci, cj) ∈ P : M(ci) �= M(cj) ⇒ ∃ p = (ci, cj) ∈ P : M(ci) = M(cj)

3.3 Formal Model: Network Generation

W-Grid network is generated according to this few simple rules:

1. The first node that joins the networks (that initiate a coordinate space) gets
the coordinate �. A node that holds a W-Grid coordinate is marked as active.
A function last is defined:

last(d) : D → C

which returns the last coordinate received by d. If d is not active the func-
tion returns {∅}. After the first node, let us say n1, has joined the network,
last(n1) = �.
2. ∀ l = (di, dj) ∈ L : last(di) �= {∅} two parentships are generated:

– p = (last(di), c′): M(c′) = dj

– p

Where c′ = lChild(last(di)) | rChild(last(di)). Namely c′ corresponds to the
non-deterministic choice of one of the children of c. Nodes progressively get new
coordinates from their physical neighbors in order to establish parentships with
them. The number of coordinates at nodes may vary, in W-Grid that measure
is always used as a parameter. The policies for coordinates may be: (1) a fixed
number of coordinates per node (e.g. a given k) or (2) one coordinate per phys-
ical neighbor. Coordinates getting is also called split. The actors of the split
procedure are an asking node and a giving node. A coordinate ci is split by
concatenating a bit to it and then, one of the new coordinates is assigned to
the joining node, while the other one is kept by the giving node. Obviously, an
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already split coordinate ci can not be split anymore since this would generate
duplicates. Besides, in order to guarantee coordinates’ univocity even in case of
simultaneous requests, each asking node must be acknowledged by the giving
node. Thus, if two nodes ask for the same coordinate to split, only one request
will succeed, while the other one will be temporarily rejected and postponed. Co-
ordinate discovering is gradually performed by implicit overhearing of neighbor
sensors transmissions.

3.4 Routing Algorithm

W-Grid maps nodes on an indexing binary tree T in order to build a totally
ordered set over them. Each node of the tree is assigned a W-Grid virtual coor-
dinate (c) which is represented by a binary string and has a value v(c):

∀ c ∈ T, v(c) ∈ C

where C is a totally ordered set since:

∀ c1, c2 ∈ T : c2 ∈ l(c1) → v(c2) < v(c1)

∀ c1, c2 ∈ T : c2 ∈ r(c1) → v(c2) > v(c1)

where r(c) and l(c) represents the right sub-tree and the left sub-tree of a coor-
dinate c ∈ T respectively. And:

∀ c1, c2 ∈ T : F (c1, c2) = 0 → v(c1) < v(c2)

∀ c1, c2 ∈ T : F (c1, c2) = 1 → v(c1) > v(c2)

where F (c1, c2) is a function that returns the bit of coordinate c1 at position
i+1 where i corresponds to the length of the common prefix between c1 and c2.
For instance given two coordinates c1 = 110100 and c2 = 1110, F (c1, c2) = 03

therefore c2 > c1. As we stated before, the coordinate creation algorithm of W-
Grid generates an order among the nodes and its structure is represented by a
binary tree. The main benefit of such organization is that messages can always
be delivered to any destination coordinate, in the worst case by traveling across
the network by following parent-child relationship. The routing of a message is
based on the concept of distance among coordinates. The distance between two
coordinates c1 and c2 is measured in logical hops and correspond to the sum of
the number of bits of c1 and c2 which are not part of their common prefix. For
instance:

d(*0011,*011) = 5

Obviously it may happen that physical hops distance is less then the logical.
Given a message and a target binary string ct each node ni forwards it to the
neighbor that present the shortest distance to ct. It is important to notice that
each node needs neither global nor partial knowledge about network topology
to route messages, its routing table is limited to information about its direct
neighbors’ coordinates. This means scalability with respect to network size.
3 While F (c2, c1) = 1, therefore F (c1, c2) = F (c2, c1).
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4 W-Grid Data Management

W-Grid organizes nodes (i.e. sensors/devices) in a tree structure and distributes
data (tuple or records with any kind of information) among them by translating
the values of the record attributes into binary strings, namely into virtual co-
ordinates that are used to locate the matching node where to store the strings,
that is the data. The translation of record values into binary strings occurs by
means of a linearization function mapping multidimensional data to one dimen-
sion with a good locality preserving behavior. Several linearization functions,
such as Z curve, Hilbert curve etc., have been successfully adopted in the past
for multi-dimensional data structures (see [2] for a survey) and in particular we
adopted a modified version of the one proposed in [12].

Since W-Grid ci are binary strings, we can see from Figure 2 that they corre-
spond to leaf nodes of a binary tree. Therefore a W-Grid network acts directly
as a distributed database with a distributed index. This means that each coor-
dinate represent a portion (i.e. region) of the global data space as depicted in
Figure 2. The mechanism described in subsection 3.3 and in 3.1, which generates
new coordinates, corresponds to a split method that creates also new regions.
Basically, from the viewpoint of data management, this split method divides the
region in two half of equal volumes along a space dimension. The dimension is
chosen following a simple rule: if a region r has been achieved by splitting his
father region along the i-th dimension, then r will be split on the successive
dimension, namely i-th+1 modulo number-of-space-dimensions.

An additional concept related to region splits, which is specific of the data
management feature, is that all region have a maximum bucket size b that fixes
the maximum number of data managed by each region. When the number of any

n1 *01 n4 *11n2*10n3 *00

n1 *

n2*1n1 *0

*1

*

*01

*00

*11

*10

*0

Fig. 2. Correspondence between coordinates and data space partitions
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region data is equal to b + 1 (region overflow) then the region undergoes a split
following the same method just described, but with a slight difference: if after
the split one of the resulting region is still in overflow, then the split process
continues recursively and stops when no region is overflowing its bucket. The
process converges quickly because the region is always divided in two half and
moreover it is sufficient to separate only one (overflowing) region data from the
other.

The region bucket size allows also a first indirect balancing of the storage load
of regions at nodes, moreover each nodes may receive several coordinates/regions.
Coordinates that have been split (the empty circles in Figures 1 and 2) cannot
contain data.

Let us describe a brief example of an environment monitoring application in
which sensors survey temperature (T ) and pressure (P ), to which we refer as d1

and d2. Each event is inserted in the distributed database implicitly generated
by W-Grid, reporting for instance date and time of occurrence.

Without loss of generality we can define a domain for T and P let us say
Dom(d1) = [−40, 60] and Dom(d2) = [700, 1100]. We present an example of
range query submitted to the network. Return the events having a tempera-
ture ranging from 26 to 30 Celsius degrees and pressure ranging from 1013 to
1025mbar. After calculating the correspondent binary string4 for the four corners
of the range query, namely:

(26,1013) (26,1025) (30,1013) (30,1025)
c1 = *11011000 c2 = *11011001
c3 = *11011010 c4 = *11011011

all we have to do is querying sensors whose coordinates have ∗110110 as prefix.
To do this we will route the range query toward ∗110110. Once the correspon-

dent sensor has been reached it will be in charge to (1) solve part of the query
if it is managing regions covered by the range query and (2) find out which of
its child nodes (neighbor nodes) has coordinates that are covered by the range
query. The query is then forwarded to each of these child node for further solv-
ing. We have fully implemented this algorithm and its performances are reported
in Section 6.

5 Local Learning

This method introduces a learning algorithm locally at sensors, with no extra
cost in terms of radio transmissions, whose goal is to learn information regarding
direct sensor neighbors. This strategy improves routing performances by reduc-
ing the number of hops, namely the number of forwards, and consequently the
4 For instance, by standardizing 26 and 1013 (c1) to their domains we obtain 0, 66 and

0, 783 respectively. We multiply both of them by 24 in order to get a string of length
8. The binary conversion of the multiplications are 1010 and 1100 respectively.
Then, by crossing bit by bit the two string we get the c where destination node
location is stored *11011000.
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routing latency. The basic idea is to exploit the implicit overhearing that radio
communications cause. In fact every time that a packet pi (data or query) with
destination ci is forwarded by a sensor df (forwarder) to a sensor dr (receiver),
each sensor that is within the radio range (neighbors N) of df is aware that
the packet is being forwarded. As a consequence each sensor in N can discover
(i) which virtual coordinate is the destination of pi, (ii) which sensor dr has
been chosen towards that destination and (iii) which is the distance of pi at dr.
Here comes the local learning. If any sensor in N , let us say dl finds out that a
neighbors, let us say dnf with coordinate cnf would have taken pi closer than dr

then dl temporarily stores the pair (dnf , ci) so that when it performs the next
beaconing it informs df that a better path has been discovered. In this way,
the next time that df needs to forward a packet to a destination whose prefix
is ci, dl will be preferred to dr. Figure 3 shows an example of local learning.
Packet pi with destination ∗011 must be routed by node df . By forwarding pi

to dl the distance from df to the destination is 3 while by forwarding pi to df

the distance is 5. Local learning allows nf to know that dl is a better choice for
routing packets whose destination is ∗011%5.

A possible variation of the strategy is to choose between dl and dr according
to a certain probability, so that possible changes in network topology and con-
sequently new possible paths can be caught even if some learning has already
occurred.

Fig. 3. Example of local learning at node nf

6 Experimental Results

We have compared the performances of W-Grid algorithm with DIM [6] by
implementing DIM in our Java Network Simulator.

We simulated four kinds of network deployment on an area of 800 × 800
meters in which 205 sensors where spread according to (1) uniform and (2) not
uniform distribution and in both cases we generated two set of data based (a)
on a random and (b) on a skewed distribution respectively. We varied nodes
5 % means a binary string of arbitrary length.
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densities by adjusting nodes transmission range (73, 101 and 122 meters) so
that each sensor could have, on average, 4, 8 and 12 neighbors respectively.
Sensors performed periodic beaconing so that coordinate creation was gradual,
the simulation randomly chose one sensor to beacon first and elect itself as root
of a virtual coordinate space. Then, as described in Section 3 we let sensors
build the W-Grid network and a DIM network as well. Once both W-Grid and
DIM network generation were completed we performed 2000 data insertion, with
data generated into domains D1 = {0, 800} and D2 = {0, 800}. After that we
randomly generated 5000 range queries and injected them into the network to
randomly chosen sensors. When creating a range query we followed these steps:

– Generation of a query central point (x, y) on D1 and D2

– Generation of the range by using Math.Gaussian Java function and multi-
plying the resulting value by a factor 70

– Applying the range to (x, y)

By fixing the factor to 70 we obtain that about 67% of the queries will have a
range within 140 and 99% of them will have a range within 420. From simula-
tions results we obtained that the 5000 range queries looked for 100000 data on
average, meaning that each query covered an average of 20 data.

6.1 Network Traffic Comparison

When comparing DIM and W-Grid it is appropriate to make some considera-
tions. DIM relies on GPSR when performing routing, this means that sensors
need to be aware both of their physical location and the network perimeter.
These constraints increase the cost of each sensor and limit the DIM usage pos-
sibility, for instance it cannot be used in indoor environments and in outdoor

Fig. 4. Number of routings with sensors and data randomly distributed
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areas where the density of sensors is beyond the GPS precision, or when weather
conditions are bad.

W-Grid achieves significatively better routing performances than DIM in all of
the four scenarios achieved by combining the two distributions of sensors with the
two distributions of data. Moreover, the local learning improves the performance
in all experiments achieving the best gain of 12% when not random data are
distributed over randomly positioned sensors (see Figure 5). In all scenarios DIM
reduces the wide gap to W-Grid as the network density increases. As depicted

Fig. 5. Number of routings with sensors randomly distributed and data not randomly
distributed

Fig. 6. Number of routings with sensors not randomly distributed and data randomly
distributed
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Fig. 7. Number of network routings with sensors and data not randomly distributed

Fig. 8. Std Dev of routings over Avg routings per node, with sensors and data randomly
distributed

in Figure 5 and in Figure 6, when the sensor density is 4 neighbors per sensor,
DIM requires, respectively, between 3 and 10 times more routings (i.e. message
forwards) than W-Grid in order to resolve the same sets of range queries over
the same sensor deployments.

As far as the distribution of the routing workload per node is concerned, it is
measured as the ratio between the standard deviation of the number of routings
and the average of routings. When the standard deviation is greater than its
corresponding average, the ratio is greater than 1 and of course it is smaller
than 1 in the opposite case. It is necessary to adopt such a ratio to compare
the W-Grid and DIM routing workload because the two approaches generate a
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Fig. 9. Std Dev of routings over Avg routings per node, with sensors randomly dis-
tributed and data not randomly distributed

Fig. 10. Std Dev of routings over Avg routings per node, with sensors not randomly
distributed and data randomly distributed

different number of routings for the same simulation configurations. As depicted
in Figure 8 and 10 DIM behaves better than W-Grid when data are random.
If data are not uniformly distributed, as it usually happens in real applications,
W-Grid achieves a better workload balancing when the density is equal or greater
than 8 neighbours per node (see Figure 9 and 11. Moreover the learning method
always improves the routing workload balancing.

With regard to range queries efficacy we can observe in Figure 12 that a
percentage of data between 2% and 3% are not cought by DIM range queries,
while W-Grid does not miss any data. DIM losses are due to sensor placement
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Fig. 11. Std Dev of routings over Avg routings per node, with sensors and data not
randomly distributed

Fig. 12. Number of data not found by range queries

which may cause some regions not to be managed by any sensor and GPSR
routing not being able to find the correct backup zone.

7 Conclusions

W-Grid is a cross-layering infrastructure able to self-organize wireless sensor
networks for routing and multi-dimensional data management. Simulations have
shown that W-Grid generates wireless networks, which significantly reduce the
network traffic with respect to DIM networks in all the experimented scenarios.
Moreover W-Grid produces a better balancing of the routing workload when data
are not uniformly distributed and when the sensor density is equal or greater
than 8 neighbours per sensor. Finally, the local learning method has further
improved both the network traffic and the routing balancing of W-Grid in all
experiments.
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