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Abstract. Several research and production networks now provide mul-
tiple Gbps dedicated connections to meet the demands of large data
transfers over wide-area networks. End users, however, have not been
able to see corresponding increase in application goodputs mainly be-
cause (i) such rates have pushed the bottleneck from the network to the
end system, and (ii) the traditional transport methods are not optimized
for handling host dynamics. Due to the sharing with unknown back-
ground workloads, the data receiver oftentimes lacks sufficient system
resources to process packets arriving from high-speed dedicated links,
therefore leading to significant packet drops at the end system. We pro-
pose a rigorous design approach for a new class of transport protocols
that explicitly account for the dynamics of the running environment to
maximize application goodputs over dedicated connections. The control
strategy of the proposed transport method combines two aspects: (i) the
receiving bottleneck rate is predicted based on performance modeling,
and (ii) the sending rate is stabilized at the estimated bottleneck rate
based on stochastic approximation. We test the proposed method on
a local dedicated connection and the experimental results illustrate its
superior performance over existing methods.

Keywords: Transport control, dedicated networks, performance
modeling.

1 Introduction

Many large-scale scientific, engineering, and e-commerce applications require the
rapid transfer of vast amounts of data on the order of terabytes or petabytes.
Efforts to improve the data transfer performance in the shared Internet met little
success due to the variable limited available bandwidth in response to cross
traffic. Dedicated networks provisioning multiple Gbps connections have been
recognized to be a promising solution and a number of high-performance network
initiatives are currently underway including Dynamic Resource Allocation via
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GMPLS Optical Networks (DRAGON) [1], UltraScience Net (USN) [17], Circuit-
switched High speed End-to-End Transport ArcHitecture (CHEETAH) [20], and
others.

However, end users have not been able to see corresponding goodput1 increase
in their applications mainly because (i) such rates have pushed the bottleneck
from the network to the end system, and (ii) the traditional transport methods
are not optimized for handling host dynamics. Due to the lack of a system-wide
advance reservation scheme, the data receiver running in a shared computing en-
vironment with other resource-demanding workloads oftentimes could not obtain
sufficient system resources to process packets arriving from high-speed dedicated
links, therefore leading to significant packet drops at the end system.

The current research efforts on transport protocol design are mainly focused
on TCP enhancements and rate-based application-level protocols over UDP. The
widely deployed TCP, which has been proved to be remarkably successful in
the Internet, is not adequate to achieve high goodput in wide-area dedicated
networks because the Additive Increase Multiplicative Decrease (AIMD)-based
congestion control algorithm is not well suited for links with high Bandwidth
Delay Product (BDP). In TCP, packet loss is detected either by timeout of an
unacknowledged segment or several duplicated acknowledgements. If packet loss
is caused by network congestion, TCP is able to achieve a reasonable link uti-
lization. However, many observations have shown that packet loss is a poor
indicator of network congestion, especially in high-speed dedicated networks
where congestion has been pushed to the end system. Various TCP enhance-
ments have been proposed to improve throughput performance, including TCP
vegas [5,16], Scalable TCP [12], High Speed TCP for large congestion win-
dows [14], XCP (eXplicit Control Protocol) [11]. and many others [8]. Diverging
from TCP’s AIMD control, a number of UDP-based high-performance transport
protocols use non-AIMD rate control to overcome TCP’s throughput limitation
for high BDP networks. These protocols include Hurricane [18], SAUBUL (Sim-
ple Available Bandwidth Utilization Library)/UDT (UDP-based Data Trans-
fer) [9], FRTP (Fixed Rate Transport Protocol) [19], RBUDP (Reliable Blast
UDP)/LambdaStream [10], and Tsunami [2].

However, the main design goal of the aforementioned transport methods based
on either TCP or UDP is still to address the congestion over network links, not to
account for the dynamics of the end system. As a matte of fact, besides process-
ing power, many other host factors including NIC-system-application interac-
tions, memory/buffer management, CPU scheduling, and disk I/O, collectively
contribute to the complex end-system dynamics and play a significant role in
determining the application goodput in high-speed dedicated networks. There-
fore, to maximize application goodputs, transport protocols need to incorporate
a performance-adaptive mechanism through which the data sender and receiver
could suitably adjust their sending and receiving activities in response to the
system dynamics.

1 Goodput only counts the user payload and is equivalent in value to throughput if
packet duplicates and protocol headers are negligible.
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The goal of our work is to present Performance-Adaptive Prediction-based
Transport Control (PAPTC) that explicitly accounts for the dynamics of the
end system to maximize application goodputs over dedicated connections. With
rigorous design and careful analysis, the control strategy of PAPTC combines
two aspects: (i) the receiving bottleneck rate is predicted based on performance
modeling, and (ii) the sending rate is stabilized at the estimated bottleneck rate
based on a stochastic approximation (SA) method. We construct a mathemati-
cal model for the data receiving process and employ an autoregressive method
to predict the receiving bottleneck rate, which is sent back to the sender for
rate control. To account for both network and host dynamics and achieve quick
convergence, we adjust the source rate for goodput stabilization at the estimated
receiving bottleneck rate using the Robbins-Monro SA algorithm: the source rate
is continuously adjusted to match the bottleneck receiving rate at a strategically
selected interval. We test the proposed method on a local dedicated connection
and the experimental results illustrate its superior performance over existing
methods.

The rest of the paper is organized as follows. In Section 2, we briefly outline the
framework of PAPTC structure. In Section 3, we present a performance model
for the data receiver, and in Section 4, we describe the rate control algorithm
for the data sender. The implementation details and experimental results are
provided in Section 5.

2 Framework of PAPTC Structure

PAPTC employs a UDP-based transport control structure for disk-to-disk data
transfer as shown in Fig. 1. The sender (source) reads data sequentially from
its local storage device as a set of UDP datagrams of Maximum Datagram Size
(MDS), each of which is assigned a unique continuous sequence number and
loaded into the sender buffer. The source sending rate rS(t) at time t is regulated
by a pair of congestion window W (t) and sleep or idle time (i.e. inter-window
delay) T (t). The receiver (destination) accepts incoming datagrams in the order
of their arrival and keeps track of the datagram sequence numbers in a checklist.
The received datagrams are immediately forwarded to a disk I/O module that
handles datagram reordering if necessary and writes them to the disk in order in
the background. Based on the status of the datagram checklist, an either positive
or negative acknowledgment (ACK) of lost datagrams during an interval I(t) is
generated and sent periodically to the sender for retransmission.

As shown in Fig. 1, the data flow moves from source to destination along the
solid lines and the acknowledgment feedback follows the dotted lines from des-
tination to source. In this transport structure, there are two control operations
represented by two shaded elliptic boxes: (a) source rate control through idle
time and (b) ACK event interval control. The transport performance over high-
speed dedicated channels critically depends on the strategies implemented for
these two control operations. Many transport control protocols send a positive
acknowledgment for a received data packet, which is necessary for shared lossy
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Fig. 1. Transport control structure for disk-to-disk data transfer

links in Internet environments. However, dedicated channels usually provide very
reliable connections where packet loss rarely occurs. At high data rates, gener-
ating and sending acknowledgments at the receiver consumes CPU time and
may interfere with the host receiving process. Similarly, accepting and process-
ing acknowledgments at the sender may also affect the host sending process. To
achieve peak performance over dedicated channels, we employ a mixed acknowl-
edgment mechanism that sends an either positive or negative acknowledgment
after a carefully selected period of time. An appropriate delay time of mixed ac-
knowledgments is adaptively determined for network connections based on link
and host properties.

3 Performance Model for Data Receiver

We present an analytical study on the impact of system properties on the perfor-
mance of transport protocols. To instantiate the analysis, we consider the Linux
kernel.

3.1 Packet Processing Issues

For convenience, we plot in Fig. 2 an overview of Linux packet processing that in-
volves the NIC hardware, device drive, kernel protocol stack, and application [7].
When a new packet arrives, the NIC generates an interrupt and the packet is put
into the kernel buffer by the card DMA engine. In general, heavily engaging the
CPU in other compute-bound tasks during an interrupt may severely hinder a
running process. To avoid flooding the host system with too many interrupts, the
interrupt coalescence scheme collects multiple packets and generates one single
interrupt for them, therefore reducing the amount of time that the CPU would
otherwise have to spend on context switching to serve multiple interrupts. The
Linux kernel uses sk buff structure to hold any single packet. The pointers of
sk buff are held in a ring buffer in the kernel memory and manipulated through
the network stack. If there are no free pointers in the ring buffer, incoming pack-
ets will be dropped by the kernel silently. From the ring buffer, the packets are
delivered to the corresponding receiving function of the IP layer, which examines
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Fig. 2. Packet processing flow in Linux

the packets for errors and then forwards them up to the INET Socket layer (such
as TCP or UDP), which in turn checks for errors and copies the packets into
the socket receive buffer. Then, the waiting application wakes up and returns
from a corresponding receive system call that copies the data from the kernel
into the application buffer. The flow control mechanism of TCP is implemented
to avoid packet drops in the receive buffer. However, the UDP receive buffer
might be overflowed if the packet receiving process can not acquire enough CPU
cycles to consume the data in the buffer due to CPU contention. In this case, all
incoming packets are discarded, hence wasting the protocol processing resources
and impairing the application performance.

The Linux packet processing flow shows that packet drops by the kernel could
happen in either the ring buffer, or the socket receive buffer, or both. Since the
data receiving process has a lower priority than the packet processing by the
kernel and the Interrupt Service Routine (ISR), packets are more likely to drop
in the socket receive buffer. Although UDP is buffered on both the sender and
receiver sides, we focus on the analysis of the receiver side since the receiver is
under considerably more system strain than the sender.

3.2 Mathematical Model for Data Receiving Process

Linux 2.6 is a preemptive multi-processing kernel whose scheduling policy is
priority-based and is explicitly in favor of I/O bound processes in order to pro-
vide a fast process response time (interactive processes are I/O bound). Processes
are initially assigned with static priorities, which can be modified dynamically
by the scheduler to fulfill scheduling objectives. The Linux scheduler calculates
a dynamic priority through the static priority and interactivity of the process.
A process with a higher interactivity is assigned with a higher dynamic priority
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Fig. 3. Data receiving process running model (PDRP representing the data receiving
process)

and hence runs more frequently. On the contrary, CPU bound processes receive
a lower dynamic priority. The timeslice of a process is determined by its dynamic
priority per round of execution. Thus, important processes are assigned a longer
timeslice that enables these processes to run longer. The old Linux CPU sched-
uler recalculates each task’s timeslice using an O(n) algorithm implemented as
a loop over each task; while the newer Linux scheduler maintains two priority
arrays, an active array and an expired array, with O(1) complexity for priority
updating. Processes move from the active array to the expired array when they
exhaust their timeslices. Recalculating all timeslices is just to switch the active
and expired arrays [15].

Based on the above analysis, the running behavior of the data receiving pro-
cess is shown in Fig. 3. Let tDRP and tEXP be the CPU time and the expired
time assigned to the data receiving process, respectively, and tTOT be the total
CPU time assigned to all the running processes. We have:

tDRP = timeslice(PDRP ). (1)

tTOT = timeslice(PDRP ) +
n∑

i=1

timeslice(Pi), Pi �= PDRP . (2)

The expired time for the data receiving process is:

tEXP = tTOT − tDRP . (3)

From Eqs. 1, 2 and 3, we know that the running time of the data receiving process
is contingent on its own priority and the system load, which includes all interrupt-
related processing and handling as well as the load of concurrent processes. Note
that interrupt handling has the highest priority and is always scheduled to run
before other tasks. Hence, a system with a high interrupt rate is not able to
respond to the data receiving process immediately, resulting in a decreased data
receiving rate. In an extreme case where the system is completely occupied for
handling interrupts, the data receiving process could be temporarily suspended,
resulting in significant packet losses in the socket receive buffer. Similarly, a
system heavily loaded with concurrent processes could not guarantee enough
CPU cycles for the data receiving process because processes with higher priorities
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may starve the data receiving process. To increase the data receiving rate, one
needs to either increase the data receiving process’ priority or reduce the system
load. However, reducing the system load does not seem to be a viable solution
since the data receiving process typically runs with other concurrent resource-
intensive workloads in a shared computing environment.

We denote the packet processing rate through the kernel protocol stack as λ
and the effective service rate of the data receiving process as µ in the unit of bits
per second (bps). Therefore, 1

µ is the time the receiving process takes to copy
an incoming packet from the kernel socket receive buffer into the application
buffer. We wish to determine an appropriate size of the UDP’s receiving buffer
to match the kernel packet processing rate λ with the data receiving rate µ. Let
t be the time in seconds and m be the UDP buffer size in bytes. The time to
deplete m when the packet receiving process runs out of its time slice is given
by:

t =
m
λ

. (4)

On the other hand, the time to deplete m when the CPU time is available to
process the arriving packets is given by:

t =
m

λ − µ
. (5)

At time t, the kernel socket receive buffer is not able to accept any new packets
and thus will have to drop them. The depleted UDP buffer results in the drop
of the UDP datagrams received by the kernel.

3.3 Predicting Bottleneck Processing Rate at the Receiver

We collected source rates, goodputs, loss rates and retransmission rates over the
USN-ESnet hybrid channel using a UDP-based transport profile generator [18],
as shown in Fig. 4. These profiles illustrate how the destination acknowledgement
interval together with the source rate affects the transport performance over
dedicated channels. We observed that the peak goodput is achieved with low loss
and low retransmission rates, which inspires us to derive the desired bottleneck
rate.

Let Tts be the timeslice of the data receiving process in one round and Ttp be
the average time required for copying one packet from the socket receive buffer
to the application buffer. The average processing rate µ in this round can be
calculated as:

µ =
Tts

Ttp · tTOT
. (6)

We consider two cases. (i) If λ > µ, the socket receive buffer will become full after
time t, as shown in Eqs. 4 and 5. In this case, the data receiving process is not
able to consume all the packets arriving from the network, resulting in packet
loss in the socket receive buffer. At high data rates, generating and sending
packets retransmission requests at the receiver consume CPU time and may
significantly interfere with the data receiving process. (ii) If λ < µ, the data
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Fig. 4. Goodput, loss and re-transmission profiles of PLUT over 9900 mile 1Gbps
USN-ESnet hybrid connection

receiving process has sufficient CPU cycles to consume the packets but there are
no enough packets in the socket receiving buffer. In this case, the socket receiving
buffer could become empty and there are still idle CPU cycles, both of which are
a waste of system resources. The transport profiles show that the receiver cannot
achieve the peak goodput in either case. So, µ is the corresponding bottleneck
processing rate for achieving peak goodput on the receiver side.

We know that Linux 2.6 is a preemptive multi-processing kernel whose schedul-
ing policy is priority-based and is explicitly in favor of I/O bound processes in or-
der to provide a fast process response time (interactive processes are I/O bound).
The timeslice of a process is determined by its dynamic priority per round of ex-
ecution. Thus, important processes are assigned a longer timeslice that enables
these processes to run longer. So in order to get a longer timeslice to increase the
value of µ, the data receiving process should be given a high priority.

In practice, we can sample µ at an carefully selected interval ∆. We denote
such a sequence of µ samples as < µT >= ...µT−1µT µT+1.... If µT+k is known for
k > 0, we could predict µT+k+1 in some way. We define the following notations
to facilitate the description of the prediction strategy:

– µT : the service rate of the data receiving process at the T -th measurement.
– µT+1: the prediction service rate for the (T + 1)-th measurement.
– N : the number of historical data points used for the prediction of µT+1.

We measure the prediction quality by the mean squared error, which is the
average of the square of the difference between predicted values and actual values.
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We treat the sequence of periodic samples of µ as a linear time series. We employ
the autoregressive (AR) model [3,6], a common approach for modeling univariate
time series:

Xt = δ + φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + At, (7)

where Xt is the time series, At is the white noise, and δ is a constant. The value
of p is called the order of the AR model. After measuring µt, we can predict the
value of µt+1 at time (t + 1) using the AR model.

4 Rate Control for Data Sender

Based on the performance model, the receiver sends the predicted bottleneck
rate back to the sender periodically. If the sender just simply fix data sending
rate at the bottleneck processing rate, it will not yield the highest goodput at
the receiver which in turn involves accounting at some level for both network
and host dynamics. Let rS(t) be the rate at which packets are sent and let l(t) be
the fraction of them that are lost before being read by the receiver, and hence
have to be retransmitted. Let x(t) be the fraction of rS(t) that corresponds
to retransmitted packets. Thus the flow rS(t) is composed of two streams of
rates gS(t) and x(t)rS(t) corresponding to packets sent for the first time and
retransmissions, respectively. In general the data processing rate µR(t) at the
receiver depends on rS(t), l(t) and x(t). The effect of randomness necessitates
the utilization of stochastic approximation methods, which has a non-trivial
effect on the underlying transport method: the step sizes used in parameter
adaptation must be appropriately varied as per conditions such as in classical
Robbins-Monro case [13]. To take into account the random effects, we define
processing-rate regression as

GR(r) = E [µ̂R(t)|rS(t) = r] . (8)

Similarly, we have loss-fraction and retransmission-fraction regressions defined
as

L(r) = E
[
l̂(t)|rS(t) = r

]
and X(r) = E [x̂(t)|rS(t) = r] . (9)

Let µ∗ be the attainable bottleneck processing rate at the receiver over a given
dedicated connection. The objective of APPTC control is to stabilize r(.) at a
suitable rate r∗, such that:

GR(r∗) = µ∗ = r∗[1 − X(r∗)], (10)

which ensures that peak throughput is attained at low loss rate.
At time step k, for the measured source rate r̂S(k), measured processing rate

µ̂R(k), and measured retransmission rate x̂(k), the equation r̂(k) = µ̂(k)/[1 −
x̂(k)] is only approximately satisfied. For r̂S(k) = a(k) · µ∗(k) and µ̂R(k) =
α · µ∗(k), the coefficient function are typically a(k) >= 1 and α(k) <= 1. Thus
there are two possible estimates of µ∗(k) based on r̂S(k) and µ̂R(k), which yield
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two different values. We consider the following general form that combines these
two estimates:

µ̂∗(k) = [r̂S(k)(1 − x̂(k))]β µ̂R(k)1−β , 0 ≤ β ≤ 1, (11)

where β is determined by host and link properties. Typically, r̂S(k) and x̂(k)
are more stable compared to µ̂R(k) since the the former are not subject to
connection-level variations. For the specific case where α(k) = 1/a(k), we have
µ̂∗(k) =

√
r̂S(k)ĝR(k). To account for randomness in measurements and the

effects of delay and its variation of sending rate r̂S(k) on processing rate mea-
surement µ̂R(k), we apply a dynamic version of Robbins-Monro method [13] to
adjust the source rate to achieve the target bottleneck processing rate µ∗(k) at
the receiver:

r̂S(k + 1) = r̂S(k) − ρk[µ̂R(k) − µ̂∗(k)], (12)

where the time step adjustment coefficient is given by ρk = b/kγ for 0.5 < γ < 1.0
and b > 0, a suitably chosen constant. The sending rate will increase if the
measured processing rate λ̂R(k) is less than the estimated maximum attainable
processing rate µ̂∗(k) at low sending rates; while in the source rate control zone
approaching the peak processing rate, the processing rate measurement may
exceed the maximum processing rate estimate due to increased retransmission
rate, causing the sender to back off.

The step sizes satisfy the Robbins-Monro property namely,
∞∑

k=1

ρk = ∞ and
∞∑

k=1

ρ2
k < ∞. We assume that the errors satisfy the following martingale property

for r̂S(k) = r:

E [ĝ(k) − ĝ∗(k)|r̂S(k) = r] = GR(r) − [r(1 − X(r)]βGR(r)1−β ,

which essentially assumes that the errors are not correlated across the time steps
other than through r̂(.). Then the limit behavior of Eq. 12 is specified by the
Ordinary Differential Equation (ODE) (Chapter 5, [13]):

dr̂

dt
= E [µ̂∗(k) − µ̂R(k)] = E [µ̂∗] − GR(r̂).

Under low loss condition, we approximate

E[µ̂∗] = [r̂(1 − X(r̂)]βGR(r̂)1−β .

Then under the conditions (A.1), (A.3-4), the solution to ODE is given by the
stationary point corresponding to

GR(r̂)

[
1 −

(
r̂[1 − X(r̂)]

GR(r̂)

)β
]

= 0,

which in turn corresponds to GR(r̂) = r̂[1−X(x̂)] = µ∗. Thus the limit behavior
of this algorithm is to stabilize at sending rate R̂S(k) → r̂ such that µ̂R(k) → µ∗
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Table 1. Goodput performance comparison (Mbps) without concurrent workloads

10 cases without load #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Std. Dev.

PAPTC 878 860 867 863 860 864 872 860 869 868 5.915

UDT 835 861 836 860 826 857 848 848 842 832 12.296

Tsunami 669 662 679 687 667 667 664 666 696 680 11.275

as k → ∞. Alternatively, the required stability property can be derived for this
algorithm using the monotonic property of GR(.) and X(.) to show this con-
vergence result as in [4]. Thus, this step ensures that PAPTC probabilistically
stabilizes at the bottleneck processing rate λ∗ of the connection while ensuring
the low loss rate. Informally, by maintaining rS(t) = µ, we would achieve an
average goodput of g∗, and an increase (decrease) in r∗ results in an increase
(decrease) in M(r∗).

5 Implementation and Experimental Results

The proposed transport protocol is implemented according to the architecture
shown by Fig. 1, written mostly in C++ on Linux operating system.

5.1 Types of Acknowledgment

The proposed PAPTC protocol is implemented in C++ in Linux. We consider
four different types of acknowledgment at the receiver: NXT (Next), RXM (Re-
transmission), TNT (Timeout Next), and TMO (Timeout Retransmission). For
every normal ACK control period, if all datagrams received so far are in conti-
nuity, an “NXT” ACK is generated and sent to the sender; otherwise if there
are lost datagrams (i.e. “holes” in the datagram checklist), the receiver compiles
a list of lost datagram sequence numbers and sends them with a “RXM” ACK.
If no datagram is received within a certain period of time, a timeout event is
triggered where the receiver sends either a “TNT” ACK if all datagrams re-
ceived so far are in continuity, or a “TMO” ACK enclosing the lost datagram
sequence number list if there are “holes” in the datagram checklist. For all ACK
types, the receiver measures the current bottleneck processing rate and sends
it to the sender as part of the acknowledgment. On the sender side, for each
incoming acknowledgment, we apply rate control as described in Section 4 using
the bottleneck processing rate measurements enclosed in the acknowledgment.

5.2 Experimental Results

For performance comparison, we run PAPTC, UDT (version 4.4) and Tsunami
on a local dedicated connection, which is provisioned by a back-to-back link be-
tween two Linux boxes with kernel 2.6.27. Each Linux box is equipped with a 1
Gigabit NIC, AMD Athlon(tm) 64X2 Dual Core Processor 5000+, 2 GBytes of
RAM, and 900 GBytes of SCSI hard drive. A CPU-bound program named cpub-
urn is specifically designed and executed to emulate concurrent host background
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Table 2. Goodput performance comparison (Mbps) with 2 concurrent cpuburn
processes

10 cases with 2 cpuburn proc. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Std. Dev.

PAPTC 816 802 813 801 807 818 808 815 807 806 5.889

UDT 716 718 734 717 716 717 718 718 726 741 10.601

Tsunami 670 676 676 669 679 675 661 668 639 671 11.549

Table 3. Goodput performance comparison (Mbps) with 4 concurrent cpuburn
processes

10 cases with 4 cpuburn proc. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Std. Dev.

PAPTC 655 654 643 646 644 682 635 656 665 633 14.622

UDT 613 623 615 626 610 623 629 620 618 622 5.934

Tsunami 622 625 621 622 628 626 623 625 626 621 2.424
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Fig. 5. Goodput performance comparison without concurrent load

workloads. We conduct three sets of transport experiments, in each of which,
10 files are transferred using three transport methods. In the first set of experi-
ments, no cpuburn process is executed while in the other two sets of experiments,
2 and 4 concurrent cpuburn processes are launched, respectively. The goodput
performance measurements and standard deviations for three transport meth-
ods are tabulated in Tables 1, 2, and 3, and their corresponding performance
curves are plotted in Figs. 5, 6, and 7 for a better visual comparison. From these
measurements, we observe that the amount of concurrent background workloads
has a significant effect on the performance of each transport method. Tsunami
is relatively insensitive to the change of concurrent workloads at a sacrifice of
its goodput performance. Similar to PAPTC, UDT also adapts to the workload
changes but adopts a somewhat more conservative rate control than PAPTC.
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Fig. 6. Goodput performance comparison with 2 concurrent cpuburn processes
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In all the cases we studied, the proposed PAPTC protocol consistently achieves
higher goodputs than the other two methods in comparison.

6 Conclusion

We developed PAPTC to support high-speed data transfers over dedicated chan-
nels. To account for the host dynamics and the random components in transport
performance measurements, we designed control strategies based on performance
modeling and stochastic approximations to achieve sustained high goodputs at
a low packet loss. We implemented and tested PAPTC over a back-to-back con-
nection and the experimental results illustrated its superior performance over
existing methods.
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