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Abstract. While mechanisms exist to evaluate the user-perceived qual-
ity of video streamed over computer networks, there are few good mech-
anisms to do so in real time. In this paper, we evaluate the feasibility
of predicting the stream quality of partial portions of a video stream
based on either complete or incomplete information from previously rated
streams. Using stream state information collected from an instrumented
media player application and subjective stream quality ratings similar to
the Mean Opinion Score, we determine whether a stream quality predic-
tion algorithm utilizing dynamic time warping as a distance measure can
rate partial streams with an accuracy on par with that achieved by the
same predictor when rating full streams. We find that such a predictor
can achieve comparable, and in some cases markedly better, accuracy
over a wide range of possible partial stream portions, and that we can
achieve this using portions of as little as ten seconds.

Keywords: Quality of Experience, Quality of Service (QoS), Streaming
Media, Measurement, Performance, Reliability.

1 Introduction

Determining the subjective, user-perceived quality of a media stream in a scal-
able and quantifiable way is a difficult problem. As with all Internet-based appli-
cations, there is a complex interplay between network congestion conditions and
the effect these congestion conditions have on application performance. Knowing
how end users perceive the quality of audio and video streamed on-demand over
computer networks, and the relationship between stream quality and network
congestion, can lead to better design of streaming protocols, computer networks,
and content delivery systems.

A number of studies have explored the idea of combining the ease and conve-
nience of objective measurements with the information offered by a subjective
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rating such as the MOS [1] to discern user-perceived stream quality. Some, like
[2] and [3], correlate measurements on both the sender and receiver sides. Oth-
ers, like [4] and [5], use the Emodel [6], an objective mechanism for assessing
audio quality using transmission parameters. An alternate approach is to uti-
lize application-layer objective metrics, taken at the client’s machine through
an instrumented media player application [5,7,8,9]. These approaches allow one
to take measurements as close to the user as possible, in some cases without
requiring the user’s participation, providing a more accurate assessment of the
state of the application at any given time.

In previous work [10,11,12], we demonstrate that objective data collected
from an instrumented media player application can be used to predict subjective
quality ratings with a high degree of accuracy (typically 70-90%) when input into
a stream quality predictor that assigns ratings using a nearest-neighbor heuristic
and dynamic time warping (DTW) as its distance measure. While our success
rates are quite high, we base our predictions on complete stream data well after
the stream has finished playing out. A more practical approach would be to
predict subjective quality ratings in real time, as the stream is playing out.
Modeling such a system on our previous work, such a predictor would be trained
using objective and subjective measurements from past streams ahead of time,
and apply this information to the task of predicting quality ratings for streams
as they play out.

An important intermediate step in this process is to determine if this same
stream quality predictor can accurately predict the user-perceived quality of a
video stream using only partial information about the stream to be rated and/or
the streams in the training set, and if so, if some portions are better or worse
than others in terms of accuracy. This is the focus of this paper.

The input to our stream quality predictor consists of set of video stream state
information, namely packet retransmissions, collected from an instrumented me-
dia player application for 228 video streams, with corresponding user-perceived
quality ratings for these same streams. We first train the predictor using all of
the available data and ratings for all streams, then test the predictor by hav-
ing it predict ratings for ten-second and fifteen-second portions of these same
streams. In addition, we train the predictor on various portions of the original
streams, and then test the predictor on portions of the original streams as well.
We compare the predictor’s accuracy in these scenarios to the predictor’s accu-
racy when training and testing on full streams. Our results show that in most
cases, our predictor is about as accurate using partial stream data as it is using
full stream data. We also demonstrate that we fare slightly better when we use
partial stream data for both training and testing than when we train the predic-
tor on full streams to predict the quality of partial streams, and that this holds
for many combinations of training and test stream portions, even ones that are
dissimilar in time from each other. In some cases, we can consistently achieve
hit rates above 90%, in particular when we select similar portions (in time) from
similar streams. Finally, we show that we need as little as ten seconds of data
to achieve these hit rates.
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The rest of this paper is structured as follows. We review the characteristics of
video streams that can be exploited to infer stream quality in Sect. 2. We discuss
our stream quality prediction algorithm, describe how partial stream prediction
can be used to prove the feasibility of real-time stream prediction, and present
the methodology we use to form partial streams from our data, in Sect. 3. In
Sect. 4, we describe the source data for the experiments and the mechanism
we use for evaluating predictor accuracy. Section 5 presents the results of our
experiments and discusses their implications on stream quality prediction system
design. We conclude the paper in Sect. 6 and highlight areas for future work.

2 Video Stream Characteristics

We have developed an instrumented version of Windows Media Player [12] that
collects application-layer data about the state of a media stream at predefined
intervals (currently, one second) using ActiveX hooks. Figure 1 shows an example
of the data collected by our tool for a stream several minutes in duration that
experiences a moderate level of network congestion. The plot illustrates a few
ways in which the media player reacts to the presence of congestion on the
network: for example, the number of retransmitted packets increases and the
rate at which packets are received decreases as soon as congestion is detected
on the network, while the number of lost packets rises later on in the plot. The
plot also shows a transient period, several seconds in duration, at the start of

Fig. 1. Time-series data collected by the instrumented media player application. (a)
Packet-level data: retransmitted packets and received packets are on the left y-axis, lost
packets on the right y-axis. (b) Bandwidth and frame rate, on the left y-axis and right
y-axis, respectively. (c) Buffer count, including the initial startup buffering period.
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the stream, where the packet reception rate, bandwidth, and frame rate all rise
to their steady-state levels as the player and server negotiate the connection
between them. There is a comparable transient period at the end of the stream,
where we see an uptick in the number of lost packets reported and a buffer
starvation event occurring, as the player and server account for packets that will
not be able to be recovered by the end of the stream.

Streams that have been exposed to similar levels of network congestion will
most likely show similar patterns of retransmitted packets, lost packets, etc.,
even if the exact occurrences and durations do not match exactly. Streams that
exhibit these similar characteristics will also exhibit similar user quality ratings,
particularly once individual user biases have been accounted for. Ideally, there
will be one or more measurements that most strongly reflect these quality ratings.
In [12], we found that retransmitted packets are the most strongly influential on
user-perceived stream quality. Thus, we can reduce the stream state information
to just this one measurement over time, and discern stream similarity based on
this measurement.

3 A Methodology for Real-Time
Stream Prediction Using Partial Streams

Exploiting objectively-measured stream data to predict user-perceived stream
quality ratings resembles problems that are classic data mining problems. By
comparing patterns within the application layer metrics to user quality ratings
for that stream, we can understand the effects of network congestion on user
perception of stream quality.

Our stream quality prediction algorithm is described in detail in [10]; here, we
briefly summarize its operation. Our particular problem calls for using knowledge
of pre-labeled data to predict labels on new data[13,14,15]. The goal is to produce
a predictor by training, i.e. running a data mining algorithm, on a set of labeled
data. The predictor can then be tested on unlabeled data. Our data consists of a
set of measurements collected from the instrumented media player on a given set
of streams. The labels in this case are the quality ratings assigned by users who
watched these streams as measurements were being collected (see Section 4 for
details on how this data was obtained).

Our predictor uses a nearest neighbor algorithm, which locates all of the rated
streams in the training set which are closest to the unrated stream, subject to
some distance metric. A single rating is produced from the set of ratings for
the closest points: if there is one nearest neighbor, assign the unrated stream
that stream’s rating; otherwise, compute the mean of the ratings and assign
that value to the unrated stream. The distance metric used by our predictor is
an extension to dynamic time warping (DTW), a generalization of Euclidean
distance designed for use with time series data, that facilitates its use on multi-
dimensional time series [16]. Briefly, DTW is based on the assumption that two
time series may be quite similar, even if the precise timing between the two series
is misaligned. While DTW aligns the start and end points of each time series
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(stream), it allows points in mid-stream to align with the closest appropriate
point. This fluidity often results in more accurate predictions and pattern iden-
tifications. A stream of unknown quality that exhibits packet loss on a periodic
basis, for example, is expected to have similar quality to another stream that
also loses packets periodically. However, it should not be a requirement for sim-
ilarity between such streams that the packet losses occur at precisely identical
times. To reduce the computational time and (quadratic) complexity inherent
in DTW, we apply two optimizations: the popular Sakoe-Chiba band [17,18],
which limits the distance that one time series can shift relative to the other;
and Keogh minimum bounds [17], to quickly determine candidates for the set of
nearest neighbors.

Preparing this predictor is a two step process. The first step, training, consists
of reading in and storing the state information collected for a single stream rated
by a single individual. The second step, tuning, consists of selecting the proper
predictor parameters or inputs: K, the number of neighbors to use for predicting
the quality of a stream, and w, the width of the Sakoe-Chiba bands, which we
do using a leave-one-out cross-validation procedure on each training set.

In previous work, we have trained and tested this predictor using all of the data
collected from a single media player application for a single user who watched
and rated a particular media stream subjected to a particular level of network
congestion. While doing so gives us a good idea of the accuracy of the predictor
under the best of circumstances, it is not realistic. A production stream quality
prediction system will have to assign ratings to incomplete streams. To mimic
these circumstances, and as an important intermediate step to determine the
feasibility of predicting stream quality in real time, we consider mechanisms for
reducing the available information about a stream in the predictor’s training
phase and test phases.

One approach is to train our predictor using all of the information available
from each stream, then have the predictor assign ratings to smaller portions of
the available test streams. The advantage of this approach is that the predic-
tor does not require full stream information before assigning a rating to a test
stream. The disadvantage is that DTW can perform poorly when training and
test stream sizes are severely mismatched; since DTW fixes the start and end
points of the streams, it compacts the longer (training) streams to match the
shorter streams (to be rated), which may mean that we lose valuable informa-
tion about the longer stream in the process. Another approach is to train our
predictor using only the information that it is likely to have about the streams
it will be rating: in this case, smaller portions of the available training streams.
The advantage to this approach is that the stream sizes are similar, allowing for
potentially better matches by DTW, as we have shown previously [10].

It is desirable to determine the smallest portion of a stream for which our
predictor achieves accurate stream quality predictions, as well as the “optimal”
location in the training and test streams from which to take these samples. A
unique challenge in this case is to determine how to best select comparable in-
tervals from the full streams, which have different durations, such that we can
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easily compare shorter and longer streams. We select arbitrarily small portion
sizes, ten and fifteen seconds, and divide each stream into smaller substreams of
these lengths. We also divide each stream into the same number of substreams,
regardless of the total length of the stream, by taking our portions at certain
percentages from the start of the stream (in this case, between 1% and 90%).
Thus, a thirty-second stream and a four-minute stream will yield the same num-
ber of substreams. This means that the smaller streams will be somewhat over-
represented in our training set and that the longer streams will be somewhat
underrepresented in our training set. However, it also means that we can easily
match up substreams from different source streams, without worrying about not
having an analogous period from the source stream.

Different streams will have different stream state characteristics which will
vary over the lifetime of the stream. The transient and steady-state periods,
for instance, will have different characteristics; the steady-state period’s state
information may also reflect the current level of action in the video, or the dura-
tion from the start of the stream. To determine how best to match up different
portions of the stream during the training and test phases of our prediction al-
gorithm, we use the following approach. We first train our predictor as usual
with the full stream information. When testing, we rate each substream using
the full stream training information. This demonstrates how well the predictor
does when it has less information in the testing phase than in the training phase.
We then train the predictor using, in turn, each possible substream, and then
test it on each possible substream. This demonstrates how well training and test
stream intervals match up when taken from similar and dissimilar points in the
stream, as well as from similar and dissimilar source streams.

4 Experiments

Our data collection mechanism, testbed network, and experimental setup are
described in detail in [10]; we summarize these briefly below.

Our data collection testbed consists of a set of 14 client machines on a subnet
of a small campus network, and a media server on an isolated subnet with a router
which runs NIST Net software [19]. The media server is a 2.4 GHz Pentium
processor machine with 512 MB of RAM, running Windows Server 2003 and
Windows Media Server 2003 software, streaming RTP over UDP. The NIST Net
router is a 700 MHz processor machine with 512 MB of RAM, running Linux
kernel 2.4.21-27 and NIST Net version 2.0.12. The client machines have 3.4 GHz
Pentium processors and 1 GB of RAM and run Windows XP SP2 and Windows
Media Player version 10.

Table 1 lists the source streams used in this study, which were selected to
provide some variety in duration, style, content, and amount of action. NIST
Net applies randomly-distributed packet losses on the testbed network, over
the duration of each stream, at percentages of 0, 5, 15, and 25; there was no
additional delay or delay jitter applied to the network. The network packet
losses, which we determined experimentally, are higher than those typically seen
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Table 1. Description of the source streams used in this study

Name Time Action BW
(mm:ss) Level (kbps)

Ad 0:30 Moderate 273

Trailer 2:22 High 273

News 4:09 Moderate 331

in computer networks, both to overcome the mechanisms that Windows Media
Player uses to mitigate the effects of network congestion [9] and to affect the
media experience in an obvious fashion that influences the streams in the same
manner each time.

We showed our study participants each of the three streams twice, once with
no packet loss introduced and once with either 5, 15, or 25% packet loss, blindly
randomized over the participants. The participants rated the audio, video, and
overall quality of each stream using seven-point scales, which allows for slightly
finer granularity in participant responses [20,21]. The measurement tool collected
data from each stream simultaneously. From these experiments, we collected data
from a total of 38 participants and their respective client machines, yielding data
for 228 streams in total.

Normalizing user ratings mitigates the factors that affect user ratings, such as
individual sensitivity to encoding differences, by basing ratings on the biases of
the particular user in question. We use a z-score to normalize ratings, zs = rs−r̄

σr
,

where rs is the user’s quality rating for stream s, r̄ is the average of the user’s
quality ratings on all streams viewed, and σr is the standard deviation of the
user’s quality ratings on all streams viewed.

We measure prediction accuracy by a hit rate metric, where hit rate is the
percentage of time a prediction falls within 0.8 standard deviations of the user’s
z-score for that stream. This corresponds to approximately plus or minus one
point on the raw seven-point scale.

Using the data we collected, we first trained our predictor on each of the three
full streams, then used this training data to assign ratings to the ten and fifteen
second long substreams described in Section 3. We then trained the predictor on
each substream and used this training data to assign ratings to each substream.
In the discussion below, we refer to substreams as “partial streams”.

5 Results

In this section, we present our results for the two experiments described above:
training on full streams and rating partial streams, and both training on and
rating partial streams. For space reasons we only present the results for the ten-
second stream portions; the results for the fifteen-second stream portions are
nearly identical. As a point of reference, Table 2 lists the hit rates achieved by
our predictor when both training and testing on full streams. With one exception,
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Table 2. Hit rates for the stream quality predictor when training and testing on full
streams

Training Test Stream Params
Stream Ad Trailer News {K, w}
Ad 88.2 80.3 80.3 3, 1

Trailer 72.4 89.5 80.3 6, 0

News 64.5 75.0 86.8 8, 2

the hit rates achieved by this predictor are all above 72%, with hit rates above
80% for the majority of the train/test stream scenarios.

5.1 Assigning Ratings to Partial Streams with Full Stream Training
Sets

Figure 2 illustrates the accuracy of the predictor when training on full streams
and assigning ratings to ten second portions of the streams. The x-axes indicate
the percentage offset from the start of the stream from which the portion was
taken. The plots show a clear transient period at the start of each testing stream,
lasting anywhere from 7% to 30% from the start of the stream, during which
hit rates are below 60%. They also show a transient period at the end of the
stream for Ad, but not for Trailer or News. During the steady-state period,
hit rates fluctuate between 70% and 85% when either Ad or Trailer is used as
the training stream. These hit rates are comparable to slightly lower than the
hit rates achieved by the predictor when training and testing on full streams.
Hit rates are also comparable when the predictor assigns ratings to steady-state
portions of the Ad stream when News is the training stream.

When News, the longest stream, is the training stream, hit rates decrease
significantly (to below 70%) when the predictor rates portions of either Trailer
or News. Here we have hit upon a possible limitation of our system: the longer the
training stream, the less its characteristics match portions of the test streams.
Our results indicate that this limit is somewhere between the durations of Trailer
and News (2:20 and 4:10).

5.2 Assigning Ratings to Partial Streams with Partial Stream
Training Sets

Figure 3 plots the accuracy of the predictor when training on and rating ten
second portions of the streams. The percentages along the x- and y-axes indicate
the percentage offset from the start of the stream from which the ten second
portion was taken. The z-axis shows the hit rate for the predictor for a given
training and test stream combination.

When Ad is the test stream (the stream to be rated), shown in the first
column of plots in the figure, the best hit rates occur from about 40% of the
way through the test stream until about 70% of the way through the stream,
with hit rates typically between 80 and 90%. This is a significant improvement
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Fig. 2. Hit rates when training on full streams and testing on 10-second portions of
the streams, for all combinations of training and test streams

over the predictor’s accuracy when using the full streams for training and testing
(which are 72 and 65% for Trailer and News as training streams, respectively).
Here, using smaller portions of streams that are dissimilar in length when both
training and testing actually benefits the predictor, removing the pathologies
that make it difficult to accurately match up the two streams when using DTW.

When portions of Ad are used as the training stream and portions of either
Trailer or News are used as the test streams, hit rates are between 75 and 85%
during the steady-state period, These hit rates are comparable to slightly lower
than the hit rates achieved when the predictor trains and rates full streams.

The plots for the training/test stream combinations Trailer/Trailer, Trailer/
News, News/Trailer, and News/News all exhibit similar characteristics to each
other. During the steady-state periods, the predictor successfully rates the test
stream between 80 and 90% of the time for News/News and Trailer/Trailer, and
between 75 and 85% for News/Trailer and Trailer/News, which is comparable
to the hit rates when training and testing on full streams.

Figure 4 shows the portions of the training and test streams for which the
predictor is most accurate. The plots show that when the training and test stream
portions are taken from the same source stream, the best hit rates cluster around
the diagonal, which means that the predictor does best when the training and
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Fig. 3. Hit rates when training and testing on 10-second portions of the streams, for
all combinations of training and test streams

test streams are selected not just from the same source stream, but from the
same portion of the stream. In fact, the most significant result here is that the
predictor is actually able to achieve hit rates over 90% for Ad and News and over
95% for Trailer under these circumstances. When the training and test streams
are taken from different source streams, the best hit rates are between 85 and
90%, which is still rather high. We also see that we do not necessarily have to pull
our training and test stream portions from similar time periods in the stream to
achieve such high hit rates.

5.3 Discussion

Our results show that accurate predictions are quite possible, even with intervals
as small as ten seconds long, when only partial information about a stream is
available. In general, hit rates were at least in the neighborhood of, if not better
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 Training and Test Stream Portions Where Hit Rates Exceed 85%

Fig. 4. Training and test stream combinations that yield hit rates above 85%.
The Ad/Ad and News/News plots show data for hit rates above 88%, while the
Trailer/Trailer plot shows data for hit rates above 90%. The circles indicate hit rates
that are better than 90% (or 95%, in the case of Trailer/Trailer).

than, the hit rates achieved by the same predictor when using all available stream
information for training and testing.

In general, a real-time stream quality prediction system should avoid training
or testing during the transient period of the streams. Training and testing during
these periods leads to unreliable results and inaccurate ratings, because the
characteristics of this portion of the stream are dissimilar to the characteristics
of the steady-state portions of the streams. With very short streams, where the
transient period is relatively long compared to the length of the stream, we should
also avoid training and testing during the end-of-the-stream transient period,
since for short streams we often see a big uptick in certain measurements to help
make up for the lack of recovery time during stream play-out. For longer streams,
our results do not show an appreciably noticeable end-of-stream transient period.

If we use all available stream information (full streams) in the training phase
of our predictor, then the predictor can accurately predict stream quality ratings
on ten-second stream intervals between 70 and 85% of the time, assuming that
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one of the shorter streams (Ad or Trailer) is used as the training stream. If we
use News, our longest stream, as the training stream, then we are not able to
achieve such accurate results, due to the compacting of the longer stream by
DTW.

If we use partial stream information in both the training and testing phases of
our predictor, then as long as the predictor avoids training or testing during the
stream’s transient period, it has a lot of freedom in terms of choosing appropriate
training and test intervals. This is particularly true when the training and/or
test stream portions are pulled from Trailer or News. This means that we can
achieve results that are just as accurate, on balance, if we take the training and
test intervals from very different portions of the stream as if we took them from
similar portions of the stream. In a real-time stream prediction system where
storage space and time to locate and load training results may be at a premium,
this means we can pre-select a few portions of a stream and use any of them as
our training data when assigning a rating to a new stream.

It is possible to find training and test stream portions for which the predictor
can achieve better than 85% accuracy. If we can guarantee that our training and
test streams have similar characteristics, as is the case when our training and
test streams are both taken from Ad, or from Trailer, or from News, and take
our training and test stream portions from approximately the same time period,
our predictor can actually achieve hit rates above 90% (or above 95% in one
case).

6 Conclusion

This paper examines the feasibility of real-time stream quality prediction, by
studying whether a nearest-neighbor stream quality predictor using DTW as
a distance measure can accurately rate streams based on partial stream state
information. To answer this question, we examine two scenarios. In the first sce-
nario, we train our predictor with full stream state information and attempt
to rate streams where we have removed all but a small portion of stream state
information. In the second scenario, we train our predictor on small portions
of the full streams and then attempt to assign ratings to small portions of the
full streams. We have shown that there is a wide range of training and test
stream combinations that yield acceptably high hit rates, on par with or better
than that achieved by the same predictor when using full stream information for
both training and testing, and that we can do so using as little as ten seconds
of information from each stream. This means that a stream quality prediction
system operating in real time does not have to worry about using training and
test streams from the same time period in the stream; training portions pulled
from the end of a stream can accurately rate portions from earlier in the stream,
and vice versa. We have also demonstrated that our predictor is especially accu-
rate when we take ten second portions of the streams that are nearly identical
in stream characteristics and in where in the stream they occur, achieving hit
rates above 90 or even 95%. This indicates that it is possible to design a highly
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accurate stream quality predictor with minimal stream information (as little as
ten seconds from each stream), if we know some characteristics of the training
and test streams a priori.

This work represents a proof-of-concept of the feasibility of real-time stream
quality prediction systems, and as such there are extensions of this work that we
are currently pursuing. Our data set consists of videos streamed over UDP, rather
than the more ubiquitous TCP; we are currently in the process of collecting more
data for streams over TCP. From a systems perspective, we are also working on a
very basic prototype system to determine how best to collect, store, and evaluate
stream data in real time. Finally, we are modifying the measurement tool and
measurement infrastructure to enable us to collect stream ratings at intermediate
points during a stream, to further improve the accuracy of our stream quality
predictor.
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