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Abstract. Efficient processing of top-k queries has become a classical research 
area. Fagin et al. proposed the “middleware cost” for a top-k query algorithm. 
In some scenario, there is no way to perform a random access, and Fagin et al. 
proposed NRA (No Random Access) algorithm for that. In this paper, we inves-
tigate the intrinsic relation between top-k queries and K-skyband queries. Based 
on that relation, we propose a novel algorithm DNRA (Dominate-NRA). The 
main idea of DNRA is to partition the original dataset into two sub-datasets de-
pending on whether they belong to K-skyband or not. We prove that DNRA 
performs no more sorted accesses than NRA on any dataset. Furthermore, we 
partition the dataset into N sub-datasets (N is the number of objects in the data-
set), and then we propose our algorithm ADNRA (Advanced-DNRA). The par-
tition of the dataset is pre-computed, and we discuss two techniques to fulfill it. 
Extensive experiments show that our algorithms perform several orders of 
magnitude fewer accesses than NRA and that ADNRA performs significantly 
fewer accesses than DNRA on some datasets. 

Keywords: Top-k Queries, K-skyband Queries, NRA Algorithm, Dominate. 

1   Introduction 

Assume there are a huge amount of objects and every object has M attributes, for each 
attribute the object has a local score. These local scores can be aggregated to a total 
score by an aggregate function, and we want to know which k objects have the largest 
total scores. This scenario is generalized as “top-k queries”. 

Top-k queries have attracted considerable attention because of its wide use in many 
areas such as information retrieval[6][7], network and system monitoring[8][9], P2P 
systems and sensor networks [10][11], etc. The main reason for such attention is that 
top-k queries avoid overwhelming the user with large numbers of uninteresting  
answers which are resource-consuming. 

A general and simple model proposed by Fagin et al.[1] is that the dataset consists 
of M sorted lists with N data items. Each data item can be accessed through sorted 
access or random access. However, top-k queries with no random access have received 
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increasing interests because in many applications random access is impossible or it’s 
much more expensive than sorted access [2][3][4]. Fagin et al. proposed NRA  
(No Random Access) algorithm for this case. In this paper, we focus on the cases with 
no random access, but our methods can be easily generalized to cases where random 
access is possible. 

K-skyband[14] computation is another kind of query, which returns those objects 
that are dominated by at most K-1 other objects. An object dominates another object if 
it is as good or better in all attributes and better in at least one attribute. The essential 
difference between top-k queries and K-skyband queries is that top-k answers may 
vary with the different aggregate functions while K-skyband answers do not. 

Actually, there exist intrinsic connections between top-k queries and K-skyband 
queries. Firstly, in this paper, we investigate the relation between top-k queries and  
K-skyband queries, i.e. top-k answers for any increasingly monotone aggregate func-
tion belong to K-skyband, where k ≤ K. Secondly, based on the investigation, we  
propose our algorithm DNRA (Domination-NRA). The main idea of DNRA is to 
partition the original dataset into two sub-datasets depending on whether they belong 
to the K-skyband or not and it only accesses the K-skyband objects when answering 
top-k queries. For any dataset instance, we prove that DNRA performs no more sorted 
accesses than NRA. Thirdly, motivated by the idea of partitioning the dataset, we take 
a further step to partition the dataset into N sub-datasets (some sub-datasets may  
be empty) according to the degree of domination (see definition 3 in section 3.3) of 
the objects. Our algorithm ADNRA (Advanced-DNRA) comes into being on the basis 
of this partition. Fourthly, we discuss two techniques of dataset partition, which is 
done offline. Finally, we do extensive experiments to compare NRA algorithm and 
our algorithms. The results show that our algorithms perform several orders of magni-
tude fewer sorted accesses than NRA and that ADNRA performs significantly fewer 
sorted accesses than DNRA. 

The rest of this paper is organized as follows. In section 2, we define the problem 
formally and review NRA algorithm. In section 3, we describe our algorithm DNRA 
and its advanced version ADNRA, and we discuss the pre-computation of the dataset 
partition. In section 4, we show the experimental results. In section 5, we discuss 
some related works. Finally, in section 6, we conclude this paper and introduce our 
future works. 

2   Problem Definitions and NRA Algorithm 

In this section, we describe the model of our problem and review NRA algorithm 
proposed in [1]. 

Our model of the dataset can be described as follows: assume the dataset D con-
sists of M sorted lists, which are denoted as 1 2, ,..., ML L L . Each sorted list consists of N 

data items. Each data item is a pair ( , ( ))ix s x , where x is an object, ( )is x is x ’s ith  

local score which is a real number in the interval [0,1]. Sorted list means that objects 
in each list are sorted in descending orders according to their local scores. Each data 
item can be accessed only by sorted access, so the middleware cost of an algorithm 
is s Sa C , where sa is the number of sorted accesses performed and SC is the cost of a  
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Table 1. Meanings of basic symbols used 

N Number of objects k Number of objects returned 
M Number of lists ub

xS  upper bound of xS  

xS  overall score of x  ( )is x The ith local score of x  
lb
xS lower bound of xS  is  Bottom score of the ith list 

single sorted access. For any object x , its overall score 1 2( ( ), ( ), , ( ))x MS f s x s x s x= ⋅ ⋅ ⋅ , 

where the aggregate function f is assumed to be monotone in this paper. Our task is to 
find k objects whose overall scores are the highest k ones. 

For this problem, Fagin et al. proposed the algorithm NRA (No Random Ac-
cess)[1]. The basic idea of NRA is to evaluate an object’s overall score using the 
upper bound and lower bound of the overall score. We rewrite NRA algorithm in 
Fig.1. In the algorithm, we replace the original notations with ours. 

 
Algorithm NRA 

1. Do sorted access in parallel to each of the M sorted lists iL . At each depth d  

(when d objects have been accessed under sorted access in each list): 

·Maintain the bottom values ( )d
is , i ∈ {1,2, , }M⋅ ⋅ ⋅ , encountered in the lists. 

·For every object x with discovered fields ( ) ( ) {1,..., }dL L x M= ⊆ , compute the values 
lb
xS and ub

xS . (For object x that has not been seen, these values are virtually compu-

ted as (0,0,...,0)lb
xS f= and ( ) ( ) ( )

1 2( , , , )ub d d d
x MS f s s s= ⋅⋅ ⋅  which is the threshold value.) 

·Let ( )dY , the current top-k list, contain the k objects with the largest lb
xS values seen 

so far (and their scores); if two objects have the same lb
xS value, then ties are broken 

using the ub
xS values, such that object with the highest ub

xS value wins (and arbitrarily 

among objects that tie for the highest ub
xS value). Let ( )dt =min { lb

xS | ( )dx Y∈ } 

2.  Halt when (a)at least k distinct objects have been seen and (b) ( )dt t≤% , where t% = 

max{ ub
xS | ( )dx Y∉ }. Return the objects in ( )dY . 

Fig. 1. Algorithm NRA 

The following example illustrates NRA algorithm. 

Example 1. Assume M=2, N=6, k = 2, the aggregation function is summation, and the 
lists shown in Table 2 of Fig.2 can only be sorted accessed. Call accessing each list 
once in parallel an attempt. In Fig.2, Table 3-6 show how algorithm NRA performs 
sorted accesses at each attempt on this dataset. Table 7 shows how the top-2 objects 
and the parameter t% updated at each attempt. NRA algorithm halts after 8 sorted 
accesses 
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Table 2. Sorted Lists Table 3. Attempt 1 

(X2,0.95) (X3,0.95) 
( X1,0.92) (X4,0.90) 
( X5,0.89) (X6,0.88) 
( X3,0.88) (X2,0.87) 
( X4,0.87) (X1,0.87) 
( X6,0.86) (X5,0.85)  

(X2,0.95) ( X3,0.95) 
( X1,0.92) ( X4,0.90) 
( X5,0.89) ( X6,0.88) 
( X3,0.88) ( X2,0.87) 
( X4,0.87) ( X1,0.87) 
( X6,0.86) ( X5,0.85)  

Table 4. Attempt 2 Table 5. Attempt 3 

(X2,0.95) ( X3,0.95) 
( X1,0.92) ( X4,0.90) 
( X5,0.89) ( X6,0.88) 
( X3,0.88) ( X2,0.87) 
( X4,0.87) ( X1,0.87) 
( X6,0.86) ( X5,0.85)  

(X2,0.95) ( X3,0.95) 
( X1,0.92) ( X4,0.90) 
( X5,0.89) ( X6,0.88) 
( X3,0.88) ( X2,0.87) 
( X4,0.87) ( X1,0.87) 
( X6,0.86) ( X5,0.85)  

Table 6. Attempt 4 Table 7. Each attempt of NRA 

(X2,0.95) ( X3,0.95) 
( X1,0.92) ( X4,0.90) 
( X5,0.89) ( X6,0.88) 
( X3,0.88) ( X2,0.87) 
( X4,0.87) ( X1,0.87) 
( X6,0.86) ( X5,0.85)  

Top-2 
Objects Lower bounds 

t%  

(X2, X3) (0.95,0.95) 1.90 
( X2,X3) (0.95,0.95) 1.83 
( X2,X3) (0.95,0.95) 1.80 
( X2,X3) (1.82,1.83) 1.79  

Fig. 2. An example shows how NRA works 

3   Dominate-NRA Algorithms 

In this section, we first discuss the relation between top-k queries and K-skyband 
queries (Section 3.1). Thereafter, in Section 3.2, we describe our algorithm DNRA 
and discuss its performance. Then, in Section 3.3, we introduce ADNRA. Finally, in 
Section 3.4, we address the process of pre-computation. 

3.1   Top-k Queries and K-Skyband Queries 

In the following, we first introduce the definition of dominate and propose an obser-
vation about it. Then, we define the K-skyband set and discuss its relation to top-k 
queries. 

Definition 1 dominate[5]. We say object x dominates y or y is dominated by x if and 
only if they satisfy two conditions: (1) for each {1,2, , }i M∈ ⋅ ⋅ ⋅ , ( ) ( )i is x s y≥ . (2) there 

exists at least one number {1,2, , }j M∈ ⋅⋅ ⋅ satisfying ( ) ( )j js x s y> . 
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Our definition of dominate is different from that in [5], since we use ≥ (or >)  
instead of ≤  (or <). However, there does not exist essential differences between 
them. 

Observation 1. If object x dominates object y and the aggregate function is increas-
ingly monotone, then we have xS > yS .  

Proof. We can easily get the correctness of the observation according to the definition 
of dominate.                                                                                                                 □ 

Definition 2. K-skyband [14]. For a dataset D, its K-skyband is a set of objects that 
are dominated by at most K-1 other objects.  

For the dataset in Example 1, the K-skyband for K=2 includes objects 1x , 2x , 3x  

and 4x . Notice that 2x and 3x , which are the top-2 objects with f = sum, belongs to the 

K-skyband for K=2. 

Observation 2. For any increasingly monotone aggregate function, the top-k objects 
belong to the K-skyband, where k ≤ K.  

Proof. For any object x that does not belong to the K-skyband, there exists at least K 
other objects that dominate it. According to observation 1, we know that there exists 
at least K other objects whose overall scores are strictly larger than x ’s, which means 
that x cannot be top-K. Since k ≤ K, we have the top-k objects for any increasingly 
monotone aggregate function belong to the K-skyband.                                              □ 

Motivated by the fact that the top-k objects for any increasingly monotone aggregate 
function belong to the K-skyband, where k ≤ K, we can use the K-skyband query as a 
pre-computing step to answer top-k queries. After pre-computing the K-skyband off-
line, any top-k queries with k ≤ K for any increasingly monotone aggregate function 
can be addressed only accessing the K-skyband objects. 

3.2   Dominate-NRA Algorithm(DNRA) 

In this section, based on the observations discussed in the above section, we first 
introduce our algorithm DNRA (Dominate-NRA) and prove its correctness. Then, we 
evaluate its performance. Specifically, we prove that DNRA performs no more sorted 
accesses than NRA on any dataset. 

The description of DNRA algorithm is shown in Fig.3. Through pre-computation 
(addressed in section 3.4), it first partitions the original dataset D into two sub-
datasets, i.e. gD and bD , where gD contains all the K-skyband objects and bD contains the 

rest. Then it runs NRA only on gD in order to find top-k answerers of the original data-

set D. 
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Algorithm DNRA 
1. Through pre-computation, we partition the original dataset D into two sub-datasets, 

i.e. gD and bD , where gD contains all the K-skyband objects and bD contains the rest. 

2. Run NRA algorithm on gD to find top-k objects, where k ≤ K. 

Fig. 3. Algorithm DNRA 

The following theorem provides the correctness of DNRA. 

Theorem 1. If the aggregate function is increasingly monotone, then DNRA correctly 
finds the top-k objects, where k ≤ K. 

Proof. According to observation 2, top-k objects belong to the K-skyband, where 
k ≤ K. Here, gD and the K-skyband contain the same objects, that is, top-k objects 

belong to gD . Since NRA algorithm correctly finds the top-k objects in gD , DNRA 

correctly finds the top-k objects of the original dataset.                                              □ 

To evaluate the performance of DNRA, we first introduce three lemmas as follows. 

Lemma 1. Let ( )ub
xDS d be the upper bound of x ’s overall score in DNRA at depth d . 

Let ( )ub
xNS d be the upper bound of x ’s overall score in NRA at depth d . Then, for any 

object gx D∈ , we have ( )ub
xDS d ≤ ( )ub

xNS d . 

Proof. The upper bound of object x ’s overall score is calculated using an increasingly 
monotone aggregate function by substituting its missing fields with relative bottom 
values. For any object gx D∈ , its fields seen by NRA before depth d are also seen by 

DNRA before depth d , and its fields seen by DNRA but not seen DNRA before 
depth d , and its fields seen by DNRA but not seen by NRA before depth d are no 
larger than the relative bottom values in NRA. Furthermore, bottom values in DNRA 
are no larger than the relative bottom values in NRA at depth d . So, we have 

( )ub
xDS d ≤ ( )ub

xNS d .                                                                                                          □ 

Lemma 2. Let ( )lb
xDS d be the lower bound of x ’s overall score in DNRA at depth d . 

Let ( )lb
xNS d be the lower bound of x ’s overall score in NRA at depth d . Then, for any 

object gx D∈ , we have ( )lb
xDS d ≥ ( )lb

xNS d . 

Proof. For any object gx D∈ , its fields seen by NRA before depth d are also seen by 

DNRA before depth d . The lower bound of x ’s overall score is calculated using an 
increasingly monotone aggregate function by substituting its missing fields with 0. So 
we have ( )lb

xDS d ≥ ( )lb
xNS d .                                                                                             □ 
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Lemma 3. Let ( )Y d contain the current top-k objects in NRA at depth d and ( )t d = min 
{ ( )lb

xNS d | ( )x Y d∈ }.Let ' ( )Y d contain the current top-k objects in DNRA and ' ( )t d = min 

{ ( )lb
xDS d | ' ( )x Y d∈ }. If all the objects in ( )Y d belong to gD , then we have ' ( ) ( )t d t d≥ . 

Proof. At any depth d , assume ' ' ( )x Y d∈ satisfying '

'( ) ( )lb

x
DS d t d= . There are two cases 

depending on whether 'x belongs to ( )Y d . 

Case 1: ' ( )x Y d∈ . Since ' ( )x Y d∈ , we have ' ( )lb

x
NS d ≥ ( )t d . And according to lemma 2, we 

have ' ( )lb

x
DS d ≥ ' ( )lb

x
NS d . So, we have ' ( )t d = ' ( )lb

x
DS d ≥ ' ( )lb

x
NS d ≥ ( )t d , that is, ' ( ) ( )t d t d≥ , 

as desired. 

Case 2: ' ( )x Y d∉ . In this case, there exists one object ( )y Y d∈ but ' ( )y Y d∉ . Since 

( )y Y d∈ , we have ( )lb
yNS d ≥ ( )t d . Since ' ( )y Y d∉ , we have ' ( )t d ≥ ( )lb

yDS d . And according 

to lemma 2, we have ( )lb
yDS d ≥ ( )lb

yNS d . So, we get ' ( )t d ≥ ( )lb
yDS d ≥ ( )lb

yNS d ≥ ( )t d , that 

is, ' ( ) ( )t d t d≥ , as desired.                                               □ 

Theorem 2. The number of sorted accesses to the lists done by DNRA is always less 
than or equal to that of NRA. 

Proof. For any dataset D, we assume NRA algorithm stops at depth d and DNRA 
algorithm does not stop before depth d . Let ( )Y d contain the top-k objects that 
outputted by NRA and ( )t d =min{ ( )lb

xNS d | ( )x Y d∈ }. Let ' ( )Y d contain the current top-k 

objects in DNRA at depth d and ' ( )t d = min { ( )lb
xDS d | ' ( )x Y d∈ }. The k objects in ( )Y d  

must belong to gD , so we have, according to lemma 3, ' ( ) ( )t d t d≥ . Since we assume 

DNRA does not stop at depth d , there exists an object gx D∈ and ' ( )x Y d∉ satisfying that 

( )ub
xDS d > ' ( )t d . We need to generate contradictions. There are two cases depending on 

whether x belongs to ( )Y d . 

Case 1: ( )x Y d∉ . Since we have ( ) ( )ub ub
x xDS d NS d≤ according to lemma 1 and 

( ) ( )ub
xNS d t d≤ according to the stopping rule of NRA, we get ( ) ( ) ( )ub ub

x xDS d NS d t d≤ ≤ ≤  
' ( )t d , which contradicts with ( )ub

xDS d > ' ( )t d . 

Case 2: ( )x Y d∈ . In this case, there exists one object ' ( )y Y d∈ but ( )y Y d∉ . Since 
' ( )y Y d∈ and ' ( )x Y d∉ , we have '( ) ( ) ( )lb lb

y xDS d t d DS d≥ ≥ . Since ( )x Y d∈ and ( )y Y d∉ , we 

have ( )lb
xNS d ≥ ( )t d ≥ ( )ub

yNS d . Combined with lemma 1 and lemma 2, we get ( )lb
xNS d ≥  

'( ) ( ) ( ) ( ) ( ) ( ) ( )ub ub lb lb lb
y y y x xt d NS d DS d DS d t d DS d NS d≥ ≥ ≥ ≥ ≥ ≥ . So we have ( ) ( )lb lb

x yDS d DS d= =  
'( ) ( )ub

yDS d t d= . Since ( ) ( )lb lb
x yDS d DS d= , we have ( ) ( )ub ub

x yDS d DS d≤ according to the ties 

breaking rules of ' ( )Y d . Finally, we get ' '( ) ( ) ( ) ( ) ( )lb ub ub
x x yt d DS d DS d DS d t d= ≤ ≤ = , that is, 

'( ) ( )ub
xDS d t d= , which contradicts with ( )ub

xDS d > ' ( )t d . 
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Hence, the assumption that DNRA does not stop before depth d is unwarranted. In 
other words, DNRA does stop before depth d .                                                            □ 

3.3   Optimization 

The key idea of DNRA is that it classifies the objects into two categories depending 
on whether they belong to the K-skyband or not and it only accesses the K-skyband 
objects when answering top-k queries. One weakness of DNRA is that it cannot ad-
dress the top-k queries with k >K. To cope with top-k queries with k >K, we take a 
further step to classify the objects into N categories. In the following, we begin by 
proposing a method to classify objects. Then, based on this method, we partition the 
original dataset N sub-datasets. Our algorithm ADNRA (Advanced-DNRA) comes 
into being on the basis of this partition. 

Definition 3 degree of domination. If some object x is dominated by i other objects, 
we say the degree of domination of x is i , denoted as ( )dd x i= . 

This definition provides us a kind of method to classify objects, i.e. we can classify 
objects into N categories by their degree of domination. Based on the classification of 
the objects, we can partition the original dataset D into N sub-datasets, denoted as 

0 1 1, , , ND D D −⋅ ⋅ ⋅ (some sub-datasets may be empty), where ix D∀ ∈ , satisfying ( )dd x i= . The 

partition is done offline. The following theorem reduces our accessing scope to 
0 1 1, ,..., kD D D − when answering top-k queries. 

Theorem 3. If the aggregate function is increasingly monotone, then top-k objects 
must be among sub-datasets 0 1 1, , , kD D D −⋅ ⋅ ⋅  

Proof. Actually, the K-skyband for K=k consists of sub-datasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ . And 

according to observation 2, top-k objects belong to K-skyband if k ≤ K. So the top-k 
objects must be among sub-datasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ .                                                        □ 

Now, we can describe our algorithm ADNRA. Its description is shown in Fig.4. AD-
NRA algorithm uses a sequential policy to access 0 1 1, , , kD D D −⋅ ⋅ ⋅ . Specifically, when 

jcandidate = ∅ and jt T≥ , ADNRA stops accessing jD and goes on accessing 1jD +  

(Note: jcandidate may return to be nonempty since some object in Y coming from jD  

may become a candidate some time later). After this sequential process, it checks 
whether there exists some candidate that is nonempty. And if lcandidate is nonempty, it 

continues performing sorted accesses on lD .  

Actually, we can design another policy to perform sorted accesses on sub-datasets 
0 1 1, , , kD D D −⋅ ⋅ ⋅ , i.e. dataset-level-parallel policy. Dataset-level-parallel policy works as 

follows: firstly, we distribute the sub-datasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto k processors; secondly, 

let the ith processor computes in parallel the top-(k- i ) objects in iD , and store them 

in iY ; thirdly, we combine 0 1 1, ,..., kY Y Y −  to get Y ; finally, it checks whether there exists 

some candidate that is nonempty. And if lcandidate is nonempty, it continues perform-

ing sorted accesses on lD in parallel. 
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Algorithm ADNRA: 
1. Run NRA on 0D to find top-k objects in 0D , and store the results in Y . Let t = 

min{ lb
xS | x Y∈ } 

2. : 1j =  

3. For jD , do sorted accesses in parallel to each of the M sorted lists iL . Accessing each 

list once on jD in parallel is called an attempt. After each attempt on jD , go to up-

date_process: update 1 2, ,...,j j Mjs s s ( bottom scores of jD ), jT ( the threshold value 

of jD ), lower bounds and upper bounds of objects in jcandidate ( jcandidate is a set of 

objects whose current upper bounds of their scores are larger than t and that do not be-
long to Y ) and of objects in Y that come from jD , Y , t  and all the sets of candidate . 

When jcandidate = ∅ and jt T≥ , go to step 4. 

4. : 1j j= + . If j k< , then go to step 3, or go to step 5. 

5. For each l , while lcandidate ≠ ∅ , continue performing sorted accesses on lD in parallel. 

After each attempt on lD , go to update_process as described in step 3. 

6. Halt when (a) at least k distinct objects have been seen, (b) jt T≥ , for 0,1,..., 1j k= − and 

(c) for 0,1,..., 1j k= − , jcandidate = ∅ . Return the objects in Y . 

Fig. 4. Algorithm ADNRA 

The following theorem provides the correctness of ADNRA. 

Theorem 4. If the aggregate function is increasingly monotone, then ADNRA 
correctly finds the top-k objects. 

Proof. Let t = min{ lb
xS | x Y∈ }. We must show that for any object x , x Y∉ and jx D∈ for 

some {0,1,..., 1}j k∈ − , we have xS t≤ . There are two cases, depending on whether x has 

been seen or not when ADNRA stops.  

Case 1: x has been seen when ADNRA stops. Since jcandidate  = ∅  when ADNRA 

stops, we have xS ≤ ub
xS ≤ t , as desired. 

Case 2: x hasn’t been seen when ADNRA stops. Since ub
xS = jT  and jt T≥  when AD-

NRA stops, we have ub
x x jS S T t≤ = ≤ , as desired.                              □ 

The following example illustrates how ADNRA works.  

Example 2. The dataset is the same as that in Example 1. Through pre-computation 
(addressed in section 3.4), the dataset is partitioned into three sub-datasets, which are 
illustrated in Table 8. First, ADNRA runs NRA on 0D to find top-2 objects in 0D , that 

is, 2x and 3x . Then it continues accessing 1D . After just an attempt on 1D ,it stops  
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Table 8. Sub-datasets 

0D  

( X2,0.95) ( X3,0.95) 
( X3,0.88) ( X2,0.87) 

1D  

( X1,0.92) ( X4,0.90) 
( X4,0.87) ( X1,0.87) 

2D  

( X5,0.89) ( X6,0.88) 
( X6,0.86) ( X5,0.85) 

accessing 1D . Then it checks whether there exists some number l satisfying lcandidate ≠ ∅ , 

if there does, it continues accessing lD . In this example, there does not exist such 

number l . So ADNRA halts after 6 sorted accesses. ADNRA performs two fewer sorted 
accesses than NRA on this dataset. 

3.4   Pre-computation 

Both our algorithms are based on the pre-computation, which is aimed to pre-
compute bD and gD in DNRA and 0 1 1, , , ND D D −⋅ ⋅ ⋅ in ADNRA. gD contains and only con-

tains the K-skyband objects, so any algorithm that can address K-skyband queries, e.g. 
BBS [14], can be used to pre-compute bD and gD in DNRA . For the pre-computation 

of 0 1 1, , , ND D D −⋅ ⋅ ⋅ in ADNRA, the key point is to pre-compute the degree of domination 

of each object. In the rest of this section, we propose an algorithm called BFA (Brute-
force algorithm) and introduce an algorithm called bitmap to pre-compute the degree 
of domination of each object. Bitmap algorithm is proposed in[13] to address skyline 
queries, but it is also powerful to compute the degree of domination of each object . 

3.4.1   Brute-Force Algorithm 
Brute-force algorithm (BFA) scans the M sorted lists, and store the objects with their 
M local scores in an extra list. The data item in the extra list is like 
( 1 2, ( ), ( ),..., ( )Mx s x s x s x ), where x is an object, ( )is x  is x ’s ith  local score. The objects 

in the extra list are sorted in non-increasing orders respect to their first local scores. 
Then BFA scans the sorted extra list. When an object x is seen, BFA compares it with 
objects seen before it and objects having not been seen yet but whose first local score 
is the same as x ’s. After the comparisons, we get the degree of domination of x . The 
time cost of BFA is 2( )O MN . And the extra space needed is also 2( )O MN .  

3.4.2   Bitmap 
This technique encodes in bitmaps all the information required to decide the degree of 
domination of all the objects. An object x whose local scores are 1 2( ), ( ),..., ( )Ms x s x s x is 

mapped to an n-bit vector, where n is the total number of distinct values over all lists. 
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Let in be the total number of distinct values in the ith list (i.e. 
1

M

i
i

n n
=

= ∑ ). For the dataset 

in Example 1, for example, there are 1n =6 and 2n =5 distinct values in the first and 

second lists and n =11. Assume that ( )is x is the jth largest score in the ith list; then, it is 

represented by in bits, where the ( 1)j − leftmost bits are 0, and the remaining ones 1. 

Table 9 shows the bitmaps for objects in Example 1. Since 1 2( )s x is the largest value in 

the first list, all bits of it are 1. Similarly, since 2 2( )s x is the 4th largest in the second 

list, the leftmost 4-1=3 bits of its representation are 0, while the remaining ones are 1.   

Table 9. The bitmap of the dataset in Example 1 

Object Local scores Bitmap representation 
X1 (0.92, 0.87) (011111, 00011) 
X2 (0.95, 0.87) (111111, 00011) 
X3 (0.88, 0.95) (000111, 11111) 
X4 (0.87, 0.90) (000011, 01111) 
X5 (0.89, 0.85) (001111, 00001) 
X6 (0.86, 0.88) (000001, 00111) 

 
Consider now that we want to know the degree of domination of an object, e.g. 5x  

with bitmap representation (001111, 00001). The leftmost bits whose value is 1 are 
the 3th and the 5th, in the first and second lists, respectively. The algorithm creates two 
bit-strings, 1 5( )c x = 110010 and 2 5( )c x = 111111, by juxtaposing the corresponding bits 

(i.e. 3th and the 5th ) of every object. Let 5( )A x 1 5( )c x= & 2 5( )c x = 110010. The rightmost 

bits whose value is 0 of 5x are the 2th and the 4th, in the first and second lists, respec-

tively. Then, the algorithm creates another two bit-strings, 1 5( )d x = 110000 and 

2 5( )d x = 111101, by juxtaposing the corresponding bits (i.e. 2th and the 4th ) of every 

object. Let 5( )B x = 1 5( )c x | 2 5( )c x = 111101. The 1's in the result of 5( )C x = 5( )A x & 

5( )B x = 110000, indicate the objects that dominate 5x , i.e. 1x and 2x . Obviously, the 

degree of domination of any object x equates the number of 1's in the result of ( )C x . 
Both the time cost and extra spaces needed of bitmap are 2( )O MN . 

In our experiments, we use brute-force algorithm to fulfill pre-computations be-
cause it’s easy to implement. 

4   Experiments 

Our algorithms are implemented in C++. We perform our experiments on a Duo 
T2130 1.86GHz PC with 1GB of memory. We use both synthetic and real dataset to 
evaluate NRA, DNRA and ADNRA algorithms. The metrics we measure is the num-
ber of sorted accesses performed since the middleware cost is the number of sorted 
accesses performed times the cost per sorted access. 
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4.1   Description of Datasets 

We do experiments on five synthetic datasets and one real dataset. All generated local 
scores belong to the interval [0, 1]. The five synthetic datasets are produced to model 
different input scenarios; they are UI, NI, EI, CO and AC, respectively. UI, CO and 
AC are generated using the same methodology as [5]. UI contains datasets where 
object’s local scores are uniformly and independently generated for the different lists. 
NI contains datasets where object’s local scores are normally and independently gen-
erated for the different lists. EI contains datasets where object’s local scores are expo-
nentially and independently generated for the different lists. CO contains datasets 
where object’s local scores are correlated. In other words, the local score ( )is x of an 

object x is very close to ( )js x with high probability, where i j≠ . To generate an object 

x , first, a number xu from 0 to 1 is selected using a Gaussian distribution centered at 

0.5. x ’s local scores are then generated by a Gaussian distribution centered at xu with 

variance 0.01. Finally, AC contains datasets where object’s local scores are anti-
correlated. In this case, objects that are good in one list are bad in one or all other 
lists. To generate an object x , first, we pick a number xu from 0 to 1, like we did for 

CO datasets. This time, however, we use a very small variance, so that xu for differ-

ent x  are very close to 0.5 and to each other. The local scores of x are then generated 
uniformly and normalized to sum up to xu . In this way, the overall scores of all ob-

jects are quite similar, but their individual scores vary significantly. 

Table 10. Default settings of experimental parameters 

Parameter Default values 
Number of objects , i.e. N 100,000 
Number of lists, i.e. M 5 
k 20 
K 20 
Aggregate function summation 

 
For synthetic datasets, our default settings for different parameters are shown in 

Table 10. In our tests, the default number of data items in each list is 100,000, i.e. 
N=100,000. Typically, users are interested in a small number of top answers, thus we 
set k = 20 as k’s default value. DNRA needs to pre-compute the K-skyband and unless 
otherwise specified we set K =20 since we set k = 20. Like many previous works on 
top-k query processing, such as [12], we choose the aggregate function as the sum of 
the local scores. In half of our tests, the number of lists, i.e. M, is a varying parameter. 
When M is a constant, we set it to 5 since most top-k algorithms are evaluated on the 
dataset with no more than 5 lists. 

For real dataset, as did in [12], we choose El Nino dataset (http://kdd.ics.uci.edu), 
which contains oceanographic and surface meteorological readings taken from a se-
ries of buoys positioned throughout the equatorial Pacific. The data is expected to aid 
in the understanding and prediction of El Nino/Southern Oscillation (ENSO) cycles. 
We neglect the objects missing some fields. The remaining dataset contains 93935 
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objects. We chose 7 lists to test our algorithms. And we normalize the dataset with the 

formula: ( )is x M in
M ax M in

−
−

, where ( )is x is x ’s ith local score. 

4.2   Experimental Results 

4.2.1   Effect of the Number of Lists 
In this section, we compare the performance of our algorithms with NRA over the 
datasets described in section 4.1 while varying the number of lists.   

Over the datasets we considered, with the number of lists increasing up to 12 and 
the other parameters set as in Table 10, Fig.5-10 show the results measuring the num-
ber of sorted accesses performed. The results show us that both our algorithms per-
form several orders of magnitude fewer sorted accesses than NRA. The reason is that 
our algorithms already get some information about the objects through pre-
computation and they only access the potential objects that can be top-k answers. As 
M becomes small, the advantage of our algorithms over NRA increases. The reason 
for this increase is that the K-skyband contains fewer objects as M becomes smaller. 
Over UI and CO, the ratio of the number of sorted accesses performed by ADNRA to 
that performed by DNRA is nearly 2/3. And the ratio nearly decreases to 1/2 over NI, 
EI and AC. Over El Nino Data, although the ratio is a little larger, ADNRA still per-
forms significantly fewer accesses than DNRA. The reason why ADNRA outper-
forms DNRA is that ADNRA classifies the objects into N categories while DNRA 
only classifies objects into two categories. After ADNRA accesses 0 1, ,D D , iD⋅ ⋅ ⋅ , the 

value of t is already relatively big, which makes it perform fewer accesses on 1iD + .  

4.2.2   Effect of k 
In this section, we study the effect of k, i.e. the number of top objects requested, on 
performance. Since the number of top objects requested varies with different users, 
we need to set the parameter K in pre-computation of DNRA as a sufficiently large 
const, i.e. the upper bound of the number of top objects requested. In our experiments 
below, we set K=100, and the other parameters as in Table 9 except that k varies from 
10 to 100. 

Fig.11-16 show the results of our experiments over the considered datasets. The re-
sults show that both our algorithms perform orders of magnitude fewer accesses than 
NRA. For DNRA and ADNRA, the number of their accesses both increase slightly 
with k over all the considered datasets. But the situation is different for NRA. 

The number of accesses performed by NRA increases with k over UI and CO, al-
most does not increase over NI and EI Nino data and even fluctuates over EI and AC. 
The predominance of ADNRA over DNRA becomes more apparent as k becomes 
smaller. The reason is that when k is small, i.e. k<K, DNRA may perform some use-
less accesses. Specifically, DNRA may still access those objects whose degree of 
domination is no less than k, but those objects can not be top-k answers for any in-
creasingly monotone aggregate function. However, ADNRA will never access those 
objects. 
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Fig. 5. The number of accesses v.s. the number 
of lists over UI, k=20 

Fig. 6. The number of accesses v.s. the
number of lists over NI, k=20 
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Fig. 7. The number of accesses v.s. the number 
of lists over EI, k=20 

Fig. 8. The number of accesses v.s. the 
number of lists over CO, k=20 

 

2 4 6 8 10 12
0

2

4

6

8

10

12
x 10

5

N
um

be
r 

of
 a

cc
es

se
s

M

Number of accesses v.s. M over AC

 

 

NRA

DNRA

ADNRA

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

M

N
um

be
r 

of
 a

cc
es

se
s

Number of accesses v.s. M over EI Nino

 

 

NRA

DNRA
ADNRA

 

Fig. 9. The number of accesses v.s. the number 
of lists over AC, k=20 

Fig. 10. The number of accesses v.s. the 
number of lists over El Nino Data, k=20 
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Fig. 11. The number of accesses v.s. k over UI, 
M=5 

Fig. 12. The number of accesses v.s. k over 
NI, M=5 
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Fig. 13. The number of accesses v.s. k over EI, 
M=5 

Fig. 14 The number of accesses v.s. k over 
CO, M=5 
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Fig. 15. The number of accesses v.s. k over 
AC, M=5 

Fig. 16. The number of accesses v.s. k over 
El Nino Data, M=5 
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4.3   Summary 

Our experiments illustrate that DNRA and ADNRA do several orders of magnitude 
fewer sorted accesses than NRA, both on synthetic datasets and real dataset. The 
reason is that our algorithms classify objects and reduce the accessing scope. As M 
becomes smaller, the decrease of sorted accesses becomes more significant. The rea-
son is that the K-skyband contains fewer objects as M becomes smaller. Algorithm 
ADNRA does much fewer sorted accesses than algorithm DNRA. For some instances, 
ADNRA performs 50% fewer accesses than DNRA. This could be explained by the 
fact that DNRA only classifies objects into two categories depending on whether they 
belong to the K-skyband or not while ADNRA takes a further step to classify the 
objects into N categories according to their degree of dominations.  

5   Related Works 

Efficient processing of top-k queries is both an important and hard problem that is still 
receiving much attention. Skyline (skyline is a special instance of K-skyband, where 
K=1) computation is another kind of queries that is also attracting much attention. 

There are intrinsic relations between the two kinds of queries. Some papers have 
tried to use these kinds of relations to address top-k queries, such as [15] and [16]. In 
[15], A.Vlachou et al. proposed a framework called SPEERTO to support top-k query 
processing over horizontally partitioned data stored on peers organized in a super-peer 
network. The key idea of SPEERTO is that each peer computes its K-skyband as a 
pre-processing step and each super-peer maintains and aggregates the K-skyband sets 
of its peers to answer any incoming top-k query. Essentially, SPEERTO classifies 
objects into two categories depending on whether they belong to the K-skyband or 
not. Our work makes a further step to classify objects into N categories according to 
their degree of dominations. 

In [16], L.Zou and L.Chen proposed an indexing structure, called DG (Dominant 
Graph). Based on that, they proposed Traveler algorithms to answer top-k queries. 
Our work is different from [16] mainly in two aspects. Firstly, the models of dataset 
we use are different. The dataset in [16] consists of one list with N data items which 
are like ( 1 2, ( ), ( ),..., ( )Mx s x s x s x ), where x is an object, ( )is x is x ’s ith local score. And 

each data item can be random accessed. However, the dataset in our paper consists of 
M lists with N data items, which is more general. And each data item can be only 
sorted accessed. Secondly, both our works are based on the classifications of the ob-
jects, but our methods to classify objects are different. DG uses Maximal layer [17] to 
classify objects while we use degree of domination to classify objects (Note: the first 
Maximal layer contains the same objects as sub-dataset 0D , which are the skyline 

objects of the dataset). 
We did not compare our algorithms with Traveler algorithms directly because they 

have different methods to access data item, i.e. Traveler algorithms use random ac-
cess to access data item while we only use sorted access. Actually, authors in [16] 
compared Traveler algorithms with TA and CA [1], but they did not compare them 
with NRA. Certainly, Traveler algorithms can also be used in cases where data item 
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can only be sorted accessed and our approaches can also be generalized to cases 
where random access is possible.  

6   Conclusions and Future Works 

In this paper, we propose DNRA and ADNRA algorithms to address top-k queries, 
both of which are based on the partition of the dataset. DNRA classifies the objects 
into two categories depending on whether they belong to the K-skyband or not. And it 
only accesses the K-skyband objects when answering top-k queries. Furthermore, 
ADNRA classifies the objects into N categories according to their degree of domina-
tion. And it only accesses k categories in order to find the top-k objects. Experimental 
comparisons show that our algorithms perform several orders of magnitude fewer 
sorted accesses than NRA and that ADNRA performs significantly fewer sorted ac-
cesses than DNRA on some datasets. The reason why our algorithms outperform 
NRA is that they already know some information about the objects through pre-
computation and they only access those potential objects that can be the real top-k. 
DNRA is powerful in top-k system where k is a constant. ADNRA can be used in any 
top-k system where the aggregate function is increasingly monotone and k is a con-
stant or not.  

As M becomes larger, 0D and 1D contain more and more objects, which results in 

our algorithm ADNRA performs more and more accesses. In the future, we plan to 
propose some kind of method to continue classifying objects in 0D and 1D in order to 

make ADNRA stop earlier. Furthermore, the variation of ADNRA using dataset-
level-parallel policy is fit for parallel environments, so we will optimize it by parallel 
computing in our future work. Specifically, we first distribute the sub-datasets 

0 1 1, , , kD D D −⋅ ⋅ ⋅ onto k processors; secondly, let the ith processor computes in parallel the 

top-(k- i ) objects in iD , and store them in iY ; thirdly, we combine 0 1 1, ,..., kY Y Y − to get the 

final top-k answerers. 
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