
P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 108–120, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Power Consumption Optimization of MPI Programs on
Multi-core Clusters

Yen-Jun Chen1, Ching-Hsien Hsu1, Kuan-Ching Li2, Hsi-Ya Chang3,
and Shuen-Tai Wang3

1 Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
{Patrick,robert}@grid.chu.edu.tw

2 Department of Computer Science and Information Engineering
Providence University, Taichung 43301, Taiwan

kuancli@pu.edu.tw
3 National Center for High-Performance Computing

Hsinchu 30076, Taiwan
{jerry,stwang}@nchc.org.tw

Abstract. While the energy crisis and the environmental pollution become im-
portant global issues, the power consumption researching brings to computer
sciences world. In this generation, high speed CPU structures include multi-
core CPU have been provided to bring more computational cycles yet effi-
ciently managing power the system needs. Cluster of SMPs and Multi-core
CPUs are designed to bring more computational cycles in a sole computing
platform, unavoidable extra energy consumption in loading jobs is incurred.

Data exchange among nodes is essential and needed during the execution of
parallel applications in cluster environments. Popular networking technologies
used are Fast Ethernet or Gigabit Ethernet, which are cheaper and much slower
when compared to Infiniband or 10G Ethernet. Two questions on data exchange
among nodes arise in multi-core CPU cluster environments. The former one is,
if data are sent between two nodes, the network latency takes longer than sys-
tem bus inside of a multi-core CPU, and thus, wait-for-sending data are blocked
in cache. And the latter is, if a core keeps in waiting state, the unpredicted wait-
ing time brings to cores higher load. These two situations consume extra power
and no additional contribution for increasing overall speed. In this paper, we
present a novel approach to tackle the congestion problem and taking into con-
sideration energy in general network environments, by combining hardware
power saving function, maintaining the transmission unchanged while saving
more energy than any general and previous cases.

Keywords: Power Consumption, multi-core processor, cluster Computing,
MPI.

1 Introduction

Reduction on power consumption of computer systems is a hot issue recently, since
many CPUs and computer-related hardware has been produced and under operation

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 109

everywhere. As the number of single-core CPU has reached to physical limitation on
current semi-conductor technology, the computing performance has met the bottle-
neck. Multi-core CPUs become a simple yet efficient solution to increase perform-
ance and speed since that concept SMP in a single chip, that is, making up a small
cluster to be executed inside a host. Additionally, it reduces the amount of context
switching while in single-core CPUs, increases straight forwardly the overall per-
formance.

Figure 1 illustrates the architecture of Intel quad-core CPU, which looks like a
combination of two dual-core CPUs. It has four individual execution engines,
where each two cores share one set of L2 cache and system bus interface, and con-
nect to the fixed system bus. The advantages of this architecture are twofold. The
former one is that each core can fully utilize L2 cache as each core needs larger
memory, while the latter is that each core accesses L2 cache through individual hub
[7] simplifying system bus and cache memory structures. Intel CPU supports
“SpeedStep” [3] frequency / voltage control, the technology that changes all cores’
frequency at the same.

Fig. 1. Intel Quad-Core CPU system structure [11]

Fig. 2. AMD Quad-Core CPU system structure [12]

110 Y.-J. Chen et al.

AMD quad-core CPU, as shown in Figure 2, has individual L2 cache in each core
and share L3 cache, (a special design), and then integrated to DDR2 memory control-
ler into CPU, helping to increase memory access speed. Each core has individual
channel to access system bus, and L3 cache and peripheral chips from crossbar
switch. AMD provides “PowerNow!” [4] technology to adjust each core’s working
frequency / voltage.

A cluster platform is built up by interconnecting a number of single-core CPU, and
a message passing library, such as MPI is needed for data exchange among computing
nodes in this distribution computing environment. In addition, high speed network as
Infiniband is needed to interconnect the computing nodes. As multi-core CPUs are
introduced and built in cluster environments, the architecture of this newly proposed
cluster is as presented in Figure 3. The main advantages of data exchanges between
cores inside of a CPU is much faster than passing by a network and South / North
bridge chip.

Infiniband networking technology is a good and fast enough solution to connect all
computing nodes of a cluster platform, but expensive. Gigabit Ethernet is cheaper
solution and widely built in general network environment, though slower in transmis-
sion speed and definitely drop down data exchange performance. To send data to a
core that is inside of a different host will be needed to consume extra energy when
waiting for data.

Fig. 3. Multi-core based cluster structure [13]

“SpeedStep” and “PowerNow!” technologies are good solutions to reduce power
consumption, since they adjust CPU’s frequency and voltage dynamically to save
energy. The power consumption can be calculated by the function:

P=IV=V2f =J/s. (1)

where P is Watt, V is voltage, I is current, f is working frequency of CPU, J is joule
and s is time in seconds. It means that lower voltage in the same current condition
saves more energy. How and when to reduce voltage and frequency become an impor-
tant issue, since one of main targets of clustering computing computers is to increase

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 111

the performance, while slowing down CPU’s frequency is conflict with performance.
Considering data latency of network, and CPU load in current CPU technologies, we
would like to create a low energy cost cluster platform based on general network archi-
tecture, that keeps almost the same data transmission time though lower in energy con-
sumption when CPU in full speed.

The remainder of this paper is organized as follows. Some related works discussed
in Section 2, and some challenges we found in our experiment is listed in Section 3.
In Section 4, the proposed approach about reducing energy consumption is presented;
while the testing environment and performance results in Section 5. Finally the con-
clusion and future works are discussed in Section 6.

2 Related Works

Based on the concept about reducing computing time, the job scheduling methodol-
ogy as introduced in [8] was designed targeting for a faster complete data transmis-
sion; otherwise, adjust cache block size to find the fastest speed that transmits data
using MPI between MPI nodes in situations as listed in [13] was studied, and similar
implementation of the method using OpenMP was also observed in [14]. Another
investigation focused on compiler that analyze program’s semantics, and insert spe-
cial hardware control command that automatically adjusts simulation board’s working
frequency and voltage, [10] research needs to be combined both hardware and soft-
ware resources.

Base on a simulation board, researchers have designed routing path algorithm that
tries to find a shortest path to transmit data in Networks-on-Chip [15], in order to re-
duce data transmission time between CPUs, as also to have opportunities to realisti-
cally port and implement it to a cluster environment.

Others, researches have applied Genetic Algorithms to make a dynamically and
continuous improvement on power saving methodology [9]. Through a software
based methodology, routing paths are modified, link speed and working voltage are
monitored at the same time to reduce power consumption, while the voltage detection
information required hardware support.

Modern Operating Systems as Linux and Windows provides hardware power sav-
ing function as introduced in [1] and [2], where they can drive “SpeedStep” [3] and
“PowerNow!” [4] utilizing special driver to control CPU voltage and frequency. Of
course hardware support is necessary, since depending on the CPU loading, CPU is
automatically selected with lower frequency and voltage automatically.

3 Challenges of Power Saving in Multi-core CPU Cluster
Platform

We have built a cluster platform that combines all technologies as listed above for
experiment purposes. These advantages bring higher speed for data broadcasting,
yet only between cores inside a CPU, a CPU core is maintained with high load means
the CPU speed cannot be decreased. Analysis and reasoning on these situations are
discussed next.

112 Y.-J. Chen et al.

3.1 CPU Power Control Structure

The “SpeedStep” and “PowerNow!” were not show in Figure 1 and 2. The “Speed-
Step” provides solely full CPU frequency and voltage adjustment. The design makes
power control easier, though consumes extra energy. If only one core works with high
load, power control mechanism cannot reduce other cores’ frequency / voltage, nor
dropping down the performance of a busy core. Inefficient energy consumption brings
temperature increasing, since low loading core generates the same heat as high load
one, and brings the CPU’s temperature up at the same time.

AMD “PowerNow!” shows advantage in this issue, since we can reduce frequency
when core works in lower loading without need to consider other cores’ situation, and
heat reduction is also another benefit.

3.2 Network Bandwidth and Cache Structure

As shown in Figure 1, Intel’s CPU architecture shares L2 cache using individual hub,
and it has two advantages and two problems:

A. Advantages

• Flexible Cache Allocation

Every core was allowed to use whole L2 cache from cache hub, the hub provides single
memory access channel for each core, and simplifies internal cache access structure.

• Decrease Cache Missing Rate

When each core has massive cache request, cache memory decreases page swapping
from main memory.

B. Problems

• Cache Hub Congestion

If huge amount of data request or sending commands happen suddenly, individual
cache hub blocks data frames in cache memory or stops commands in queue. All
cores and hub keep in busy state and thus consume extra energy.

• Network Bandwidth Condition

Lower network bandwidth makes previous situation more seriously in many nodes'
cluster, since network speed cannot be as fast as internal CPU bus, if cross-node data
frames appear, the delivering time is longer than intra-node data switch.

Compared with Intel, while data frame flood sends to CPU, AMD structure has no
enough cache to save them, yet individual bus / memory access channel of each core
provides isolated bandwidth, L2 cache built in core reduces data flow interference.
Different CPU structure provides their advantages, and weakness appears while they
are compared to each other.

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 113

3.3 MPI Environment Support

In a general situation, each computing node executed under a given core / host ran-
domly indicated by cluster software, signifies that programmer cannot obtain addi-
tional core loading from node's code section. Following our purpose, finding system
information about thread / node location works, but it is a hard method since the pro-
gram would spend large amount of time in device I/O, includes open system state file,
analysis information and obtaining node’s location. Another alternative method is
easier, where we make cluster platform that fixes node location in indicated core or
host, and the function helps to get core loading from node’s code. OpenMPI is se-
lected for this issue.

4 The Proposed Approach

Upon with CPU specification, CPU power control interface and network structure, we
provide a data broadcasting strategy that combines data flow limitation and core fre-
quency controlling as shown below.

4.1 Drop Down Data Transmission Speed

It is not a good method to keep performance. In fact, we add 1µs delay between two
packets, in a real environment, and the total transmission time is added as:

(N - 1) × T (2)

where N is total number of nodes and T is delay time between packets. We found that
the total time has just been added less than one to five seconds in average, when is
transmitted 100K data frames across two hosts that are connected via Gigabit
Ethernet. Additionally, the advantage is that the loading of a central node that sends
data to other nodes is decreased by almost 50%, although the method solves problems
as cache hub and CPU internal bus congestion. On the other hand, data receiving core
load is decreased by 15% in average when we added 10µs delay in these nodes, yet
total transmission time is increased by less than 0.5s.

4.2 Data Broadcasting According to Core Loading

Following the previous result, we provide a Loading-Aware Broadcasting method
(LAB). Based on the “PowerNow!” hardware structure, and keeping the same load on
all cores is necessary for efficient energy consumption, thus sending data from central
node to lowest loading node makes sense. If the load can be reduced on a core, then
reducing CPU frequency is permitted for saving energy.

Still in LAB algorithm, as indicated in Figure 4, data frames are sent sequentially
from Host 1-Core 0 to other cores. This method is often used to distribute wait-for-
calculate data blocks in complex math parallel calculations. MPI provides broadcast
command to distribute data block and reduce command to receive result. In order to
changing data frame transmission path dynamically, we use point-to-point command
to switch data, since this type of command can indicate sending and receiving node.

114 Y.-J. Chen et al.

4.3 Slow Down Lower Loading CPU / Core

Although the challenge presented in subsection 3.1 exists, as for power saving issue,
we use AMD system and “PowerNow!” to slow down lowering loading core fre-
quency. The given CPU supports 2 steps frequency, and therefore they work in differ-
ent voltage and current. Thus we focus on frequency adjustment, and calculating
power consumption of each core as below:

P = Vmax × Imax × T (3)

where Vmax and Imax are found from AMD CPU technology specification [6], and T is
program execution time. Since “Time” joins the function, the unit of P is Joule.

Fig. 4. LAB Algorithm structure diagram

The data distribution algorithm is given as below.

Loading-Aware Broadcasting (LAB)Algorithm

generating wait-for-send data frame
if (node 0)
{
//detect nodes’ loading from system information and
save in TargetNode

OpenCPUState;
CalculateCPULoading;
//sort TargetNode from low to high
CPULoadingSorting;
//send data follow sorting result
while(!DataSendingFinish)

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 115

{
for(i=1; i<NodeNumber; i++)
SendData(TargetNode[i]);

}
//send finish message to receiving nodes
for(i=1; i<NodeNumber; i++)
SendData(i);

}
if (other nodes)
{
//receive data from node 0
ReceiveData(0);
usleep();

}

5 Performance Evaluation

In this section, experimental results on proposed power-saving strategy are presented.
The cluster platform includes two computing nodes and connected via Gigabit
Ethernet, and each node is installed with Ubuntu Linux 8.10 / kernel 2.6.27-9, Open-
MPI message passing library is selected for thread execution affinity function, the
hardware specification is listed as next:

Table 1. Host specification

CPU AMD Phenom X4 9650
Quad-Core 2.3GHz

Layer 1 Cache 64K Instruction Cache
and 64K Data Cache Per Core

Layer 2 Cache 512K Per Core

Layer 3 Cache Share 2M for 4 Cores

Main Memory DDR2-800 4GB

Three different sizes of data frames are transmitted between nodes: 1 byte, 1460
bytes and 8000 bytes. 1 byte frame is not only the smallest one in MPI data frame,
but also in network, for complete data transmission in shortest time, source node
generates huge amount of 1 byte frame, these packets congest CPU internal bus and
network. 1518 bytes frame is the largest one in network, but considering that net-
work header should be inserted into network packet, we select 1460 bytes frame for
testing, and then, this size of packet brings largest amount of data in a single packet,
and trigger fewest interrupt to CPU. Finally 8000 bytes frame is set for large data
frame testing, since it needs to be separated to several other packets by network
driver for transmission, and thus need the longest time for data transmission. While

116 Y.-J. Chen et al.

the experiment is executed, we send 100K data frames between two nodes, and cal-
culate the power consumption.

Each figure that follows next has four blocks. The first one is executed in Perform-
ance Mode (PM, CPU works in 2.3GHz), the second one is PowerSave Mode (PS,
1.15GHz), the third one is OnDemand Mode (OD, slows down frequency while CPU
loading lower than 80%), and last one is LAB algorithm. Each block has four delay
time configurations, the first one contains no delay between each data frame, the sec-
ond delays 5µs, the third one delays 10µs, and last one delay 20µs. Still in figures that
follows next, TD stands for Transmission Delay, Transmission Time as TT, and PC
for Power Consumption.

The “Rank Number” in each figure means the number of nodes / cores join data
broadcasting. For example, rank 2 means rank 0 broadcasts data to rank 1, and rank 4
means rank 0 broad-casts data to rank 1, 2, and 3. Since each host has four cores, the rank
number 2~4 are internal node data transmission, and rank 5~8 are cross node data trans-
mission. Although only 4 cores join work in rank number 2~4 other cores consume en-
ergy at the same time, and we still need to add the energy consumed.

Figure 5 shows the TT for one byte frame, and Figure 6 the PC. Comparing PM,
PS and OD mode, we find that TD increases the TT over 3 seconds in rank 2~4 in
every frequency level, but increases less than 1 second in 5~8. Figure 6 displayed one
byte frame PC. Clearly, the PS mode spends the longest time to transmit data, though
consumes the lowest energy. OD mode has none remarkable performance in power
saving in rank 7~8, but it uses average 100J less than PM mode in rank 2~6, and
keeps TT increasing less than 0.4s in cross-node situation. LAB algorithm displays
advantage in no delay situation, less than 1s TT increasing yet consumes almost the
same energy in rank 7~8. In other situations, LAB spends maximum 4s longer than
OD mode, and saves 250J.

Fig. 5. Time Effect of TD on TT (Frame = 1 Byte)

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 117

Fig. 6. Power Effect of TD on PC (Frame = 1 Byte)

Fig. 7. Time Effect of TD on TT (Frame = 1460 Byte)

Figure 7 shows 1460 bytes frame TT. By comparing PM mode and OD mode,
the completed time is longer than 1 byte frame in all situations. In Figure 8, OD
mode uses in average over 200J less than PM mode. Our LAB algorithm made uses
of 24~25s to complete data transmission as OD mode, yet consumes less than OD
mode 200~600J in 8 ranks. In other situations, LAB keeps nearly the same per-
formance, spending 4s longer than OD mode and consuming 200~400J less than
OD mode.

118 Y.-J. Chen et al.

Fig. 8. Power Effect of TD on PC (Frame = 1460 Byte)

Although 8000 byte frame is the longest one, PS mode TT keeps 6s longer than
other frames’ size, as in Figure 9. Comparing OD and PM Mode, OD mode spends
less than 1s longer than PM Mode, yet saves 200~400J in other cases. Comparing
LAB algorithm and OD mode, LAB algorithm still keeps its advantages in the longest
frame size, spends almost the same TT in 8 ranks and average 2~3s longer in other
cross-node situations, consuming 100~ 400J less than OD mode.

Fig. 9. Time Effect of TD on TT (Frame = 8000 Byte)

 Power Consumption Optimization of MPI Programs on Multi-core Clusters 119

Fig. 10. Power Effect of TD on PC (Frame = 8000 Byte)

6 Conclusion and Future Works

In this proposed research, LAB algorithm keeps in average 4s TT increasing, yet
saves 200~600J that compares with OD mode in cross-node situation. Limited by
only 2 steps experimental cases of CPU frequencies (2.3GHz and 1.15GHz), we can-
not keep CPU loading in a smooth curve. In desktop and server CPU, they do not
keep in high loading work longer time, while they complete a concurrent job and next
one does not be started. Power saving technology helps to decrease host energy con-
sumption, and decreasing energy cost and carbon dioxide emissions can be reduced.

There are many directions to continue this investigation, to develop methods to
save energy. If hardware and software provides functions about voltage or speed con-
trol, motherboard or any other type of peripheral device, then a hardware driver,
power-aware job scheduling and data distribution algorithms can be combined and
implemented, targeting in the construction of a low energy cost cluster computing
platform in future.

References

1. Power Management Guide,
 http://www.gentoo.com/doc/en/power-management-guide.xml

2. Enabling CPU Frequency Scaling,
 http://ubuntu.wordpress.com/2005/11/04/
 enabling-cpu-frequency-scaling/

3. Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor,
 ftp://download.intel.com/design/network/papers/30117401.pdf

120 Y.-J. Chen et al.

4. AMD PowerNow! Technology Platform Design Guide for Embedded Processors,
 http://www.amd.com/epd/processors/6.32bitproc/8.amdk6fami/
 x24267/24267a.pdf

5. AMD / Intel CPU voltage control driver down load,
 http://www.linux-phc.org/viewtopic.php?f=13&t=2

6. AMD Family 10h Desktop Processor Power and Thermal Data Sheet,
 http://www.amd.com/us-en/assets/content_type/
 white_papers_and_tech_docs/GH_43375_10h_DT_PTDS_PUB_3.14.pdf

7. AMD Opteron Processor with Direct Connect Architecture,
 http://enterprise.amd.com/downloads/4P_Power_PID_41498.pdf

8. Lan, C.-Y., Hsu, C.-H., Chen, S.-C.: Scheduling Contention-Free Irregular Redistributions
in Parallelizing Compilers. The Journal of Supercomputing 40(3), 229–247 (2007)

9. Shin, D., Kim, J.: Power-Aware Communication Optimization for Networks-on-Chips
with Voltage Scalable Links. In: Proceeding of the International Conference on Hard-
ware/Software Code sign and System Synthesis, pp. 170–175 (2004)

10. Chen, G., Li, F., Kandemir, M.: Reducing Energy Consumption of On-Chip Networks
Through a Hybrid Compiler-Runtime Approach. In: 16th International Conference on Par-
allel Architecture and Compilation Techniques (PACT 2007), pp. 163–174 (2007)

11. Intel 64 And IA-32 Architectures Software Developers Manual, vol.1,
 http://download.intel.com/design/processor/manuals/
 253665.pdf

12. Key Architectural Features of AMD Phenom X4 Quad-Core Processors,
 http://www.amd.com/us-en/Processors/ProductInformation/
 0,30_118_15331_15332%5E15334,00.html

13. Chia, L., Hartono, A., Panda, D.K.: Designing High Performance and Scalable MPI Inter-
node Communication Support for Clusters. In: 2006 IEEE International Conference on
Cluster Computing, September 25-28, pp. 1–10 (2006)

14. Noronha, R., Panda, D.K.: Improving Scalability of OpenMP Applications on Multi-core
Systems Using Large Page Support. In: 2007 IEEE International Parallel and Distributed
Processing Symposium, March 26-30, pp. 1–8 (2007)

15. Ogras, U.Y., Marculescu, R., Lee, H.G., Chang, N.E.: Communication Architecture Opti-
mization: Making the Shortest Path Shorter in Regular Networks-on-Chip. In: 2006 Pro-
ceedings of the conference on Design, Automation and Test in Europe, Munich, Germany,
March 2006, vol. 1, pp. 712–717 (2006)

	Power Consumption Optimization of MPI Programs on Multi-core Clusters
	Introduction
	Related Works
	Challenges of Power Saving in Multi-core CPU Cluster Platform
	CPU Power Control Structure
	Network Bandwidth and Cache Structure
	MPI Environment Support

	The Proposed Approach
	Drop Down Data Transmission Speed
	Data Broadcasting According to Core Loading
	Slow Down Lower Loading CPU / Core

	Performance Evaluation
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

