
COCONET: Co-operative Cache Driven Overlay

NETwork for p2p Vod Streaming

Abhishek Bhattacharya, Zhenyu Yang, and Deng Pan

Florida International University, Miami FL 33199, USA
{abhat002,yangz,pand}@cs.fiu.edu

Abstract. Peer-to-Peer (P2P) approaches are gaining increasing popu-
larity for video streaming applications due to their potential for Internet-
level scalability. P2P VoD (Video On-Demand) applications pose more
technical challenges than P2P live streaming since the peers are less
synchronized over time as the playing position varies widely across the
total video length along with the requirement to support VCR opera-
tions such as random seek, Fast-Forward and Backward (FF/FB). We
propose COCONET in this paper, which uses a distributed cache partly
contributed by each participant thereby achieving a random content dis-
tribution pattern independent of the playing position. It also achieves an
O(1) search efficiency for any random seek and FF/FB operation to any
video segment across the total video stream with very low maintenance
cost through any streaming overlay size. Performance evaluation by sim-
ulation indicates the effectiveness of COCONET to support our claim.

Keywords: peer-to-peer, Video On-Demand, streaming, overlay
network, co-operative cache.

1 Introduction

Today’s Internet provides a powerful substrate for real-time media distribution
due to the widespread proliferation of inexpensive broadband connections which
makes live streaming and on-demand media applications more important and
challenging. As mentioned in [1], YouTube has about 20 million views a day
with a total viewing time of over 10,000 years till date which clearly makes VoD
streaming to be one of the most compelling Internet applications. P2P approach
of content distribution has already being proved to be useful and popular for file
sharing and live streaming systems with a plethora of applications found in the
Internet. P2P based design can achieve significant savings in server bandwidth
for VoD systems also, as stated in [1]. But, unlike live streaming applications,
very few P2P VoD systems have being implemented and successfully deployed
over the Internet. In order to alleviate server load, the state-of-art P2P VoD
systems allow peers exchange video blocks among each other having overlapped
playing positions. In a VoD session, the users watching the same video may
well be playing different parts of the stream, and may issue VCR commands at
will to jump to a new playback position leading to fundamentally lower levels

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 52–68, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009



COCONET: Co-operative Cache Driven Overlay NETwork 53

of content overlap among the peers and higher need for frequently searching
new supplying peers. It is observed that efficient neighbor lookup is important
for supporting VCR operations. [9] presents a detailed analysis on a large scale
P2P VoD system and enumerates the major design challenges. Among these,
the fundamental challenge in designing a P2P VoD system lies in offering VCR
operations such as random seek/FF/FB which require greater control over the
coordination of peers. This is very unlike live streaming where the users are
always in the same playing position and have no VCR related operations.

We propose COCONET, a novel and efficient way of organizing peers to
form an overlay network for supporting efficient streaming and neighbor lookup
for continuous playback or FF/FB VCR operations. COCONET utilizes a co-
operative cache based technique where each peer contributes a certain amount
of storage to the system in return for receiving video blocks. COCONET uses
this co-operative cache to organize the overlay network and serve peer requests,
thereby reducing the server bottleneck supporting VCR related operations. In
current P2P VoD systems, peers share video segments only with nearby (for-
ward/backward) neighbors based on its playing position [1]. We envision a prob-
lem with this type of content distribution scheme. In highly skewed viewing
patterns, most of the peers are clustered around a particular playing position
and very few peers are scattered at different positions throughout the video
length, thereby the peers may not find any or very few neighbors to satisfy their
demand. COCONET avoids this situation and is able to serve peers that are
at random playing positions which are not at all related to the sender’s playing
position.

In order to find new supplier peers at different parts of the movie length,
P2P VoD systems need to maintain an updated index of the live peers with
their available video segments. Currently most deployed P2P VoD systems rely
on centralized trackers for maintaining the index. This mechanism imposes a
huge query load on the tracker with the expansion of the system. COCONET
does not use indexing at the tracker. Instead, the tracker only maintains a small
subset of live peers which is queried only once as a rendezvous point when a
new peer joins the system. Each COCONET peer builds an index based on the
co-operative cache contents which helps to find any supplier peer for any video
segment throghout the enitre video length.

Our main contributions in this paper are: (1) We are able to achieve a search
efficiency of O(1) during continuous playback or random seek to any position
across the entire video stream with a high probability; (2) The control overhead
of COCONET is also low to maintain the overlay structure upon any peer dy-
namics when the system is being subjected to heavy churn and moreover it has
better load balancing and fault tolerance properties; and (3) One of the attrac-
tive features of COCONET is a distributed contributory storage caching scheme
which helps to spread the query load uniformly through the overlay and orga-
nizes the overlay in a uniform and randomized fashion which makes the content
distribution independent from playing position.



54 A. Bhattacharya, Z. Yang, and D. Pan

The remainder of this paper is organized as follows. In Section 2 we survey
related work from the literature. Section 3 presents the preliminary design struc-
ture and key ideas. In Section 4 we discuss the detailed protocols in COCONET
and analyze their performance. Section 5 presents performance evaluation of
COCONET using simulations and we conclude in Section 6.

2 Related Work

The most studied overlay design for video streaming in the literature is tree and
mesh structure. Over the last decade, many proposals have been put forward
such as P2Cast [13] and oStream [11] where the basic stream is provided by an
application layer multicast tree which searches for appropriate patching streams
from the root peer. Similar to the tree-based schemes, P2VoD [3] organizes nodes
into multi-level clusters according to their joining times. The major problem with
these kind of overlays is its difficulty to maintain a consistent structure which is
vulnerable in a highly dynamic environment typical of P2P based VoD systems.
Multi-tree approach was proposed by SplitStream [12] where the video stream
is divided into multiple sub-streams using coding techniques. One stream is sent
through each tree which achieves better resilience to tolerate failures since even
if one tree fails, the peers will continue to receive video blocks through the other
trees with a possibly degraded quality.

PROMISE [4] uses mesh-based overlays for streaming. Although they improve
bandwidth utilization by fetching data from multiple peers, supporting VCR
operations in VoD service such as random seek is not easy since it is difficult to
have a neighbor lookup mechanism to locate supplier nodes. Mesh-based overlays
are useful for distributing the content but is not so effective for searching which
is one important criterion for supporting VCR operations in a VoD system as
indicated in [2].

A dynamic skip list based overlay network is proposed in [2], where all the
peers are connected sequentially according to their playback progress at the
base layer of the skip list and each peer may also randomly connect to a few
adjacent peers on the higher layers. The lookup efficiency is shown to be O(log N)
where N is the total number of peers. A ring assisted overlay is proposed in [5],
where each peer maintains a set of concentric rings with different radii and
places neighbors on the ring based on the similarity with their cached content
with a search complexity of O(log(T/w))) where T is the video size and w is
the buffer size. Many DHT based approaches have also been proposed such as
[6], but a DHT lookup takes logarithmic messaging complexity with respect to
the number of peers in the system. With playback progress, cached blocks are
frequently flushed off from the buffer which will cost a DHT update and this will
incur a lot of overhead in the long run. InstantLeap [10] proposes a hierarchical
overlay network which is based on the playing position of the peer. Peers are
divided into a number of groups where each peer belongs to one group at a
time and maintains limited membership information of all the other groups by
exchanging random messages which helps to perform any random seek operation



COCONET: Co-operative Cache Driven Overlay NETwork 55

in O(1) messaging overhead. COCONET also achieves a O(1) lookup complexity
but with reduced protocol overhead than [10]. This can be observed from the
fact that [10] builds its index based on each peer’s playing position i.e. available
segments in the playing buffer. So whenever any peer changes its playing position
due to continuous playback/leap and moves from one group to another, the index
needs to be updated which involves a lot of messaging overhead. In contrast,
COCONET is completely independent of playing position and builds its index
based on the stable storage buffer which is kept unchanged as long as the peer
is in the system. Thus, COCONET completely avoids the costly and frequent
index update operation as the peers change their playing position and also helps
for better segment availability of the entire system.

3 Design Principle

We present the basic system model in this section. We have N peers in the system
and a Video Server S which stores the entire video with an upload capacity of
Su Mbps. A centralized tracker T maintains sT , a set of t live peers in the
system and is updated with a periodicity of tT . The video is divided into M
segments and the play time for each segment is tM with a data rate of D.
Each peer contributes a part of storage space to the system which is defined
as the storage buffer (aka. storage cache or co-operative cache) with a size of b
segments. For the sake of simplicity, we assume segment level granularity at all
the levels of COCONET. Each peer also has a playing buffer of size k segments
which contains the current playing segment and a few consecutive segments for
supporting continuous playback and pre-fetch. The entire system parameters are
listed in Table 1 for easy reference, with some of them explained in later sections.
The system architecture diagram of a COCONET node is shown in Figure: 1.

3.1 Membership Management

Gossip-based algorithms have recently become popular solutions for message
dissemination in large-scale P2P systems. In a typical gossip-based scheme, each
peer sends a message to a set of randomly selected nodes which in turn repeat the
process in the next round. The gossiping continues until the message has reached
everyone. The inherent random property of gossip helps it to achieve resilience to
failures and enable decentralized operations but at the cost of redundancy. The
two most important knobs of gossip are: fan-out and ttl. Fan-out is the number of
gossip partners maintained by each peer and ttl is the number of gossip rounds
before the message is discarded. As stated in [7], for gossip to be successful
the partner list should be a randomized subset of the entire population and
should be refreshed before each gossip round. In COCONET, the membership is
managed by disseminating join messages randomly to a set of peers which in turn
forward to some other peers or keep it with a certain probability, thereby keeping
the overlay connected. We employ this mechanism for membership management
which is similar to SCAMP [7] with some modification which will be described
later. Based on the join messages, each peer p maintains the InView (peers



56 A. Bhattacharya, Z. Yang, and D. Pan

Table 1. List of System Parameters

Definition Notation

Number of Peers N

Video Server S

Tracker T

Tracker Size sT

Number of total Video Segments M

Play time of one video segment tM

Size of storage buffer b

Size of playing buffer k

Failure tolerance c

TTL for Join Message ttlj
TTL for Gossip Message ttlg
SegmentMap SM

TimeOut for SegmentMap tS

Intial Buffering delay tb

Gossip Periodicity tg

Tracker Update Periodicity tT

Peer Upload Capacity Pu

Peer Download Capacity Pd

Server Upload Capacity Su

Data Rate D

Storage Buffer Request Timeout ts

Playing Buffer Request Timeout tp

Fig. 1. System view of a COCONET node



COCONET: Co-operative Cache Driven Overlay NETwork 57

which know the existence of p) and OutView (peers that p knows to exist) set
as a partial view of the entire system which helps to facilitate node join/leave
operations.

3.2 Co-operative Caching

As already mentioned, each peer in the system has to contribute a part of its
storage as storage cache to serve other peers. Contribution awareness is already
very popular in P2P file sharing applications which helps in increasing system
resource and is also employed in VoD systems such as [9]. But to efficiently
manage this distributed storage for better performance in alleviating server load
is still a significant challenge. COCONET tries to solve this problem where each
peer on joining the system randomly caches b segments in its buffer in the hope of
serving other peers when it is required. The segments in the storage cache remain
unchanged as long as the peer remains in the system. This randomly distributed
cache helps to increase system stability as there is very little chance that any
video segment will be unavailable in any of the participating peers. This in turn
translates to server load alleviation to a large extent which is another advantage
for COCONET. The major chance for segment unavailability in COCONET is
due to insufficient bandwidth resources for which the peer will be forced to query
the Video Server, S.

3.3 Neighborship Management

As mentioned, efficient neighbor lookup is one of the key requirements in VoD
systems for supporting VCR related operations. Each COCONET peer achieves
this by maintaining a SegmentMap, SM which is basically a list of M entries
with the i-th entry, Si

M representing the set of peers that have cached the i-th
segment in their storage buffer. The underneath mechanism is a gossip-based
algorithm which helps to disseminate SM information through the entire over-
lay. The gossiping is done through the peer list of OutView which is constructed
during the join operation. The gossip-based scheme will help to fill up SM for
each peer. So, essentially SM serves as an index for the entire set of M segments
and is utilized for neighbor lookup. It is trivial to observe that VCR operations
can easily be satisfied by looking up SM for the corresponding peers contain-
ing the required segments and downloading from them. Given, SM is correctly
maintained, any lookup operation can be satisfied in O(1) messaging complexity
by COCONET. We also maintain an additional failure tolerance factor c, which
means that we keep c distinct peer entries for each entry, Si

M in SegmentMap.
Since there are a total of M segments in SM , so the total number of entries in
the SegmentMap of a COCONET peer comes to cM . This tolerance factor, c is
a design choice and can be tuned according to application demand which will
essentially help to tolerate peer departure/failure during churn conditions. We
discuss the detailed protocol in Section 4.2.



58 A. Bhattacharya, Z. Yang, and D. Pan

3.4 Content Distribution Pattern

Existing P2P VoD systems distribute content from the playing buffer which is
highly synchronized according to the paying position and requires any peer to
download a video segment from another peer within the same playing segment or
the next few consecutive segments. In highly skewed viewing patterns, if a peer
issues a request for a segment with no nearby peer then the system fails to answer
and has to resort for server resource. As a contrast, COCONET utilizes the
storage buffer for content distribution and so is independent of playing position
making any peer to download from a random peer with a completely different
playing position. Thus, the previous situation due to highly skewed viewing
patterns will have less severe impact in COCONET since the content distribution
pattern is completely randomized.

4 Detailed Protocol

One of the important design goals of COCONET is to populate SM as quickly as
possible with a tolerance factor of c. This means that there should be c neighbors
on average for each SegmentMapID, Si

M . The fill-up size of SM should be cM
which is the target value for each peer. The importance of SM in COCONET
is obvious since all the neighbor lookup is performed through it and efficient
maintenance of SM is critical for system performance. To achieve a total size
of cM , it needs to contact at least cM/b neighbors since each neighbor has b
segments in storage buffer. An important theorem from SCAMP [7] states that,
given a group size as N and the partial view size maintained at each peer as
O(log N), the probability for a gossip to reach every member in the group con-
verges to e−e−c

provided the link/node failure probability is not greater than
c/(c + 1). COCONET exploits this theorem to reach a group size of cM/b by
maintaining a partial view (i.e., OutView) size of log(cM/b). The partial view
represents a randomized subset of the total number of peers in the system and
thus, we use the partial view as gossip partners which will help to effectively
disseminate the information among the participants. For gossip to be success-
ful, logarithmic number of neighbors are required for information dissemination
and within logarithmic rounds there is a high probability that the information
reaches every member in the group, as pointed out in [7]. So, COCONET sets
information dissemination gossip fan-out to be log(cM/b) and within log(cM/b)
rounds of gossiping there is a high probability that the storage buffer informa-
tion of the source peer has reached the required number of peers. Thus, there
is a high probability that total list size for SM to approach cM in logarithmic
gossip rounds only.

4.1 Protocol for Join/Leave Operation

Each COCONET node is provided with a unique identifier. Tracker, T maintains
a partial list of t live peers (t is maintained through periodic updating by the
peers). Each joining peer initially contacts the tracker to acquire a contact peer.



COCONET: Co-operative Cache Driven Overlay NETwork 59

Then the joining peer sends a join message to the contact peer. The join protocol
is very similar to SCAMP [7] with a little tuning. The join message is a 3-tuple
of 〈sender peer ID, join peer ID, ttlj〉, where sender peer is the one that sends
the join message, join peer is the one that have initiated the join protocol for
entering the system and ttlj refers to the number of hops by the join message
before it is killed. ttlj is set for limiting the number of join rounds so that it may
not move for an infinite number of times and is generally killed whenever any
peer receives the same message for more than 10 times by simply discarding the
received join message. Any peer other than the contact node, receiving a join
message either keeps it or forwards it to a random neighbor from its OutView
with a probability proportional to log(cM/b)/OutV iew.size. This helps to keep
the OutView size close to log(cM/b) with a high probability and will be used
later for gossiping to disseminate information of SM . The pseudo-code of join is
listed in Table: 2.

Table 2. Join Protocol

At Join Node:
contact node ← Tracker
OutView ← OutView ∪ {contact node}
send join(contact node, join node, )

At Contact Node:
InView ← InView ∪ {join node}
forall n ∈ OutView

send join(n, join node, ttlj)

At Other Nodes:
if (ttlj == 0)
return /* drop the join msg if ttl expired */

with probability log(cM/b)/OutV iew.size do

if (join node /∈ OutView)
OutView ← OutView ∪ {join node}

else

choose randomly n ∈ OutView
send join(n, join node, ttlj − 1)

The protocol for leave operation involves the modification of InView which is
essentially a list consisting of nodes which contains its nodeID in their partial
views. The leaving node simply informs c + 1 random neighbors in InView to
replace its nodeID with a random neighbor selected from the partial view of the
node that invoked the leave operation. Then, it informs the rest of the neighbors
in InView to simply remove its nodeID entry without replacing it. This protocol
is entirely local and requires no global information. The protocol is simple and
we skip its pseudo-code for brevity of space.



60 A. Bhattacharya, Z. Yang, and D. Pan

4.2 Protocol for SegmentMap Exchange

The SegmentMap exchange is the essential component of COCONET which
helps to populate SM by gossiping with neighbors in OutView. To achieve re-
liability, gossip sends a lot of redundant messages across the communication
channel which is not suitable for bandwidth hungry streaming applications. So
we need to tune the gossip protocol to avoid sending excessive messages after a
certain system criterion is met. The gossip messages are sent according to some
probability proportional to ( c

avg. entry size of SM
). This ensures that gossiping

will be switched off when the average entry size of SM comes close to c with a
high probability. During peer churns, COCONET detects and removes the dead
entries from SM and if the average entry size of SM goes below c, gossiping will
be switched on automatically in the next cycle resulting in repopulating SM . The
gossip message is a 4-tuple 〈sender node ID, this→node ID, ttlg, SegmentMap
information〉 where ttlg is set to be O(log(cM/b)) for effective information dis-
semination as discussed above. Any peer receiving a gossip message employs a
push-pull based dissemination mechanism wherein the receiver peer sends its
SM information to the sender and also updates its SM from the sender. The
pseudo-code of SM exchange is listed in Table: 3.

Table 3. SegmentMap Exchange Protocol

At Sender Node:

avg entry size ←∑M
i=1SM [i].size/M

with probability ∝ c
avg entry size

do

choose randomly n ∈ OutView
send gossip(n, node ID, ttlg, SM )

At Receiver Node of gossiped Ss
M :

if (ttlg == 0)
return /* drop since ttl expired */

for i← 1 to M do

SM [i]← SM [i] ∪ Ss
M [i]

choose one random n ∈ OutView
send gossip(n, node ID, ttlg − 1, Ss

M )

4.3 Protocol for Caching

This protocol is very simple where each COCONET peer randomly selects b
segments for caching. After joining and the SegmentMap established, it sends
download request to other peers if any entry is found in SM . If it receives a pos-
itive reply within timeout from any peer p then it downloads from p. Otherwise,
it requests the server S for the segment.



COCONET: Co-operative Cache Driven Overlay NETwork 61

4.4 Protocol for Retrieving Segments

One of the most frequent operations in COCONET is the lookup operation for
supporting continuous playback or random seek. Usually the query will be for a
particular segment i and the system is required to return a neighbor list where
each of the neighbors contain the segment i in its storage buffer. It is trivial to
observe that for lookup operation to be successful in COCONET it is essential
that SM is maintained correctly with sufficient number of entries to tolerate
failures. As mentioned, COCONET tries to keep c neighbor entries for each
segment so that a maximum of c − 1 failures can be tolerated without disrupting
system performance. COCONET maintains the overlay network ordered on the
basis of storage buffer blocks and does not consider the playing buffer for message
dissemination. The pseudo-code of look-up is listed in Table: 4.

Table 4. Lookup Protocol

Input: Query for segment q
At Node n:
for i← 1 to b do

if (storage buffer[i] == q)
return storage buffer[i]

multicast download request(SM [q], q)
wait for availability reply with timeout
if (timeout == false)

select peer p with earliest reply timestamp
send download request(p, q)
receive segment from p
return

else

send download request(S, q)
receive segment from S

5 Experimental Evaluation

In this section we present our simulation results for COCONET. We have imple-
mented a discrete event simulator in C++ supporting an overlay size of 10,000 or
more simultaneous peers. We have used GT-ITM [8] to generate the underlying
physical network for our simulations based on transit-stub model. The network
consist of 15 transit domains, each with 25 transit nodes and a transit node is
connected to 10 stub domains, each with 15 stub nodes. We randomly choose
peer from the stub nodes and place the video server on a transit node. The delay
along each link was selected proportional to the Euclidean distance between the
peers. We have set our simulation settings to be Pu = 1 Mbps, Pd = 4 Mbps
and Su = 80 Mbps with D = 500 kbps and the total viewing length of the video
to be 128 minutes. Each segment size is set to be 3.7MB which corresponds to
one minute video length. Each experiment was run for a length of 7,500 seconds.



62 A. Bhattacharya, Z. Yang, and D. Pan

The peers join the overlay following a Poisson arrival model with arrival rate,
λ = 0.1. The peer departure pattern follows an exponential distribution with an
expected life time of 20 minutes. The other static parameters of our simulation
are: M = 128, tj = 25, tM = 60 sec, t = 250, k = 2 segments, b = 4, 8, 16
segments, c = 4, tS = 5 sec, tg = 20 sec, tT = 50 sec, ts = tp = 25 sec. We do
not assume any transmission error in channels. For designing a VoD system it is
important to efficiently utilize the upload bandwidth of all the peers in the sys-
tem since it is the most scarce system resource and so we perform our discussion
of experimental analysis to its usage efficiency. We avoid peer download anal-
ysis since download bandwidth is less likely to be the system bottleneck as we
assumed it to be four times compared to upload bandwidth for each peer in our
simulation settings. We also assume streaming a single video in our simulation
scenario which is more simple to analyse.

5.1 Server Load

One of the most important objectives of P2P VoD system is to reduce server load.
Figure 2 shows the server load with varying overlay sizes in COCONET. Server
load is measured on a per streaming session basis, where it is measured by the
percentage ratio of the total number of downloaded segments from the server to
the total number of downloaded segments by all peers in the entire session. As we
can observe from Figure 2, there is a slight increase of server load with increase in
overlay size which is around 2% rise for every increase of 2,000 in overlay size. This
is a very narrow increase rate and so we can conclude that COCONET scales well
to large overlay sizes. Another interesting fact to observe is that, for similar overlay
sizes, server load is greatly reduced on increasing the size of storage buffer. This
can be intuitively justified by noticing that, the overall system demand remains
same but system availability increases since there will be more number of available

Fig. 2. Server load for varying overlay sizes



COCONET: Co-operative Cache Driven Overlay NETwork 63

Fig. 3. Storage buffer efficiency for varying overlay sizes

Fig. 4. Probability density plot for a function of number of downloaded buffer segments
in a 10,000 node network

segments with higher value of b. Analyzing more specifically, we observe that there
is a significant amount of server load alleviation when b goes up from 4 to 8 with
around 15% reduction for 4,000 and 6,000. This effect is not so prominent when b
goes from 8 to 16 which is around 4% in average.

5.2 Storage Buffer Usage Efficiency

In this section we study the buffer usage efficiency as this will be an important
indicator for COCONET system performance. For each session, we measure the



64 A. Bhattacharya, Z. Yang, and D. Pan

total number of storage buffers available in the system which is a constant,
b × N and the total number of storage buffers that have been downloaded one
or more times. We calculate the buffer usage efficiency by taking the ratio of
the previous two parameters and plot the results in Figure 3. With a higher
value of b, there are more number of available segments in the system which in
turn helps to distribute the segments more efficiently among the peers. We also
plot the probability density function of storage buffer usage for one streaming
session in Figure 4 with an overlay size of 10,000 for b = 8 and we observe that
the majority usage pattern is uniform excepting a somewhat higher usage at one
point.

5.3 Load Balancing

In this section we experiment on the available upload bandwidth usage for each
peer. We plot the results in Figure 5 which corresponds to the aggregated band-
width utilization efficiency for all peers per streaming session. The plots show
the average efficiency calculated over all the peers for a streaming session. We
observe an increase of efficiency with increase of both overlay size and storage
buffer size. For all the cases, the total segment availability of the system rises
which translates to a better upload bandwidth efficiency. More optimizations for
bandwidth efficiency can be achieved by using lower level granularity for data
transmission since we use segment level transmission in our simulator. We also
plot the cumulative probability distribution as a function of percentage of up-
load bandwidth usage in Figure 6 for b = 4 and an overlay size of 6,000. The
same pattern follows with various overlay sizes. We can notice from Figure 6,
that the upload bandwidth usage is efficiently utilized and distributed among
the participants with a maximum usage of 60% for b = 4 for an overlay size of
6,000. We feel that this is an area for futher improvement by carefully analyzing

Fig. 5. Upload bandwidth usage efficiency



COCONET: Co-operative Cache Driven Overlay NETwork 65

Fig. 6. Cumulative Distribution Plot for a function of % Upload Bandwidth Usage for
b=4, N=6,000 peers

Fig. 7. System specific streaming performance at continuous time interval

the situation and optimizing the bandwidth usage to a greater degree which will
help to improve the overall system performance.

5.4 Peer Churn/Departure

In this section we experiment the performance of COCONET in churn/failure
conditions. We evaluate streaming performance during peer failure/departure.
We adopt a metric known as Segment Miss Ratio(SMR) which is basically the



66 A. Bhattacharya, Z. Yang, and D. Pan

Fig. 8. Node specific streaming performance for each node in the overlay

number of segments that have not reached the playing buffer within playback
deadline divided by the total number of segments that should have been played
till that time. Initially we start with 10,000 peers and after a while when all
the peers have started playing, we randomly kill a peer every 10 seconds till we
have failed 30% of the initial population. Figure 7 plots the SMR value as an
average of the whole system at specific time intervals for different values of b.
We can observe that initially the failure impact is more but as time progresses,
more peers join and more storage buffers come into the system which increase
segment availability. We analyze peer specific performance in Figure 8 where we
plot the percentage of missing segments for each node. It can be seen that most
of the peers have a SMR less than 10% and very few peers with high SMR. Each
COCONET peer employs a failure recovery scheme by removing dead entries
from SM during the download request process if the neighbor fails to reply within
a certain period of time. This will help to avoid wastage of messages to dead
peers. We do not employ separate heartbeat process for failure recovery since this
process works well in our scheme with the added advantage of lesser overhead
of control messages.

5.5 VCR Operations

In this section we study the effect of VCR operations such as random seek/FF/
FB in COCONET. To simulate random-seek, we employ the same model from
Section 5.4 where the peer failure events are replaced by random seek. Figure 9
plots the result which indicates that the SMR is initially very high but after a
certain period of time is almost averaging around 5%. We also simulated fast
forward VCR operation and plotted in Figure: 10 to study its effects. Again
we used the same model from Section 5.4 with peer failure events replaced by



COCONET: Co-operative Cache Driven Overlay NETwork 67

Fig. 9. Streaming performance for random seek operation

Fig. 10. Quality of streaming for fast-forward operation

FF. We experimented FF operation for different speeds such as 2X, 4X and 8X
where essentially for 2X we play the same content quantity with double the speed
and likewise. We can observe from the graph that 8X has the highest missing
segments whereas 2X and 4X are within comparable ranges.

6 Conclusion

This paper proposes a novel way of organizing peers based on storage cache
content where each peer contributes a part of storage to form a large distributed



68 A. Bhattacharya, Z. Yang, and D. Pan

cache which helps in alleviating server load to a greater extent by co-operative
caching. Some of the most notable features of COCONET are high segment
availabilty for any viewing patterns, uniform query load distribution, randomized
content distribution pattern with uniform storage cache access pattern. As future
work, we would like to: (a) deploy COCONET in PlanetLab for exercising its
performance under real network dynamics, (b) employ certain predictive pre-
fetching schemes to intelligently recover segments based on user viewing pattern,
and (c) extend for multi-video scenario where the storage buffer can also be
utilized to serve other peers watching different movies.

References

1. Huang, C., Li, J., Ross, K.W.: Can Internet Video-on-Demand be Profitable? In:
Proceedings of ACM SIGCOMM, pp. 133–144 (2007)

2. Wang, D., Liu, J.: A Dynamic Skip List Based Overlay for On-Demand Media
Streaming with VCR Interactions. IEEE Trans. Parallel and Distributed Systems,
503–514 (2007)

3. Do, T., Hua, K.A., Tantaoui, M.: P2VoD: Providing fault tolerant video on-demand
streaming in peer-to-peer environment. In: Proc. of ICC, pp. 1467–1472 (2004)

4. Hefeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B.: Promise: Peer-to-Peer
Media Streaming using CollectCast. In: Proceedings of ACM Multimedia, pp. 45–
54 (2003)

5. Cheng, B., Jin, H., Liao, X.: Supporting VCR Functions in P2P VoD Services using
Ring-Assisted Overlays. In: Proc. of the IEEE Intl. Conf. on Communications, pp.
1698–1703 (2007)

6. Vratonjic, N., Gupta, P., Knezevic, N., Kostic, D., Rowstron, A.: Enabling DVD-
like Features in P2P Video-on-Demand Systems. In: Proc. of SIGCOMM Peer-to-
Peer Streaming and IPTV Workshop (2007)

7. Kermarrec, A.M., Massoulie, L., Ganesh, A.J.: Probabilistic Reliable Dissemination
in Large-Scale Systems. IEEE Transactions on Parallel and Distributed Systems,
248–258 (2003)

8. Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:
Proceedings of IEEE INFOCOM, pp. 594–602 (1996)

9. Huang, Y., Fu, T.Z.J., Chiu, D.M., Lui, J.C.S., Huang, C.: Challenges, Design and
Analysis of a Large-scale P2P-VoD System. In: Proceedings of SIGCOMM, pp.
375–388 (2008)

10. Qiu, X., Wu, C., Lin, X., Lau, F.C.M.: InstantLeap: Fast Neighbor Discovery in
P2P VoD Streaming. In: Proceedings of ACM NOSSDAV, pp. 19–24 (2009)

11. Cui, Y., Li, B.C., Nahrstedt, K.: oStream: Asynchronous Streaming Multicast in
Application-Layer Overlay Networks. IEEE Journal on Selected Areas in Commu-
nication, 91–106 (2004)

12. Castro, M., Druschel, P., Kermarrec, A.M.: SplitStream: High-bandwidth content
distribution in a cooperative environment. In: Proceedings of SOSP, pp. 298–313
(2003)

13. Gou, Y., Suh, K., Kurose, J., Towsley, D.: P2Cast: Peer-to-Peer patching scheme
for VoD service. In: Proceedings of WWW, pp. 301–309 (2003)


	COCONET: Co-operative Cache Driven Overlay NETwork for p2p Vod Streaming
	Introduction
	Related Work
	Design Principle
	Membership Management
	Co-operative Caching
	Neighborship Management
	Content Distribution Pattern

	Detailed Protocol
	Protocol for Join/Leave Operation
	Protocol for SegmentMap Exchange
	Protocol for Caching
	Protocol for Retrieving Segments

	Experimental Evaluation
	Server Load
	Storage Buffer Usage Efficiency
	Load Balancing
	Peer Churn/Departure
	VCR Operations

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




