
Similarity Searching in Structured and

Unstructured P2P Networks

Vlastislav Dohnal and Pavel Zezula

Faculty of Informatics, Masaryk University,
Botanicka 68a, 602 00 Brno, Czech Republic

{dohnal,zezula}@fi.muni.cz

Abstract. The exponential growth of digital data in contemporary com-
puter networks induces a lot of scalability, resilience, and survivability
issues. At the same time, the increasing complexity of digital data makes
the task of similarity searching that is inherently difficult, more and
more important. In this paper, we report on the Multi Feature Indexing
Network, MUFIN, which is an extensible, scalable, and infrastructure
independent similarity search engine. It is able to achieve high perfor-
mance and guarantee quality of service by applying structured Peer-
to-Peer networks. On the other hand, its unstructured version based
on self-organizing principles is extremely robust and able to operate in
very volatile environments. To exemplify MUFIN’s properties, an on-line
demo is available for public use.

Keywords: similarity searching, structured peer-to-peer network, un-
structured peer-to-peer network, self-organizing system, metric space,
scalability, resilience to failures, performance evaluation.

1 Introduction

Similarity is a central notion throughout human lives. In perception, the simi-
larity between sets of visual or auditory stimuli influences the way in which they
are grouped. In speech recognition, the similarity between different phonemes
determines how confusable they are. In classification, the category of a new in-
stance may be influenced by the similarity of the new instance to past instances
or to a stored prototype. In memory, it has been suggested that retrieval of a cue
depends on similarity of past memory traces to the representation of the cue.
Since almost everything that we see, hear, read, write and measure is, or very
soon will be, available in a digital form, computer systems must support similar-
ity. But the growth of the amount of digital material distributed in large-scale
wired and wireless networks is posing another big challenge. The exponential
increase of data volume makes the performance, configuration, cross-layer ap-
proaches, scalability, resilience and survivability an important matter of concern.
However, the core ability of future data processing systems should be developed
around effective and efficient similarity management of very large and growing
collections of data.

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 400–416, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Similarity Searching in Structured and Unstructured P2P Networks 401

Fig. 1. Trade-off between scalability and determinism in system control

As Figure 1 outlines, we believe that a future search system will be created
upon the divergence of scale and determinism. The scalability will be more and
more important with respect to the data volume, number of users, query execu-
tion response time, number of different query types produced by digitization and
content enrichment techniques, as well as the multi-modal approach to query-
ing. On the other hand, the determinism in answering queries, i.e. providing
always the same answers to the same queries, will be substituted by satisfactory
results or even recommendations. Queries will also be much more personalized
and influenced by context and executed on hardware most suited to the given
workload. In any case, the exact match will be more and more often accompanied
by extensive use of similarity searching.

In this paper, we present our Multi-Feature Indexing Network initiative and
explain how our approach can contribute to the quality of service and robust-
ness objectives of future similarity search systems. In particular, we give an ar-
chitectural view of Multi-Feature Indexing Network in Section 2. Two instances
of MUFIN defined as structured Peer-to-Peer networks are summarized in
Section 3. Whereas, a system operating as an unstructured Peer-to-Peer sys-
tem with self-organizing abilities is described in Section 4. Both these sections
are accompanied with a sketch of experimental trials showing their properties. In
Section 5, a demonstration application for image content-based retrieval is given.
As for future applications, there are two examples of searching by biometric
characteristics. The paper concludes in Section 6.

2 Multi-Feature Indexing Network

In this section, we present and demonstrate capabilities of the Multi-Feature
Indexing Network, so-called MUFIN [1]. From a general point of view as shown
in Figure 2, the search problem has three dimensions: (i) data and query types,
(ii) index structures and search algorithms, and (iii) infrastructure to run a
system on. MUFIN adopts the metric space model of similarity. Its indexing and
searching mechanisms are based on the concept of structured and unstructured
Peer-to-Peer (P2P) networks, which makes the approach highly scalable and
independent of the specific hardware infrastructure.

402 V. Dohnal and P. Zezula

Fig. 2. Basic concept of MUFIN [2]

2.1 Modeling Similarity

The metric space model of similarity has already proved to be a very powerful
concept for expressing many different forms of similarity of vectors, strings, sets
and other data types. Most of the available technologies for processing metric
data have been summarized in a recent book [3].

A metric space M = (D, d) is defined for a domain of objects (or extracted
features) D and a total function d that evaluates distance between a pair of ob-
jects. The properties of this function are: non-negativity, symmetry and triangle
inequality. The distance expresses dissimilarity between two objects. Examples
of distance functions are Lp metrics (City-block (L1) or Euclidean (L2) distance),
the edit distance, or the quadratic-form distance. Whereas examples of objects
are a color histogram extracted from an image and stored as a vector, or a shape
of hand expressed as a polygon.

There are two basic types of similarity queries: range query and k-nearest
neighbors query. The range query R(q, r) is specified by a query object q ∈ D
and a query radius r. From a database X ⊂ D, the query retrieves all objects
found within the distance r from q. The definition is as follows:

R(q, r) = {o ∈ X, d(o, q) ≤ r}.
Whenever we want to search for similar objects using a range search, we must
specify the maximum distance for objects to qualify. But it can be difficult to
specify it without some knowledge of the data and the distance function. An
alternative way to search for similar objects is to use the k-nearest neighbor
query kNN(q). It retrieves the k nearest neighbors of the object q. Formally,
the response set can be defined as follows:

kNN(q) = {R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈ X − R : d(q, x) ≤ d(q, y)}.

2.2 Architecture

MUFIN, schematically depicted in Figure 3, has a four-tier architecture. The
lowest tier is represented by a computer network and its hardware infrastructure

Similarity Searching in Structured and Unstructured P2P Networks 403

Fig. 3. Overview of MUFIN [2]

the system is running on. The executive core of MUFIN in the second tier is
formed by several distributed indexing structures (overlays) that exploit the
paradigm of P2P networks both in their structured and unstructured variants.
Each of these overlays maintains data specific to it and distributes them among
its (logical) peers. For example, an overlay can be defined for shape descriptors or
color histograms in case of images, or protein spectra vectors in case of biological
data. The number of logical peers in respective overlays and their mapping to
physical computers are the main parameters that affect the system’s searching
performance.

From the third tier point of view, the logical peers of all overlays form a single
virtual overlay with a uniform access to individual members. More precisely, the
logical peers of different overlays mapped to the same physical host constitute
a peer of this virtual overlay. The third tier provides interfaces for data mainte-
nance (inserting and deleting data) and query specification, considering both the
query form (range, nearest-neighbors or complex queries) as well as the strat-
egy for query execution. Possible strategies are precise and approximate query
evaluation. From the system point of view, these interfaces come in the form
of a native API, a web service interface, or a plug-in interface for linking with
external services.

Finally, the top-level tier represents interfaces allowing regular users to inter-
act with the system. We have defined several general-purpose interfaces suitable
for any application domain. However, they lack the comfort of a specialized in-
terface. In Section 5.1, we present an example of an interface specific for image
retrieval.

2.3 Properties

MUFIN is built by means of the Metric Similarity Search Implementation Frame-
work (MESSIF) [4] – a large and extending Java library of metric searching
implementation tools. It gives MUFIN flexibility in applying suitable imple-
mentation strategies for specific purposes and fast adoption of new progressive

404 V. Dohnal and P. Zezula

solutions as they come from research. The properties of MUFIN can be summa-
rized by the following attributes:

Extensibility: Different similarity search indexes for specific applications can
be built with a single tool;

Scalability: Due to the underlying P2P technology, extremely large datasets
can be processed;

Adaptability: In highly-volatile or unreliable environments, self-organizing
principles can be implemented and the system can operate in unstructured
P2P networks;

Multi-modal Queries: In order to adjust effectiveness of search according to
needs of individual users, several overlays can be combined together using a
monotonic aggregation function [5];

Approximation: To further improve performance, approximation techniques
can be applied to query evaluation [6,7];

Infrastructure Independence: The networking module uses standard IP pro-
tocols. Each peer is identified only by its IP address and port number, so the
mapping of the system to a hardware infrastructure is extremely flexible. For
example, an instance of MUFIN can operate on a local network of common
workstations, on a single multiprocessor machine, on a world-wide network,
or even on a GRID system.

3 Structured Networks

In this section, we focus on indexing mechanisms of MUFIN that create purely-
decentralized and structured P2P networks. In general, each peer of such a sys-
tem consists of the following components and expects them from the other peers:
(i) resources – storage and computational power, (ii) communication – a peer
can contact any other peer directly if it knows its network identification, and (iii)
navigation – internal structure that ensures correct routing among the peers. To
ensure maximum scalability, the system also adopts requirements of the Scalable
and Distributed Data Structures [8]: (i) data expands to new peers gracefully if
and only if the peers already used are efficiently loaded, (ii) there is no master
site to be accessed when searching for objects, e.g., there is no centralized direc-
tory, and (iii) the data access and maintenance primitives (search, insert, split,
etc.) never require atomic updates to multiple peers.

In the following, we describe a space-partitioning technique called General-
ized Hyperplane Tree Star and a space-transformation technique named Metric
Chord.

3.1 GHT∗

The Generalized Hyperplane Tree Star (GHT∗) [9] is a decentralized structured
P2P network that distributes data to peers based on the generalized hyperplane
partitioning principle. Each peer maintains a tree structure called Address Search
Tree (AST). An example of AST with the corresponding space partitioning is

Similarity Searching in Structured and Unstructured P2P Networks 405

Fig. 4. Address Search Tree with the generalized hyperplane partitioning [9]

depicted in Figure 4. Internal nodes of AST store routing information – the
definition of hyperplane. In metric spaces, the generalized hyperplane is defined
using two objects p1, p2, so-called pivots. The data objects o ∈ M such that
d(o, p1) ≤ d(o, p2) form the left partition whereas the other objects form the
right partition. Leaf nodes of AST store pointers to local buckets (denoted as
BID) or to other peers (denoted as NNID). A bucket is a limited storage space
dedicated for data objects, e.g., a memory segment or a disk block. The number
of buckets managed by a peer depends on its own potential and capacity. Since
the structure is dynamic and new objects can be inserted at any time, a bucket
on a peer may reach its capacity limit. In this situation, a new bucket is created
and objects are redistributed between these two buckets following the hyperplane
newly defined. The new bucket may also be allocated on a different peer. Thus,
the structure grows as new data come in.

The core of the algorithm lays down a mechanism for locating the respective
peers that hold requested objects. Whenever a peer wants to query or modify
the data, it must first consult its own AST to get locations, i.e. peers, where the
data resides. Then, it contacts the peers via network communication to actually
process the operation. Since we are in a distributed environment, it is practically
impossible to maintain a precise address for every object in every peer. Thus,
the ASTs at the peers contain only limited navigation information which may be
imprecise. The locating step is repeated on the contacted peers whenever AST is
imprecise until the desired peers are reached. The algorithm guarantees that the
destination peers are always found. The structure provides a mechanism called
image adjustment for updating imprecise parts of AST automatically.

3.2 M-Chord

The Metric Chord (M-Chord) [10] is a decentralized structured P2P network as
well but it applies a space transformation rather than a space partitioning. The

406 V. Dohnal and P. Zezula

Fig. 5. The mapping principle of M-Chord [10]

transformation maps original objects to numeric identifications that are conse-
quently organized in B+-tree. In particular, a set of objects p0, . . . , pn−1 (pivots)
are selected and the following transformation based on distances is defined:

idistance(o) = d(o, pi) + i · c.
The distance of object o to the closest pivot pi is determined and along with the
separation constant c the numeric address is obtained. Figure 5 visualizes this
mapping.

Having the data space mapped into the one-dimensional domain, each peer
of the system takes over responsibility for an interval of keys. The structure of
the system is formed by the Chord circle [11]. This P2P protocol provides an
efficient localization of the peer responsible for a given key. When inserting a
new object into the structure, the initiating peer computes the idistance value
and employs Chord to forward a store request to the peer responsible for the
corresponding interval. The peers store data in B+-tree. When a peer reaches
its storage capacity limit, it requests a split. A new peer is placed on the Chord
circle, so that the requester’s storage is split evenly.

3.3 Scalability Evaluation

In this section, we summarize experience with the approaches described above.
We focus mainly on the scalability issue and concurrent query processing. A com-
plete comparison made from other perspectives is available in [9].

Both the structures were implemented as overlays in MUFIN, which allows us
to compare them objectively. We used a real-life dataset consisting of 1 million
images taken from the CoPhIR dataset [12], for details please refer to Section 5.1.
In M-Chord, the transformation using 40 pivots was defined and the capacity
of peers’ storage was fixed to 5,000 objects. In case of GHT∗, the peers could
maintain up to five buckets each of capacity of 1,000 objects. All presented
performance characteristics of query processing have been obtained as an average
over 100 queries with randomly chosen query objects and the radii of 0.8 (about
100 objects returned).

Similarity Searching in Structured and Unstructured P2P Networks 407

Fig. 6. Increasing data volume: (left) costs in parallel distance computation costs, and
(right) query-throughput improvement ratio

Figure 6(left) presents the computational costs in terms of the number of
parallel distance computations, i.e. it corresponds to the query response time.
The costs grow very slowly. This is caused by the following facts: the peers
involved in searching contain more data; and the data space got denser when
the volume of data was increased. The noticeable graph fluctuations are caused
by quite regular splits of overloaded peers. Figure 6(right) depicts the query-
throughput improvement ratio that measures how many queries can be eval-
uated concurrently without degradation of response time. The differences in
the respective improvement ratios are introduced mainly by differences between
single-query parallel costs of individual structures. M-Chord handles simultane-
ous queries noticeably better than GHT∗. GHT∗ employs quite a high number of
peers during the query processing, so parallel distance computations are low (see
Figure 6(left)). Therefore, simultaneous queries hit the same peers very likely,
which increases the overall response time. Furthermore, there is a higher prob-
ability in M-Chord that different queries incur load at different peers and, thus,
the parallel costs are only marginally increased.

MUFIN inherently supports also centralized index structures. So, the perfor-
mance of distributed structures can be further improved by organizing peers’
local data in a centralized index structure. For example, a very popular solution
is to apply M-tree [13] or D-index [14].

4 Unstructured Networks

A technology based on Semantic Overlay Networks (SONs) [15,16,17], which
creates a semantic overlay upon an existing unstructured network (e.g. Gnutella),
has proven to be useful. The peers sharing similar interests are grouped into
semantically similar clusters to improve query performance, while keeping a high
degree of peer autonomy. An emerging research direction is to apply principles
of self-organizing systems originating from different disciplines such as biology
or social sciences. In general, self-organizing systems are characterized by a high
degree of scalability, adaptability to changing environment, and robustness to
sudden errors. Existing approaches [18,19] applied to search in unstructured
networks usually adopt a self-organizing theory of biological systems – the ant-
colony system or the social-network theory.

408 V. Dohnal and P. Zezula

Fig. 7. MSN peer’s schema

In this section, we outline a search system called Metric Social Network
(MSN) [19]. In particular, MSN can be observed as an overlay implemented as a
MUFIN’s overlay that operates as an unstructured P2P network. MSN exploits
the social-network paradigm [20,21] to lay basics for self-organizing principles –
the relationships among peers are established according to analyses of answers
of processed queries. An adaptive routing algorithm exploits these relationships
for efficient query forwarding. The major difference from the structured-network
approaches is that no data distribution principle is imposed, so data need not
be transferred to another peer for storage.

Firstly, we summarize the MSN’s architecture. Next, we describe its routing
algorithm. Finally, we present a sketch of performance evaluation.

4.1 Architecture

Each peer of MSN can organize its own data, can pose similarity queries and
must return answers to the queries. Interconnection between peers is based on
the query-answer paradigm, i.e., new relationships among peers are established
according to answers returned to a processed query. Thus, each peer maintains
metadata about queries it has asked or answered, called a query history. This
represents peer’s local knowledge about the network and is exploited by a query-
routing algorithm.

A peer P is a tuple (X, H, M), where X identifies the peer’s local database, and
H = {E1, . . . , En} represents the query history. Individual entries Ei identify
peers that participated in answering a query Q and form query-specific relation-
ships. In addition, each peer maintains a list of peers M that are employed to
explore new and previously unvisited parts of the network. The schema of a peer
is depicted in Figure 7.

When a query Q is issued at a peer Pstart, the routing algorithm tries to
locate the most promising peers P1, . . . , Pn in the network. These peers process

Similarity Searching in Structured and Unstructured P2P Networks 409

the query on their local data and return their answers (partial answers) APi(Q)
to the peer Pstart. This peer merges the partial answers and returns the combined
answer to the user, denoted as A(Q) =

⋃n
i=1 APi(Q). Remark that the combined

answer is approximate. To determine which peer answered better, the quality
of the partial answers has to be measured. Even though sophisticated quality
measures can be defined, MSN uses the quality of peer’s answer expressed simply
as the number of retrieved objects, i.e. |APi(Q)|.

Two kinds of relationships are distinguished. Firstly, the acquaintanceship
denotes that the target of the relationship is the best peer (acquaintance) to
answer the given query. The acquaintance has the highest quality of the answer
to the query Q and is defined as follows:

Acq(Q) = P ⇔ ∀Pi : |AP(Q)| ≥ |APi(Q)|,
for i ∈ {1, . . . , n} where n denotes the number of peers answering the query Q.
Secondly, the friendship represents the similarity of peers – two peers are friends
when they give a similar (high-quality) answer to the query Q.

Fri(Q) = {Pi : |APi(Q)| ≥ |A(Q)|/n}.
Note that the acquaintance and the best friend are the identical peer.

After processing the query Q, each peer Pi identified as a friend stores a new
entry E in its query history. This entry E = (Q, Acq(Q), |AAcq(Q)(Q)|, F ri(Q))
is a tuple, where Q = R(q, r, t) denotes the range query with timestamp, Acq(Q)
is the acquaintance, |AAcq(Q)(Q)| is its quality, and Fri(Q) is the set of friends.
The query-issuing peer Pstart and peers contacted as exploration peers store this
entry as well, but the set of friends is empty unless the particular peer has also
been identified as a friend.

4.2 Adaptive Query Routing

In this part, we describe an adaptive query-routing algorithm proposed in [22]
that enables each peer to control routing according to its current knowledge. In
principle, each peer that is asked to process a query checks its query history for
the most relevant entries. Next, the peer forwards the query to the acquaintances
of these entries or evaluates the query on the local data and contacts friends. If
there are few relevant entries only or there are not any, the routing algorithm
uses exploration peers to locate unvisited peers that may contain the required
data.

Relevancy of Entries. The relevancy of entries is measured by confusability of
two queries – the query being evaluated and a query stored within an entry in the
query history. The confusability function is a continuous function and returns
a real value within [0, 1]. The higher the value is returned, the more confusable
(relevant) the queries are. If it returns 1, the queries are identical. The function
takes into account the distance between query objects of queries, their query
radii and the time when the queries were issued. The time aspect is important
to allow aging information about the peer’s neighborhood. The formal definition
called adaptive gaussian-like confusability is available in [22].

410 V. Dohnal and P. Zezula

Exploration. The design of MSN incorporates factors to improve quality of
query answers and to allow new peers to join the system efficiently. Each peer of
MSN maintains its list of exploration peers over time [23]. At the beginning, it
has to know at least one existing peer in order to be able to forward a query to
other peers. The routing algorithm exploits this list in a way that it contacts not
only the most promising peers retrieved from the query history but also some
exploration peers that help find new and unvisited parts of the network.

Routing Algorithm. In general, a new query is being forwarded to the peers
that should have better knowledge about the query – knowing more-promising
peers or containing relevant data. The peer’s knowledge is interpreted as con-
fusability (P conf) and for query-issuing peer Pstart is set to zero (P conf

start = 0).
Firstly, Pstart goes through its query history, computes the values of confusabil-
ity between a new query Q = R(q, r, t) and queries of all stored entries, and
returns the entries descendingly ordered by confusability. Secondly, the list of
relevant entries Erel is constructed. All entries having confusability ≥ 0.8 are
added to Erel, because they are highly relevant to Q. If there are fewer entries
in Erel than 5, next entries having confusability ≥ 0.3 are added to fill up Erel

to contain five entries. Next, each entry in Erel is processed as follows:

– If the entry has confusability C higher than the current peer’s confusability
P conf , the query is forwarded to the acquaintance Pacq picked from this
entry and its confusability P conf

acq is set to C.
– Otherwise the query is not forwarded and is processed on local data. In

addition, friends of entries in Erel that have confusability ≥ 0.8, are asked
to evaluate Q on their local data too. It is supposed that these friends hold
substantial parts of the total answer A(Q). The partial answers are finally
returned to Pstart.

If the list Erel is shorter than five entries or even does not contain any entry,
Q is forwarded to up to five exploration peers. To avoid flooding the network,
forwarding to exploration peers is stopped after a predefined number of hops
is reached (in our case, 3 hops). The complete specification of adaptive query
routing algorithm is available in [22].

4.3 Adaptability and Robustness Evaluation

In order to study characteristics of the query routing algorithm, we have imple-
mented MSN in MUFIN and executed real-life experiments. We used 100,000
images taken from the CoPhIR dataset [12], described in details in Section 5.1.
Each of image has its owner ID associated, so we distributed images over P2P
network in a way that each peer contains images of one Flickr user. Because
there are high differences in the number of images taken by individual users, we
have split overfilled peers. As a result, we obtained 2,000 peers each organizing
50 images of the same Flickr user.

Figure 8(left) reports on the results obtained by repeating 100 times a batch
of queries and measuring performance indicators. In particular, we measured

Similarity Searching in Structured and Unstructured P2P Networks 411

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

Test series

Empty Query History

Recall (%)
Contacted peers (total)

Exploration peers

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

Test series

Bootstrap Performed

Recall (%)
Contacted peers (total)

Exploration peers

Fig. 8. Performance indicators of MSN: (left) query history is initially empty, and
(right) query history is populated with 3 random queries

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Test series

Peer Disconnections

Recall (%)
Contacted peers (total)

Exploration peers

Fig. 9. Performance indicators of MSN: gradual disconnection of peers

recall, the number of exploration peers used during querying, and costs in terms
of contacted peers (peers participated in query evaluation including exploration
peers). The batch consisted of 50 range queries with randomly picked query
objects and varying radii. From the figure, we can read that the system starting
from zero knowledge (peers had query histories empty) started to evolve and the
recall has reached 85% while contacting less than 90 peers. Initially, each peer
had just 50 exploration peers, so the peers could use only exploration peers for
query routing.

Performance of MSN can radically change if a peer joining the system proceeds
a bootstrap procedure. Figure 8(right) shows the same experiment but the peers

412 V. Dohnal and P. Zezula

performed the following bootstrap procedure during their joining. Firstly, three
objects were picked at random from the peer’s local data. Secondly, range queries
with these objects and radius 0.8 were posed. Finally, the MSN evaluated the
queries. This helps distribute the knowledge about new peer’s local data in the
network. As a result, the first batch execution reached 80% recall. After 100th

batch execution, the recall was 97% and the costs decreased to 37 contacted
peers. In this way, the quality of service of MSN is greatly improved.

We have also tested robustness of MSN by gradually disconnecting up to 1,000
peers. Figure 9 shows the same performance indicators when 200 random peers
got disconnected forcibly after each 20th batch execution. The most interesting
fact about the recall curve is that it stays almost constant. This proves adapt-
ability of the query routing algorithm and robustness of the whole system. The
answer was degrading in terms of amount of retrieved data, but only because
some data became unavailable.

5 Prototype Applications

As mentioned in the previous sections, the similarity search approach used in
MUFIN is highly universal and extensible. In this section, we describe several
application domains where MUFIN can be used. However, due to MUFIN’s ver-
satility this list is not complete. Firstly, we present a large-scale image retrieval
demo. Next, we summarize other applications and give ideas how to incorporate
them into MUFIN.

5.1 Large-Scale Image Search

This application [24] represents a possible instance of MUFIN for content-based
similarity search in a large collection of general images available on the inter-
net. In particular, the dataset consists of 100 million images taken from CoPhIR
Database [12]. Each image is represented by five global MPEG-7 descriptors [25],
namely color structure (CS), color layout (CL), scalable color (SC), edge his-
togram (EH), and homogeneous texture (HT). Specifically, CS, CL, and SC ex-
press the spatial distribution of colors in an image. The EH captures local density
of edge elements and their directions (sometimes called the structure or layout);
it acts as a simple and robust representation of shapes. Finally, HT is a texture
descriptor. These descriptors are represented as vectors and the MPEG-7 stan-
dard defined a specific distance measure for each of them. These measures satisfy
the metric postulates and they are aggregated into a single distance function.
The whole dataset is organized in M-Chord and peers’ local data are stored in
M-tree. For details, please refer to Section 3.2. An example of retrieving k im-
ages which are the most similar to a given query image is given in Figure 10.
For further details, please refer to [2,7].

5.2 Biometric Applications

In general, biometrics are automated methods of recognizing a person based on
the person’s physiological and behavioral characteristics. Biometrics include a

Similarity Searching in Structured and Unstructured P2P Networks 413

Fig. 10. Image Retrieval: the result of a query

Fig. 11. Example of minutiae extracted from a fingerprint image [26]

wide variety of technologies ranging from traditional fingerprints over facial or
iris recognition and retinal scanning to DNA testing, speech verification and gait
recognition. MUFIN can be applied to the problem of identification, the aim of
which is to tell who the person that exposes its biometric characteristic is.

A famous application of biometrics is in criminalistics and in border and
immigration control where fingerprints are compared. Minutiae is one of the
successfully applied methods of comparing ridges in fingerprints [26]. It identifies
places where ridges start, stop or bifurcate (branch), refer to Figure 11. These
places are then observed as points with a direction and are converted to polar
coordinates. As a result, a fingerprint is described as a sequence of points. Two
sequences are then matched using a weighted edit distance function. The used
weights do not break metric postulates, so this distance function is directly
applicable to MUFIN.

Gait, or the way a person walks, is a unique and idiosyncratic characteristic
of the person. Its advantage for biometrics is that it is difficult to conceal and
it can be easily captured even at long distances. In [27], the gait information is
extracted from a video sequence. In particular, a silhouette of the walking person
is determined for each video frame by subtracting the background of the image.
The sequence of silhouettes is divided in subsequences each of them representing
one gait cycle (two steps). Then, an average silhouette is computed for each
subsequence, see Figure 12. The binary silhouettes are then compared using the
Euclidean distance, which is metric.

414 V. Dohnal and P. Zezula

Fig. 12. Example of average silhouette extraction [27]

6 Conclusions

There are no doubts that modern similarity search in computer networks needs
new technology to apply. In this paper, we have shortly introduced MUFIN, an
approach to similarity searching, which is designed on concepts of: (i) extensibil-
ity - to achieve applicability to different collections comparing data by various
measures of similarity; (ii) scalability - to process extremely large collections of
data queried by many concurrent requests; (iii) infrastructure independence -
to tune performance according to needs of specific applications. The imple-
mentation on structured P2P networks is able to achieve quality of service by
tuning the performance according to specific application needs. We discuss sev-
eral structured P2P protocols, all of them running with logarithmically bound
number of hops. Local data on peers is organized in centralized metric similarity
search structures. Unstructured P2P networks with high degree of peer churning
are considered as systems of self-organizing peers for which a social network of
search requests and answers is built. Such architecture can learn and improve
its effectiveness in time; it is also able to react to the changing number of peers
properly. Important features are demonstrated by an on-line demo available from
http://mufin.fi.muni.cz/imgsearch/.

Acknowledgments. This research was partially supported by the Czech Sci-
ence Foundation projects 201/09/0683 and 201/07/P240. The access to the
MetaCentrum (super)computing facilities provided under the research intent
MSM6383917201 is also appreciated.

References

1. Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by
an image retrieval application. In: The 32nd Annual International ACM Conference
on Research and Development in Information Retrieval, p. 840. ACM Press, New
York (2009)

Similarity Searching in Structured and Unstructured P2P Networks 415

2. Batko, M., Dohnal, V., Novak, D., Sedmidubsky, J.: MUFIN: A Multi-Feature
Indexing Network. In: The 2nd International Workshop on Similarity Search and
Applications, pp. 158–159. IEEE Computer Society, Los Alamitos (2009)

3. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. In: Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

4. Batko, M., Novak, D., Zezula, P.: MESSIF: Metric similarity search implementation
framework. In: DELOS Conference 2007: Working Notes, pp. 11–23. Information
Society Technologies (2007)

5. Batko, M., Kohoutková, P., Zezula, P.: Combining metric features in large collec-
tions. In: The 1st International Workshop on Similarity Search and Applications,
pp. 79–86. IEEE Computer Society, Los Alamitos (2008)

6. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces
and its use for approximate similarity search. ACM Transactions on Information
Systems 21(2), 192–227 (2003)

7. Novak, D., Batko, M., Zezula, P.: Web-scale system for image similarity search:
When the dreams are coming true. In: The 6th International Workshop on Content-
Based Multimedia Indexing, pp. 446–453. IEEE, Los Alamitos (2008)

8. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* – a scalable, distributed data
structure. ACM TODS 21(4), 480–525 (1996)

9. Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peer-to-peer
similarity search structures. Future Generation Computer Systems 24(8), 834–848
(2008)

10. Novak, D., Zezula, P.: M-Chord: A scalable distributed similarity search structure.
In: The 1st International Conference on Scalable Information Systems, pp. 1–10.
IEEE Computer Society, Los Alamitos (2006)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: The 2001 ACM
Conference on Applications, Technologies, Architectures, Protocols for Computer
Communications, pp. 149–160. ACM Press, New York (2001)

12. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Ra-
bitti, F.: CoPhIR: a test collection for content-based image retrieval. CoRR,
abs/0905.4627v2 (2009)

13. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: The 23rd International Conference on Very Large Data
Bases, pp. 426–435. Morgan Kaufmann, San Francisco (1997)

14. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-Index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)

15. Aberer, K., Cudré-Mauroux, P.: Semantic overlay networks. In: The 31st Inter-
national Conference on Very Large Data Bases, p. 1367. ACM Press, New York
(2005)

16. Bender, M., Crecelius, T., Kacimi, M., Michel, S., Parreira, J.X., Weikum, G.:
Peer-to-peer information search: Semantic, social, or spiritual? IEEE Data Eng.
Bull. 30(2), 51–60 (2007)

17. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. In:
Moro, G., Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI),
vol. 3601, pp. 1–13. Springer, Heidelberg (2005)

18. Michlmayr, E.: Self-organization for search in peer-to-peer networks: the
exploitation-exploration dilemma. In: The 1st international conference on Bio in-
spired models of network, information and computing systems, p. 29. ACM Press,
New York (2006)

416 V. Dohnal and P. Zezula

19. Sedmidubsky, J., Bartoň, S., Dohnal, V., Zezula, P.: A self-organized system for
content-based search in multimedia. In: The IEEE International Symposium on
Multimedia, pp. 322–327. IEEE Computer Society, Los Alamitos (2008)

20. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and
Applications (Structural Analysis in the Social Sciences). Cambridge University
Press, Cambridge (1994)

21. Granovetter, M.: The strength of week ties. American Journal of Sociology 78(6),
1360–1380 (1973)

22. Dohnal, V., Sedmidubsky, J.: Query routing mechanisms in self-organizing search
systems. In: The 2nd International Workshop on Similarity Search and Applica-
tions, pp. 132–139. IEEE Computer Society, Los Alamitos (2009)

23. Sedmidubsky, J., Bartoň, S., Dohnal, V., Zezula, P.: Querying similarity in metric
social networks. In: Enokido, T., Barolli, L., Takizawa, M. (eds.) NBiS 2007. LNCS,
vol. 4658, pp. 278–287. Springer, Heidelberg (2007)

24. Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidub-
sky, J., Zezula, P.: Building a Web-scale Image Similarity Search System. Multi-
media Tools and Applications, 31 (2009)

25. Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7: Mul-
timedia Content Description Interface. John Wiley & Sons, Inc., New York (2002)

26. Jain, A.K., Maltoni, D.: Handbook of Fingerprint Recognition. Springer-Verlag
New York, Inc., Secaucus (2003)

27. Fazenda, J., Santos, D., Correia, P.: Using gait to recognize people. In: The Inter-
national Conference on Computer as a Tool, vol. 1, pp. 155–158. IEEE Press, Los
Alamitos (2005)

	Similarity Searching in Structured and Unstructured P2P Networks
	Introduction
	Multi-Feature Indexing Network
	Modeling Similarity
	Architecture
	Properties

	Structured Networks
	GHT*
	M-Chord
	Scalability Evaluation

	Unstructured Networks
	Architecture
	Adaptive Query Routing
	Adaptability and Robustness Evaluation

	Prototype Applications
	Large-Scale Image Search
	Biometric Applications

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

