
Local vs. Global Scalability in Ad Hoc and

Sensor Networks

András Faragó
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Abstract. We address large, random network topologies that are typi-
cal in ad hoc and sensor networks. In these systems we need at least two
different types of scalability. First, we want that with growing network
size the topology remains connected, so that communication is possible
between nodes. Second, it is also necessary that the individual nodes
can operate with limited energy and complexity, which requires that the
number of neighbors of any node remains bounded. Unfortunately, these
global vs. local scalability requirements conflict with each other, as it is
known, under very general conditions, that full connectivity can only be
achieved with infinitely growing node degrees. Therefore, it is important
to quantify how large part of the random topology can be still expected
to belong to a connected component if the nodes are confined to some
bounded degree. We investigate this issue in a model that is more general
than previously investigated random wireless network topology models.
In our general model we derive an asymptotically optimal trade-off be-
tween node degrees and the fraction of nodes that form a connected
component.
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1 Introduction

Large wireless networks with random topology and no supporting infrastructure,
such as ad hoc and sensor networks, are expected to be an important part of the
future communications landscape. The network topology of these systems is often
modeled by various random graph models, most typically by geometric random
graphs. (For general background on such models see, e.g., the books [5], [10].)

Due to the randomness of the network topology, it is not at all guaranteed that
any two nodes can send messages to each other, since the random graph that rep-
resents the network topology may not be connected. If we want to ensure that all
nodes can reach each other, then, as a minimum requirement, we have to make sure
at least that the network topology (which is usually represented by an undirected
graph) is connected.

The connectivity requirement, however, is not as innocent as it may look, due to
random node positions and limited wireless transmission ranges. It turns out (see,
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e.g., Gupta and Kumar [6,7]) that in typical cases, such as placing the nodes in
a planar disk independently and uniformly at random, the price of connectivity
is very high: the transmission range needs to be set such that it asymptotically
results in an infinitely growing number of neighbors.

This phenomenon is a serious threat to scalability in these networks. One might
hope at this point that for different geometric random graph models the situation
may perhaps improve. For example, one may try different deployment domains,
different probability distributions, different distance metrics, etc. Unfortunately,
however, it has been proven in a very general model that none of these can re-
lieve the scalability bottleneck, see Faragó [3]. It appears that unbounded node
degrees are unavoidable whenever full connectivity is required in the limit in a
random, geometrically induced topology. This is, of course, bad news for scalable
implementation, since a node with finite processing power cannot be expected to
handle an unbounded neighborhood with bounded delay.

It is therefore of keen importance whether better scalability can be achieved if
we are willing to give up full connectivity and substitute it with the milder require-
ment of partial connectivity. This means, as a price for keeping the node degrees
bounded, we accept that only most, but not all, nodes are in a connected com-
ponent. The motivation is that in many potential applications, such as a network
of randomly placed sensors, it is acceptable to have only a majority (say, 99%) of
nodes in a connected component and the rest are possibly disconnected.

We investigate the fundamental limits related to such partial connectivity, un-
der very general modeling assumptions. Building on the work we have started in
[3,4] on connectivity issues, now we explore the asymptotically optimal trade-off
between the fraction of nodes that can be kept in a connected component as a
function of the bound on the expected node degrees.

We look for the possibly most general conditions under which we can still prove
such a trade-off. It turns out that aiming at generality does pay off: we are able
to prove that certain very mild conditions on the otherwise unrestricted model
already suffice for the proof. The level of generality also makes the proofs much
more transparent than the usual stochastic geometry based analysis of random
geometric graphs or percolation models, and allows to easily answering questions
that would otherwise be quite hard. To illustrate it, a motivating example is pre-
sented in the next section.

2 A Motivating Sample Problem

In this example we model a mobile wireless ad hoc network. The initial position
of each node is chosen in the following way. Let P be a probability measure over a
planar domain D. First we choose k pivot points independently at random, using
P . Then the actual node positions are generated such that each potential node is
chosen independently at random from P , but it is kept only if it is within a given
distance d0 to at least one of the random pivot points, otherwise it is discarded.
Note that this way of generating the nodes makes them dependent, as the non-
discarded ones cluster around the random pivot points, thus modeling a clustered,
non-independent node distribution.
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The mobility of the nodes in this example is modeled in the following way. Over
some time horizon Tn, that may depend on n, the number of nodes, each node
moves along a random curve from its initial position with a constant speed v0. The
curve is chosen from a set C of available potential trajectories in D. For simplicity,
it is assumed that each curve can be identified by a real parameter. This parameter
is chosen using a probability distribution Qx,y that depends on the initial position
(x, y) of the node. Then the randomly obtained curve is shifted so that its start
point coincides with the random initial position of the node and then the node will
move along this random trajectory. It is assumed that C and D are such that the
shifted curves still remain in the domain.

Let d(x, y) be a nonnegative real valued function over D × D, with the only
restriction that d(x, x) = 0 holds for any x. This function is intended to measure
“radio distance” in D. The assumption is that whenever d(x, y) is small enough,
then two nodes positioned at x and y can receive each others’ transmissions. The
function d(x, y), however, does not have to satisfy the usual distance axioms, it
may reflect complex radio propagation characteristics, such as expected attenua-
tion and fading, it may account for the heterogeneity of the terrain, for propaga-
tion obstacles etc. We may also include random effects, making d(x, y) a random
variable, reflecting special conditions of interest, such as the random presence of
eavesdroppers that can trigger the inhibition of certain links. We assume, however,
that if there is randomness in d(x, y), then it is independent of the other random
variables in the model.

We now define the links of the network, as follows. Consider two nodes with ini-
tial position vectors X1(0), X2(0), respectively. As they move along their random
trajectories, their positions at time t is denoted by X1(t), X2(t), respectively. The
two nodes are considered connected by a link, if there is a closed subinterval of
length at least tn within the time horizon [0, Tn], such that d(X1(t), X2(t)) ≤ rn

holds for every time t within the subinterval, with the possibly complicated radio
distance. Here tn and rn are parameters that may also depend on the number n of
nodes. The motivation for this link definition is that the nodes should be within
range at least for the time of sending a packet.

Now the question is this: for given P , D, C, Qx,y and d(x, y), and for the de-
scribed way of dependent node generation, can we somehow choose the model pa-
rameters, such that the expected node degrees remain bounded by, say, 4 and still
at least 99% of nodes belong to a connected component?

We believe that it would be rather hard to answer this question with a direct
analysis for arbitrary complex choices of P , D, C Qx,y and d(x, y). On the other
hand, in view of our general results that we build up in the subsequent sections,
it becomes quite straightforward.

3 On a Bottleneck of Scalability

Before presenting our results, let us briefly analyze how the considered issue im-
poses a general scalability bottleneck for large wireless networks.

It is well known that network connectivity is of primary concern in large, random
ad hoc networks, since a connected network topology is a fundamental condition
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for successful operation.Another, less obvious, important reason for taking a closer
look at connectivity is its role in the limiting behavior of the transport capacity of
ad hoc networks.

Reseach interest in the fundamental limits on the transport capacity of ad hoc
networks had an upsurge after the the seminal paper of Gupta and Kumar [6] on
the capacity of wireless networks. Many results followed on how much traffic can
an ad hoc network support in different modes of operation, which values of local
parameters can guarantee global connectivity, what can topology control princi-
pally achieve etc.

One of the key results of Gupta and Kumar [6] considers the achievable through-
put per source-destination (S-D) pair in a large network, where n nodes are placed
independently and uniformly at random in a planar disk of unit area. The nodes
have the same (positive) transmission radius r which, in principle, can be cho-
sen arbitrarily. The nodes can transmit with a fixed maximum rate (bit/sec), but
they are allowed to divide the channel into subchannels without any constraint, in
any domain (e.g., frequency, time, code). The nodes communicate using arbitrary
protocols for channel access and routing, with the only restriction that there is a
minimal requirement of interference avoidance in the same (sub)channel to ensure
successful receptions. The considered traffic pattern is that each node has a ran-
domly chosen destination in the network. The authors prove that in this general
model the achieveable throughput per S-D pair is Θ

(
1√

n log n

)
.

Regarding scalability, the key message of this result is that the achievable
throughput per S-D pair tends to zero as the network size grows to infinity. We
call this the vanishing throughput effect. It means, the network is fundamentally
not scalable, since it becomes unable to usefully operate when it grows very large.

To better understand a fundamental reason for the vanishing throughput and
its key relationship to asymptotic connectivity, let us briefly discuss what causes
it and how in the Gupta-Kumar model [6].

The transmission radius r of nodes has two opposite effects. If r is small, then
more hops are needed to deliver a packet to its destination, since in each hop
the packet can advance at most a distance of r towards its destination. There-
fore, small r causes a growing burden of nodes to serve as relays, which decreases
the end-to-end throughput. This would justify choosing r as large as possible. On
the other hand, large transmission radius increases interference which causes the
throughput to decrease again, so interfence reduction would require to choose r
as small as possible.

The detailed analysis of the above conflicting tendencies in [6] shows that the
forwarding burden is proportional to 1/r, since the average route hop-length is
proportional to 1/r. On the other hand, the interference increases quadratically
with the radius, due to the area involved, which is proportional to r2. Balancing
the two effects yields the conclusion that r has to be chosen as small as possible, as
the interference reduction, due to its quadratic nature, brings more benefit than
what is lost by longer routes. Specifically, the joint effect results in the formula

λ(n) = O

(
1

nr(n)

)
(1)
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where n is the number of nodes, λ(n) is the throughput in bit/sec for each S-D
pair and r(n) is the transmission radius (as a function of n). It is clear from (1)
that if we want to avoid λ(n) → 0, then r(n) has to tend to 0 at least as fast as
O(1/n), so that nr(n) does not grow to infinity.

There is, however, an effect that does not allow choosing the transmission ra-
dius arbitrarily small. This is the requirement that the network topology must be
connected, since otherwise communication between certain endpoints becomes im-
possible. The discussed model uses an earlier result of the same authors [7] about
the needed transmission radius for asymptotic connectivity. They show that if the
nodes are placed uniformly at random in a unit disk, then the network is connected
with probability approaching 1 if and only if the transmission radius satisfies

πr2 =
ln n + c(n)

n
(2)

with c(n) → ∞. According to (2), it is necessary for connectivity that

r >

√
ln n

πn

holds for all large enough values of n. Combining it with (1), we obtain

λ(n) = O

⎛
⎝ 1

n
√

ln n
n

⎞
⎠ = O

(
1√

n lnn

)

clearly showing the vanishing throughput effect.
According to the above discussion, the lower bound on the transmission radius,

enforced by the network connectivity requirement, can be viewed as an important
factor in the vanishing throughput effect, since without it the transmission radius
could be chosen small enough to gain arbitrarily more from reduced interference
than what is lost by longer hop-distances.

To obtain a graph theoretical view of the network topology, we can translate
(2) into the expected node degrees. If the nodes are placed uniformly at random
in a unit disk, then πr2 is the expected number of nodes that fall in the range
of a node that is not at the border of the disk, so that its range is fully in the
domain. This is also the probability that a random node falls in this range, so
the expected number of neighbors is nπr2 and by (2) we have nπr2 > ln n. Since
only a vanishing fraction of nodes are close to the border, we can asymptotically
ignore the border effect and reformulate (2) in the following way: for the Gupta-
Kumar model, connectivity requires that the node degrees grow to infinity at least
logarithmically with the network size.

It is worth mentioning that infinitely growing node degrees alone, even without
the capacity analysis, can kill scalability, since the processing requiments of a node
are likely to grow at least proportionally with the size of the neighborhood.

Thus, we can conclude that an important factor in the vanishing throughput
phenomenon is that the connectivity requirement does not allow the transmission
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radius to shrink too fast, which, if translated to a graph view, means that the node
degrees must tend to infinity, whenever full connectivity is required. This naturally
leads to the idea of relaxing the full connectivity requirement and it makes impor-
tant to investigate the trade-off between the fraction of nodes that can be kept in
a connected component versus the expected node degrees.

4 Random Graph Models

Let us first explain what we mean by random graphs and a random graph model
in the most general sense.

In full generality, by a random graph on a fixed number of nodes (n) we mean
a random variable that takes its values in the set of all undirected graphs on n
nodes. We use the notation Gn for a random graph on n nodes. At this point, it
is still completely general, it can be generated by any mechanism, with arbitrary
dependencies among its parts, it is just any graph-valued random variable, taking
its values among undirected graphs on n nodes.

A random graph model is given by a sequence of graph valued random variables,
one for each possible value of n:

M = (Gn; n ∈ N).

Let us now consider some important general parameters and properties. Let Gn

be any random graph on n nodes and denote by e(Gn) the number of edges in the
graph. We characterize the degrees of Gn by the expected degree of a randomly
chosen vertex, which we call he expected average degree of Gn. It is denoted by d(n)
and defined by

d(n) =
2E(e(Gn))

n
based on the fact that the actual average degree in any graph G on n nodes is
2e(G)/n. Often the expected degree of each individual node is also equal to d(n),
but in a general model it may not hold. (Note that even if the expected degree
of each node is equal to the expected average degree, it does not mean that the
actual random degrees are also equal.)

Ideally, we would like a random graph model in which d(n) remains constant
and the model is asymptotically almost surely (a.a.s.) connected, meaning

lim
n→∞ Pr(Gn is connected) = 1.

Note: Whenever we write down a limit, such as the one above, we also assume that
the limit exists.

Since, as mentioned in the Introduction, asymptotic connectivity is not possible
in most models without unbounded degrees, therefore, one may hope that if less
than full connectivity is required, then there is a better chance to keep the node
degrees bounded. To this end, let us define a weaker version of connectivity.

Definition 1. (β-connectivity) For a real number 0 ≤ β ≤ 1, a graph G on
n nodes is called β-connected if G contains a connected component on at least βn
nodes.
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When we consider a sequence of graphs with different values of n, then the param-
eter β may depend on n. When this is the case, we write βn-connectivity. Note that
even if βn → 1, this is still weaker than full connectivity in the limit. For example,
if βn = 1− 1/

√
n, then we have βn → 1, but each graph on n nodes can still have

n − βnn =
√

n nodes that are not part of the largest connected component.
Let us now introduce a model class that reflects a typical feature of geomet-

ric random graph models. This feature is that in geometric random graphs the
primary random choice is picking random nodes from some domain and then the
edges are already determined by some geometric property (typically some kind of
distance) of the random nodes. We elevate this approach to an abstract level that
includes many special cases of interest. Based on this high level of abstraction, we
call it abstract geometric random graph model.

The most general version of our abstract geometric model is built using the
following components:

– Nodevariables. Thenodes are representedbyan infinite sequenceX1, X2, . . .
of random variables, called node variables. They take their values in an arbi-
trary (nonempty) set S, which is called the domain of the model. In most prac-
tical cases the domain is a simple subset of the Euclidean plane or of the 3-
dimensional space. In general, however, S can be any abstract set from which
we can choose random elements1. When we want to generate a random graph
on n nodes, then we use the first n entries of the sequence, that is, X1, . . . , Xn

represent the nodes in Gn. It is important to note that we do not require the
node variables to be independent.

– Edge functions. We denote by Y
(n)
ij ∈ {0, 1} the indicator of the edge be-

tween nodes Xi, Xj in the random graph Gn. Since loops are not allowed, we
always assume i �= j, without repeating this condition each time. The (ab-
stract) geometric nature of the model is expressed by the requirement that
the random variables Y

(n)
ij are determined by the nodes X1, . . . , Xn, possi-

bly with additional independent randomization. Specifically, we assume that
there exist functions f

(n)
ij , such that

Y
(n)
ij = f

(n)
ij (X1, . . . , Xn, ξij)

where ξij is a random variable that is uniformly distributed on [0, 1] and is
independent of all the other defining random variables of the model (i.e., the
node variables and all the other ξkl variables). Henceforth the role of ξij is
referred to as independent randomization2. The undirected nature of the graph
is expressed by the requirement Y

(n)
ij = Y

(n)
ji , which can simply be enforced by

1 To avoid mathematical complications that would only obscure the main message, we
assume that all considered sets, functions etc. are measurable with respect to the used
probability measures and all considered expected values exist. This is satisfied in in
every practically relevant model.

2 Note that the specified distribution of ξij does not impose a restriction, since the

functions f
(n)
ij are arbitrary.
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computing all values for i < j only and defining the i > j case by exchanging
i and j.

Regarding the abstract geometric random graph model in the presented very gen-
eral form, it is clear that allowing totally arbitrary node variables and edge func-
tions offers little hope for meaningful analysis. Therefore, next we introduce some
restricting conditions. Later we are going to see that one has to make only surpris-
ingly mild restrictions to meaningfully analyze the trade-off between node degrees
and β-connectivity.

Up to now we allowed that an edge in Gn can depend on all the nodes, and
the dependence expressed by the f

(n)
ij functions can be arbitrary and different for

each edge. To get a little closer to the usual geometric random graph model, let us
introduce the following property, called locality. Informally, it restricts the depen-
dence of an edge to its endpoints, in a homogeneous way, but still via an arbitrary
function.

Definition 2. (Locality) An abstract geometric random graph model is called
local, if for every n and i, j ≤ n the existence of an edge between Xi, Xj depends
only on these nodes. Moreover, the dependence is the same for every i, j, possibly
with independent randomization. That is, there are functions f (n) such that the
edge indicators are expressible as

Y
(n)
ij = f (n)(Xi, Xj , ξij)

where ξij represents the independent randomization.

Our second condition called name invariance refers to the joint distribution of
nodes. If we allow totally arbitrary joint distribution, then it offers little chance for
meaningful analysis. On the other hand, restricting ourselves only to independent,
identically distributed (i.i.d.) node variables would exclude important cases, such
as clustering. Therefore, we introduce a condition that allows more general than
i.i.d. node variables, but still makes meaningful analysis possible. To introduce it,
let us first recall a useful concept from probability theory, called exchangeability.

Definition 3. (Exchangeable random variables) A finite sequence ξ1, . . . , ξn

of random variables is called exchangeable if for any permutation σ of {1, . . . , n},
the joint distribution of ξ1, . . . , ξn is the same as the joint distribution of
ξσ(1), . . . , ξσ(n). An infinite sequence of random variables is called exchangeable if
every finite initial segment of the sequence is exchangeable.

Exchangeability can be equivalently defined such that for any k ≥ 1 among the
random variables, say, ξj1 , . . . , ξjk

, their joint distribution is always the same (for
a given k), it does not depend on which particular set of k indices is selected. Note
that i.i.d. random variables are always exchangeable, but the converse generally
does not hold, so this is a larger family.

Now let us introduce the condition that we use to restrict the arbitrary depen-
dence of node variables.
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Definition 4. (Name invariance) An abstract geometric random graph model
is called name invariant, if its node variables are exchangeable.

We call it the name invariance of the model because it means the names (the in-
dices) of the nodes are irrelevant in the sense that the joint probabilistic behavior
of any fixed number of nodes is invariant to renaming (reindexing) the nodes. In
particular, it also implies that the node variable are identically distributed, but
they do not have to be independent.

Name invariance is naturally satisfied with the most frequently used random
node choices, such as uniform independent random points in a planar domain, or
a Poisson point process in the plane, or in higher dimension. We allow, however,
much more complex node generation (over an arbitrary set!) since dependencies
are not excluded by name invariance.

A simple example for a dependent, yet still name invariant, node generation
process is a “clustered uniform” node generation. As an example, let S be a sphere
in 3-dimensional space, i.e., the surface of a 3-dimensional ball. Let R be the radius
of the ball. Let us first generate a pivot point Y uniformly at random from S.
Then generate the nodes X1, X2, . . . uniformly at random and independently of
each other from the neighborhood of radius r 	 R of the random pivot point Y
(within the sphere). It is directly implied by the construction that exchangeability
holds. Moreover, any particular Xi will be uniformly distributed over the entire
sphere, since Y is uniform over the sphere. On the other hand, the Xi are far from
independent of each other, since they cluster around Y , forcing any two of them
to be within distance 2r. The setting can be generalized to applying several pivot
points and non-uniform distributions, creating a more sophisticated clustering.

5 Example Models

Before turning to the results, let us present some example models to show the
usefulness and comprehensiveness of the generalization provided by our abstract
geometric random graphs. Since the results will apply to local and name invariant
models, we restrict ourselves to such models in the examples.

Geometric random graphs. All the usual geometric random graph models fit
naturally in our general framework. For example, the base set S can be chosen as
a unit disk or square in the plane or a unit ball or cube (or any other domain) in
higher dimension. Let us choose i.i.d. points X1, X2, . . . from S, according to some
probability distribution. Let ρ(x, y) denote the distance of the points x, y ∈ S, it
can be any distance function. Finally, let r > 0 be a radius (possibly depending
on n). Then the edge function

f (n)(Xi, Xj , ξij) =
{

1 if ρ(Xi, Xj) ≤ r
0 if ρ(Xi, Xj) > r

(3)

defines a geometric random graph in the usual sense. (The independent random-
ization is not used here, so the edge function does not depend on ξij .) It is clear that
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this includes all the usual geometric random graph models, allowing any metric
space as the basis. Moreover, we can also use non-independent points, such as the
“clustered uniform” example in the previous section, as long as the distribution is
exchangeable.

Erdős-Rényi random graphs. The by now classical random graph model of
Erdős and Rényi (see, e.g., [1,8]), where each possible edge is included indepen-
dently with some probability p is also included as a direct special case. We can set
S = {1, . . . , n} and for Xi, Xj ∈ S

f (n)(Xi, Xj , ξij) =
{

1 if ξij ≤ p
0 if ξij > p

Note that now the edge function depends only on the independent randomization,
so indeed each edge is included independently with probability p.

A geometric but non-metric example: battery levels. In the geometric ran-
dom graph models ρ satisfies the triangle inequality. This, however, cannot cap-
ture all situations that occur in ad hoc or sensor networks. As an example, assume
the nodes are located in the plane. Let xi, yi be the coordinates of the ith node.
Furthermore, we also characterize a node with its battery level Ei > 0. Ei repre-
sents the remaining energy, assuming the node is not fully out of energy. Thus, a
node is represented by a triple Xi = (xi, yi, Ei). Let d(Ei) be the distance over
which a node can communicate, given its energy level Ei. (The function d(Ei) can
be derived from the physical characteristics of the node and from radio propaga-
tion conditions.) Now, a possible example of a “distance” function is

ρ(Xi, Xj) =

√
(xi − xj)2 + (yi − yj)2

min{d(Ei), d(Ej)}
If we take r = 1 and use the above ρ function in (3), then it expresses the condition
that a link exists if and only if its end nodes are at most at a distance that can be
bridged by the energy levels of both nodes. Note that the above function ρ does
not satisfy the triangle inequality, so it does not lead to a geometric random graph
model in the usual sense. On the other hand, it still fits in our framework, as in
(3) we did not require the triangle inequality to hold for ρ.

Another non-metric example: link blocking. We can capture some features
of traffic dependent network characteristics, as well. Let each node i be charac-
terized by a triple Xi = (xi, yi, λi), where xi, yi are planar coordinates and λi

is the traffic demand of the node. Let Bij be the blocking probability of the link
(i, j), given that the link exists. We may compute Bij as a function of λi, λj from
some traffic model. For example, if we use Erlang’s well known formula, assuming
a capacity of C units on the link and its load is taken as the sum of its end nodes’
traffic load λi + λj , then we obtain

Bij =
(λi + λj)C/C!∑C
i=0(λi + λj)i/i!

.
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(Of course, we may use other traffic models, as well, this is just an example.) Now
we can take the “distance” function

ρ(Xi, Xj) =
1

1 − Bij

√
(xi − xj)2 + (yi − yj)2

and use it in (3) with some radius r. We can observe that for small blocking prob-
ability (Bij 	 1) ρ(Xi, Xj) will be approximately the same as the Euclidean dis-
tance. On the other hand, as Bij approaches 1, the factor 1

1−Bij
tends to infinity

and, therefore, high blocking probability makes the existence of the link in the
model less likely, even if the physical distance is small. This example also violates
the triangle inequality, so it is not a geometric random graph.

Log-normal shadowing. A typical phenomenon in the radio environment is fad-
ing. An example of fading is a relatively slow random fluctuation in the signal
strength, which occurs even if the locations are fixed. Measurements show that
this random variation can be accurately modeled by a log-normal distribution
(see, e.g., [9]). Hence the name log-normal shadowing, which is widely used for
this phenomenon. A way to capture it in our model is this. Let us characterize a
node i by a triple Xi = (xi, yi, ηi), where xi, yi represent a random position in the
plane and each ηi is an infinite sequence of independent, log-normally distributed
random variables:

ηi = (η(i)
j ; j = i, i + 1, i + 2, . . .).

The “distance” is defined as

ρ(Xi, Xj) = η
(a)
b

√
(xi − xj)2 + (yi − yj)2

where a = min{i, j} and b = max{i, j}. (The reason for we need an infinite se-
quence of log-normal random variables is that this way we can have independent
log-normal shadowing for every link.) This distance can express the fact that from
the radio communication point of view we really perceive an “effective distance”,
which is a log-normally modulated random variant of the physical distance. Using
this ρ in (3) leads again to a random graph that is not geometric, as ρ does not
satisfy the distance axioms.

6 Threshold Function for Partial Connectivity

Let us now define a concept that will characterize the trade-off between node de-
grees and the type of partial connectivity that we introduced as β-connectivity
in Definition 1. The set of nonnegative real numbers, extended with ∞, will be
denoted by R∞

0 . Real functions are also extended to ∞ by f(∞) = limx→∞ f(x),
whenever the limit exists (it will always exist in our cases). The value of β is always
assumed to be in [0, 1].

Before the formal definition let us explain the concept informally. We define a
threshold function for β-connectivity, such that whenever β is above the threshold,
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then it is impossible to achieve a.a.s. β-connectivity for any model in the consid-
ered family of random graph models. On the other hand, if β is below the thresh-
old, then this is not the case anymore, that is, there is at least one model in the
family that achieves a.a.s β-connectivity with this β. Now let us present the for-
mal definition. Recall that the expected average degree in a random graph Gn is
defined as d(n) = 2E(e(Gn))/n.

Definition 5. (Threshold for β-connectivity) Let F be a family of random
graph models. For any model M ∈ F let Gn denote the random graph on n nodes
generated by M and set

DM = lim sup
n→∞

d(n).

A function f : R∞
0 
→ [0, 1] is called a β-connectivity threshold function for F if

the following two conditions are satisfied:

(i) For any model M ∈ F and for every β > f(DM)

lim
n→∞Pr(Gnis β-connected) < 1

holds, where Gn is generated by M.
(ii) If β is below the threshold, then (i) does not hold anymore, in the following

sense. For every ε > 0 there exists a model M0 ∈ F and a

β ≤ f(DM0) − ε

such that
lim

n→∞Pr(Gnis β-connected) = 1

where Gn is generated from M0.

The importance of this concept is the following. If for a considered class F of ran-
dom graph models we can find out what the corresponding β-connectivity thresh-
old function is, then we can tell precisely what range of expected average degrees
allow a.a.s. β-connectivity for a given β. Or, conversely, if we know the (asymp-
totic) expected average degree for a particular model M in the considered class,
then we can decide what level of connectivity can be asymptotically achieved for
this model.

7 Results

Now we show that for the quite general class of abstract geometric random graph
models we can find the precise β-connectivity threshold function, if we assume that
the models satisfy the conditions of locality and name invariance. The previously
presented examples all satisfy these conditions, so they show that even with these
restrictions we can still include many complex and practically important models.
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Theorem 1. (Threshold function for local and name invariant abstract
geometric graphs) Let F be the family of local and name invariant abstract ge-
ometric random graph models For any model M ∈ F set

DM = lim sup
n→∞

d(n).

Then the β-connectivity threshold function for F is

f(DM) = 1 − e−DM .

The proof is based on another theorem, which is interesting on its own right. As a
further notation, the (random) number of isolated nodes in Gn is denoted by In.

Theorem 2. (Lower bound on the expected number of isolated nodes)
The expected number of isolated nodes in a local and name invariant abstract geo-
metric random graph Gn always satisfies

E(In) ≥ n

(
1 − d(n)

n − 1

)n−1

. (4)

Proof of Theorem 2. First we note that since our model is abstract and does
not involve any real geometry, one has to be careful to avoid using such intuition
that may appeal geometrically, but does not follow from the abstract model.

As a first step, observe the following: name invariance implies that for any func-
tion g of the node variables and for any permutation σ of {1, . . . , n} we have

E(g(X1, . . . , Xn)) = E(g(Xσ(1), . . . , Xσ(n))).

Since the probability that a particular node has any given degree k is also express-
ible by such a function, therefore, the probability distribution of the node degree
must be the same for all nodes (but the degrees, as random variables, may not be
independent). As a consequence, the expected degree of each node is the same,
which then must be equal to the expected average degree d(n).

Let us pick a node Xi. We derive a lower bound on the probability that Xi is
isolated, i.e., its degree is 0. Due to the above symmetry considerations, it does not
matter which node is chosen, so we can take i = 1. Let In be the (random) set of
isolated nodes in Gn. What we want to compute is a lower bound on Pr(X1 ∈ In).
Then we are going to use the fact that

E(In) = E(|In|) =
n∑

i=1

Pr(Xi ∈ In)

Note that, due to the linearity of expectation, this remains true even if the events
{Xi ∈ In} are not independent, which is typically the case. Then, by the symme-
try considerations, we can utilize that Pr(Xi ∈ In) is independent of i, yielding
E(In) = n Pr(X1 ∈ In).

In order to derive a lower bound on Pr(X1 ∈ In), we need a fundamental result
from probability theory, called de Finetti’s Theorem3. This theorem says (in its
3 It was first published in [2]. Being a classical result, it can be found in many advanced

textbooks on probability. Interestingly, it seems that, despite its usefulness, it is rarely
applied by the networking community.
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simplest form that is already sufficient for our purposes) that if an infinite sequence
ξ1, ξ2, . . . of 0-1 valued random variables is exchangeable, then the following hold:

(i) The limit

η = lim
N→∞

ξ1 + . . . + ξN

N
(5)

exists with probability 1. Note that exchangeability implies that all ξi have the
same expected value, so in case they were independent, then the strong law
of large numbers would apply and the limit would be the common expected
value, with probability 1. Since, however, the ξi are not assumed independent
(only exchangeable), therefore, the average may not tend to a constant, it can
be a non-constant random variable in [0, 1].

(ii) For any N and for any system a1, . . . , aN ∈ {0, 1} of outcomes with s =∑N
i=1 ai

Pr(ξ1 = a1, . . . , ξN = aN ) =
∫ 1

0

xs(1 − x)N−sdFη(x)

holds, where Fη is the probability distribution function of η.
(iii) The ξi are conditionally independent and identically distributed (condition-

ally i.i.d.), given η, that is,

Pr(ξ1 = a1, . . . , ξN = an | η) =
N∏

i=1

Pr(ξi = ai | η).

Informally, de Finetti’s theorem says that exchangeable 0-1 valued random vari-
ables, even if they are not independent, can always be represented as a mixture
of Bernoulli systems of random variables. It is important to note, however, that
even though the statements (ii) and (iii) refer to finite initial segments of the se-
quence ξ1, ξ2, . . . , it is necessary that the entire infinite sequence is exchangeable.
For finite sequences the theorem may not hold, counterexamples are known for
the finite case [11].

Let us now define the infinite sequence of 0-1 valued random variables

ej = f (n)(X1, Xj , ξ1j), j = 2, 3 . . .

Of these, e2, . . . , en are the indicators of the edges with one endpoint at X1. But
the function f (n) is defined for any (x, y, z) ∈ S × S × [0, 1], so nothing prevents
us to define the infinite sequence ej ; j = 2, 3, . . ., by taking more independent and
uniform ξ1j ∈ [0, 1] random variables.

Observe now that the sequence ej ; j = 2, 3, . . . is an infinite exchangeable se-
quence of 0-1 valued random variables. Only the exchangeability needs proof. If
we take any k indices j1, . . . , jk, then the joint distribution of ej1 , . . . , ejk

depends
only the joint distribution of Xj1 , . . . , Xjk

, plus the independent randomization.
If we replace j1, . . . , jk by other k indices, then it will not change the joint distri-
bution of the k node variables, due to their assumed exchangeability. The inde-
pendent randomization also does not change the joint distribution, since the ξ1j



40 A. Faragó

are i.i.d., so it does not matter which k are taken. Furthermore, the locality of the
model implies that each ej depends on one Xj (besides X1) so taking another k
cannot change how many node variables will any subset of the ej share. Thus, for
any k, the joint distribution of ej1 , . . . , ejk

does not depend on which k indices are
chosen, proving that ej; j = 2, 3, . . . is an infinite exchangeable sequence of 0-1
valued random variables.

Now, by de Finetti’s Theorem, there is a random variable η ∈ [0, 1], such that
the ej are conditionally i.i.d., given η. Then we can write

Pr(X1 ∈ In) = Pr(e2 = . . . = en = 0)
= E(Pr(e2 = . . . = en = 0 | η))

= E

⎛
⎝

n∏
j=2

(Pr(ej = 0 | η))

⎞
⎠

= E

⎛
⎝

n∏
j=2

(1 − Pr(ej = 1 | η))

⎞
⎠ . (6)

Notice that Pr(ej = 1 | η) is the probability that an edge exists between X1 and
Xj , conditioned on η. Consequently, ξ = Pr(ej = 1 | η) is a random variable,
depending on η. At the same time, it does not depend on j, as by de Finetti’s
theorem, the ej are conditionally i.i.d., given η, so it does not matter which j is
taken in ξ = Pr(ej = 1 | η). Thus, we can continue (6) as

Pr(X1 ∈ In) = E

⎛
⎝

n∏
j=2

(1 − ξ)

⎞
⎠ = E

(
(1 − ξ)n−1

)
. (7)

We can now observe that ξ ∈ [0, 1] and the function g(x) = (1 − x)n is con-
vex in [0, 1], so we may apply Jensen’s inequality. Jensen’s well known inequality
says that for any random variable ζ and for any convex function g the inequality
E

(
g(ζ)

) ≥ g
(
E(ζ)

)
holds, which is a consequence of the definition of convexity.

Thus, we can further continue (7), obtaining

Pr(X1 ∈ In) = E
(
(1 − ξ)n−1

) ≥ (1 − E(ξ))n−1
.

Note that E(ξ) = E(Pr(ej = 1 | η)) = Pr(ej = 1) is the probability that an edge
exists between X1 and Xj . By name invariance, this is the same probability for
any two nodes, let pn denote this common value. Thus,

Pr(X1 ∈ In) ≥ (1 − pn)n−1

follows. We know that there are n− 1 potential edges adjacent to each node, each
with probability pn. Therefore, despite the possible dependence of edges, the lin-
earity of expectation implies the expected degree of each node under our con-
ditions is (n − 1)pn, which is also equal to d(n). We can then substitute pn =
d(n)/(n − 1), which yields
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Pr(X1 ∈ In) ≥
(

1 − d(n)
n − 1

)n−1

,

implying

E(In) = n Pr(X1 ∈ In) ≥ n

(
1 − d(n)

n − 1

)n−1

,

completing the proof.
♠

Now, using Theorem 2, we can prove the threshold claimed in Theorem 1.
Proof of Theorem 1. Fix any model M ∈ F . Since DM = lim supn→∞ d(n)

and (
1 − DM

n − 1

)n−1

→ e−DM ,

therefore, there must exist a sequence an → 1, such that

(
1 − d(n)

n − 1

)n−1

≥ ane−DM .

Hence, by Theorem 2,
E(In) ≥ ane−DMn (8)

holds for every n.
Now fix a β with 1 ≥ β > 1−e−DM. (We can assume DM < ∞, since otherwise

there is no such β.) We are going to show that Pr(Gn is β-connected) cannot tend
to 1.

Set sn = Pr(In ≤ (1−β)n), i.e. sn is the probability that at most (1−β)n nodes
are isolated. Then Pr(Gn is β-connected) ≤ sn must hold, since β-connectivity
implies that there may be at most (1−β)n isolated nodes. Consider now the ran-
dom variable γn = n−In, which is the number of non-isolated nodes. Then γn ≥ 0
and E(γn) = n − E(In). Therefore, (8) implies that

E(γn) ≤ (1 − ane−DM)n

holds for every n. Furthermore, by the definition of γn, the events {In ≤ (1−β)n}
and {γn ≥ βn} are identical. Thus, we can write, using the well known Markov
inequality for nonnegative random variables:

sn = Pr(In ≤ (1 − β)n) = Pr(γn ≥ βn)

≤ E(γn)
βn

≤ (1 − ane−DM)n
βn

=
1 − ane−DM

β
.

Since an → 1, β is constant and β > 1 − e−DM , we can conclude that
lim supn→∞ sn < 1 must hold. This, together with Pr(Gn is β-connected) ≤ sn

yields that the probability of β-connectivity cannot tend to 1.
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Next we prove the other side, i.e., that with β below the threshold by an arbi-
trarily small fixed ε > 0, a.a.s. β-connectivity does occur at least for some model
M0 ∈ F . Let us chose the model M0 as follows. Generate Gn such that each
edge is added with some fixed probability p, independently of the others. This is
a classical Erdős-Rényi random graph model (see Section 5), which is part of the
model family F , since it clearly satisfies name invariance and locality. We use the
following result from [8] about the Erdős-Rényi model: If np = c for a constant
c > 1, then there is a sequence hn → 0, such that Gn a.a.s. contains a connected
component of size (1 + hn)β0n, where β0 is the unique root of the equation

β0 + e−β0c = 1. (9)

For this model we have

d(n) = (n − 1)p =
n − 1

n
c

implying DM = c.
Now let us fix an arbitrary ε > 0. Since the root β0 = β0(c) of equation (9) is

less than 1 for any fixed c, but approaches 1 as c → ∞, therefore, due to continuity,
we can choose c such that

β0 = 1 − e−β0c = 1 − e−c − ε/2

holds. Then, by the above cited result, Gn a.a.s. has a connected component of size
(1 + hn)β0n with hn → 0. To compensate the effect of hn → 0, we can slightly
decrease β0 to some β < β0. Let us choose β = 1 − e−c − ε < β0. Then we
have proved that Gn, with the appropriately chosen c, a.a.s. contains at least βn
connected nodes. Moreover, due to DM = c,

β = 1 − e−DM − ε

holds, which completes the proof.
♠

It is worth mentioning that the definition of the treshold function and Theorem 1
directly imply that bounded expected average degrees in F exclude a.a.s. βn-
connectivity when βn → 1. Then, of course, a.a.s. full connectivity, which cor-
responds to β = 1, is also excluded.

Corollary 1. Let βn be a sequence in [0, 1] with βn → 1. Then for any local and
name invariant abstract geometric random graph model M it holds that if DM <
∞, then the random graphs generated by M cannot be a.a.s. βn-connected.

8 Solving the Sample Problem

Our results are derived through a more general approach than what is usual in this
context. In particular, it is purely probabilistic, geometry is replaced by a higher
level abstraction. To illustrate that despite the relative simplicity, the results can
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have a surprising strength, let us apply them to the motivating sample problem
of Section 2.

As noted in the exposition of the sample problem, it would be hard to solve it for
arbitrary choices of P , D, C, Qx,y and d(x, y) with directly analyzing the stochastic
geometry of the model (the notations are re-used from Section 2). On the other
hand, we can easily check that it satisfies our general conditions, as shown below.

Let us choose the model domain S as a 3-dimensional phase space, in which
each node is represented by a point such that the first two coordinates describe
the initial position of the node and the last coordinate encodes which random tra-
jectory was chosen from C for the node. Let X1, X2, . . . be the representations of
the nodes in this phase space.

We can now check that, for any n, the joint distribution of X1, . . . , Xn is in-
variant to re-indexing them. The reason is that both the initial positions and the
trajectory choices are generated by processes in which the indices do not play any
role. Therefore, the model is name invariant. Interestingly, this remains true de-
spite having a lot of dependencies among the nodes: the initial positions of differ-
ent nodes are not independent (due to clustering), and the trajectory of a given
node is also not independent of its initial position, as it is drawn from a probabil-
ity distribution that may depend on the location. Through this, the trajectories
and initial positions of different nodes also become dependent, making their whole
movement dependent. Yet, the model is still name invariant.

Let us now consider the links. As defined in Section 2, two nodes are consid-
ered connected if during their movement over the time horizon [0, Tn] there is a
subinterval of time, of length at least tn, such that they remain within “radio dis-
tance” ≤ rn during the entire subinterval. The radio distance, however, may be
very different from the Euclidean distance, it may be described by an arbitrary
function that may account for complex propagation characteristics, attenuation,
obstacles, and it may also contain independent randomness.

Given some possibly complicated radio distance d(x, y) and the node generation
and movement process with possibly complex trajectories, it may not be easy to
compute whether a link actually exists between two nodes according to the above
definition. On the other hand, for us it is enough to note that once the phase space
representations Xi, Xj of any two nodes are given, plus the realization of the inde-
pendent randomness of the distance, they together determine whether a link exists
between the two nodes or not. The reason is that the initial positions and the tra-
jectories, given in the phase space representation, fully determine the movement
of the nodes. Once this is known, it determines, along with the realization of the
independent randomness of the distance function, whether the link definition is
satisfied, i.e., if there is a subinterval of length ≥ tn in [0, Tn], such that the nodes
stay within radio distance ≤ rn during the entire subinterval. To actually com-
pute it may not be easy for a sophisticated case, but for our purposes it enough to
know that it is determined by the listed factors, without knowing anything about
the other nodes. This implies that the model is local.

Thus, we have established that the problem can be described by a local and
name invariant abstract geometric graph model, for any choice of the parameters.
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Then, by Theorem 1, the threshold function for β-connectivity is

f(DM) = 1 − e−DM .

If we require that node degrees are bounded by, say, 4, then we have DM ≤ 4,
implying

f(DM) = 1 − e−DM ≤ 1 − e−4 < 0.9817.

Thus, the threshold in this case falls below 0.99, so by Theorem 1, it is impossible
to achieve that asymptotically 99% of the nodes belong to a connected component,
no matter how the other parameters are chosen.

Note that the direct application of our general results was able to cut through
a lot of complexity that would otherwise arise if we wanted to reach the same con-
clusions by directly analyzing the stochastic geometry of such a model.

9 Conclusion

We have quantified the precise trade-off between expected node degrees and the
fraction of nodes that belong to a connected component in a large wireless network
topology, under very general conditions. Our conditions can be easily checked in
most specific cases. Therefore, the approach can serve as a powerful method to ex-
plore the degree vs. partial connectivity trade-off in possibly complicated random
network topology models, which would be otherwise hard to analyze directly.
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