

P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 258–271, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Chemical Compounds with Path Frequency Using
Multi-Core Technology

Kun-Ming Yu1, Yi-Yan Chang2, Jiayi Zhou3, Chun-Yuan Huang1,
Whei-meih Chang1, Chun-Yuan Lin4, and Chuan Yi Tang5

1 Department of Bioinformatics, Chung Hua University
2 Department of Information Management, Chung Hua University

3 Institute of Engineering and Science, Chung Hua University
4 Department of Computer Science and Information Engineering, Chang Gung University

5 Department of Computer Science, National Tsing Hua University
yu@chu.edu.tw, {frank38,jyzhou}@pdlab.csie.chu.edu.tw,

{chunyuan.huang,wmchang}@chu.edu.tw, cyulin@mail.cgu.edu.tw,
cytang@cs.nthu.edu.tw

Abstract. Drug design is the approach of finding drugs by design using compu-
tational tools. When designing a new drug, the structure of the drug molecule
can be modeled by classification of potential chemical compounds. Kernel
Methods have been successfully used in classifying chemical compounds,
within which the most popular one is Support Vector Machine (SVM). In order
to classify the characteristics of chemical compounds, methods such as fre-
quency of labeled paths have been proposed to map compounds into feature
vectors. In this study, we analyze the path frequencies computed from chemical
compounds, and reconstruct all possible compounds that share the same path
frequency with the original ones, but differ in their molecular structures. Since
the computation time for reconstructing such compounds increase greatly along
with the size increase of the compounds, we propose an efficient algorithm
based on multi-core processing technology. We report here that our algorithm
can infer chemical compounds from path frequency while effectively reduce
computation time and obtained high speed up.

Keywords: Chemical compound, feature space, Multi-Core Processing,
Branch-and-Bound, OpenMP.

1 Introduction

In recent years, many researchers have worked on the drug design problem in order to
develop new drugs based on computation methods. When designing a new drug, the
structure of the drug molecule can be modeled by classifying candidate chemical
compounds using Kernel Methods [4, 5, 6, 7], within which the most popular one is
Support Vector Machine (SVM) [10]. Kernel method is a type of pattern analysis, the
task of which is to discover the relationships, such as clusters, rankings, classifica-
tions, in the data (such as sequences, vectors, sets of points, images, etc). Kernel
methods approach the problem by first mapping the data into a high-dimensional

 Chemical Compounds with Path Frequency Using Multi-Core Technology 259

feature space. Recently, it has also been applied to the classification of chemical com-
pounds [4, 5, 6, 7]. In these approaches, chemical compounds are mapped to fea-
ture vectors and then SVMs [9, 10] are employed to learn the rules for classifying
these feature vectors. Several mapping methods for feature vectors have been pro-
posed; among them, the mapping of feature vectors based on the frequency of la-
beled paths [6, 7] or the frequency of small fragments in chemical compounds [4,
5] are widely used.

In kernel methods, an object in the input space can be mapped into a point (or fea-
ture vector) in a space called feature space. Through a suitable function ∅, a given
point y in the feature space can be mapped back into an object in the input space.
Such object is called pre-image. The problem exists when mapping a given y in fea-
ture space back into an object in the input space such that y=∅(x) is satisfied, as x may
not exist.

In [1], a feature vector g is a multiple set of strings of labels with length at most K
which represents path frequency. Given a feature vector g, they considered the prob-
lem of finding a vertex-labeled graph G that attains a one-to-one correspondence
between g and the set of sequences of labels along all paths of length at most K in G.

In previous works [1, 2], a graph can be inferred from the numbers of occurrences
of vertex-labeled paths. In [1], they showed that this problem can be solved in poly-
nomial time of the size of an output graph if graphs are trees of bounded degree and
the lengths of given paths are bounded, by a constant, whereas this problem is
strongly NP-hard even for planar graphs of bounded degree.

In this study, we have taken into account the situation when chemical compounds
become increasingly complex, the computation time required to infer pre-images from
the feature vectors of these compounds increase at a much faster rate. We resort to
parallel computing, in which the computation tasks are assigned to multiple cores
appropriately to reduce the overall computation time. We extend the algorithms in [3],
and therefore the modified algorithms can support multi-core processing technology.

The rest of this paper is organized as follows. Section 2 introduces the background
about problem and definition. Next we describe our proposed algorithms in section 3. In
section 4, we show the experimental result. Finally we conclude this paper in section 5.

2 Related Work

For classification of the characteristics of chemical compounds to work, chemical
compounds are often mapped into feature vectors. Several methods for converting
chemical compounds into feature vectors have been proposed. Among them, methods
such as frequency of labeled paths [6, 7] or frequency of small fragments [4, 5] are
popular. Recently, the pre-image methods have been proposed. In [4], pre-images
were found in a general setting by using Kernel Principal Component Analysis and
regression. In [8], stochastic search algorithm is used to find pre-images for graphs.
However, these pre-image methods are not derived from a computational viewpoint.
In [4], the obtained results and performance of the algorithm was unclear because it
was applied only to a few similar cases. Other related pre-image studies include infer-
ring a tree from walks in [12], as well as inferring by graphic reconstruction [13].

260 K.-M. Yu et al.

In [3], chemical structures are modeled as trees or tree-like structures. They extend
algorithms in [1, 2] so that constraints on valences of atoms are taken into account.
They proposed an algorithm, Branch-and-Bound Chemical compound Inference from
Path Frequency (BB-CIPF), which can infer tree from related chemical structures.
BB-CIPF works within a few or a few tens of seconds for inferring moderate size of
chemical compounds (e.g., the number of carbon atoms are less than 20) with tree or
tree-like structures, and can be modified for inferring more general classes of chemi-
cal compounds and/or for feature vectors based on frequency of small fragments.

In BB-CIPF, given a tree Tcur to be inferred to a target tree Ttarget, Tcur is first in-
serted into a node n to become Tnext. If the feature vector fnext of Tnext does not comply
with the feature vector ftarget of Ttarget, the Tnext will be discarded and then the Tcur will
be re-inserted into another node and be compared to Ttarget.

The advantage of BB-CIPF algorithm is to effectively reduce the computation
time, as it terminates the computation process immediately and displays the results
once it obtains a solution; this also means that there is only one solution [3]. For ex-
ample, if there are three objects, a, b and c, which all correspond to the same feature
vectors v. Through BB-CIPF algorithm, only one of the objects a, b, c can be inferred
from v, so the inferred solution is not necessarily be the most useful one in practice.
Therefore, how to produce all possible compounds that are mapped back from the
same feature vector but differ in their molecular structures is an important issue in the
problem. Moreover, when a compound structure is more complex, it will require more
computation time for inference of its solutions.

Parallel computing is a suitable technique in shortening the inference procedure.
Parallel computing is a form of computation in which several calculations are carried
out simultaneously [11], operated on the principle that large problems can often be
divided into smaller ones, and then solved concurrently to provide the solution in a
shorter time. While clusters, Massive parallel processing (MPP), and Grids use multi-
ple computers to work on the same task, multi-core and multi-processor computers
employ multiple processing elements to work on the same task.

A multi-core processor (or chip-level multiprocessor) combines two or more inde-
pendent cores (normally a CPU) into a single package that consisted of a single inte-
grated circuit. A dual-core processor contains two cores, and a quad-core processor
contains four cores. A multi-core microprocessor implements several processing units
in a single physical package. In general, programming is required to orchestrate proc-
esses in several cores in order to solve problems.

The OpenMP (Open Multi-Processing) standard allows programmers to take ad-
vantage of the new shared-memory, multiprocessor programming systems from ven-
dors like Compaq, Sun, HP, and SGI. Aimed at the researcher working with C/C++ or
Fortran programming languages, OpenMP explains both what this standard is and
how to use it to create software that takes full advantage of parallel computing.
OpenMP support Sun compiler, GNU compiler and Intel compiler.

In this paper, we extend the inference algorithm [3] to obtaining all possible com-
pounds that are mapped back from the same feature vector but differ in their molecu-
lar structures. We used the Branch-and-Bound concept to derive the trees or tree-like
structures of chemical compounds. Our algorithm is committed to obtain all possible
compounds that can be inferred from the same feature vector but differ in their mo-
lecular structures. We develop our algorithm based upon the algorithm in [3] so that

 Chemical Compounds with Path Frequency Using Multi-Core Technology 261

the computation process will not terminate on the first obtained solution, but will
continue to search for all possible solutions. However, in order to output more chemi-
cal compounds, it also means that the algorithm will consume more computation time.
Therefore, we also propose adopting the multi-core computing technology to reduce the
computation time in our proposed algorithm. We hope that by providing more thorough
and practical solutions to the inference problem, we can improve on the development of
drug design.

3 Multi-Core Chemical Compound Inference from Path
Frequency (MC-CIPF)

In the previous section, we have described that when a compound structure is more
complex, it will require more computation time for inference of its solutions. That is
to say, if the feature vector v in feature space has been mapped from a compound c
thought a function ∅, and we want to find c’ where c’= ∅(v). If a compound is more
complex in structure, its feature vector in feature space is also more complex, and it
will require substantially more computation time to map back to c’ from v. Therefore,
in this paper, we divide computation tasks into several smaller tasks and distribute
these tasks appropriately among several processing cores for computation. We pro-
pose the Multi-Core Chemical Compound Inference from Path Frequency (MC-CIPF)
to obtain all possible compounds.

Fig. 1. Each job is initiated based on the atoms that existed in the target compound

In the first step of MC-CIPF, the algorithm loads into the master core a target com-
pound for inference of all other chemical compounds that share the same feature vec-
tor. The master core employs the Breadth-First-Search (BFS) algorithm to analyze the
target compound and obtain its path frequency for distributing jobs later. Each job is

262 K.-M. Yu et al.

Fig. 2. An example of balancing the load in each core in MC-CIPF

initiated based on the atoms that exist in the target compound (Fig. 1). However, H
atoms are not included in this step.

Each job requires different amount of time for computation, and a more complex
one will require more time. For example, if there are four cores C1, C2, C3 and C4, the
master core will analyze the target compound, initiate four jobs T1, T2, T3, T4, and
distribute them among four corresponding cores for execution. If T1, T2 and T3 have
completed their jobs while T4 is still in process, T1, T2 and T3 cores will be in idle as
there are no more jobs to allocate to these cores. Therefore, we balance the overall
computation loads by increasing the number of jobs that can be allocated by the mas-
ter core and reducing the computation time demanded for each job. The scenario is
depicted in Fig. 2.

Each core applies the Depth-First-Search (DFS) algorithm to insert an atom into a
candidate compound. After inserted an atom, the candidate compound will be com-
pared with target compound, and if the feature vector of candidate compound has the
same structure as parts of target compound structure, the inserted atom will be kept;
otherwise, the inserted atom will be dropped, and the algorithm continues on applying
DFS to insert the next atom in queue into the candidate compound. If the resulted
structure of the candidate compounds is in line with the target structure, it is output as
one of the solution. The algorithm iterates until all cores have completed all candidate
compounds in their queues.

 Chemical Compounds with Path Frequency Using Multi-Core Technology 263

Procedure BFS (Ttarge)
 Let Tqueue be a queue that stores all candidate compounds;
 for all a ∈ all atoms exist in Ttarget do
 Let Ttemp be a temporary compound
 Ttemp ← ∅;
 Insert a into Ttemp;
 if Ttemp ∈ Ttarget then
 Add Ttemp to Tqueue;
 else
 continue (examine the next atom in Ttarget);
 end
 end
 while Tqueue is not empty do
 for each core compute a compound from Tqueue per time do
 Compute feature vector ftempi from T

temp
i in T

queue;
 if MC-CIPF(Ttempi, f

temp
i, T

target, ftarget)=false then
 output “no solution”;
 end
 end

Procedure MC-CIPF(Ttempi, f
temp

i, T
target, ftarget)

 if ftempi = f
target then output Ttempi;

 popup Ttempi from T
temp;

 return true;
 else
 return false;
 for all a ∈ all atoms exist in Ttarget do
 L ← ∅;
 if { L(u)|u ∈ V(Ttemp)} ∪ {a} ⊈ atomset(ftarget) then
 continue;
 for all w ∈ V(Ttemp) do
 Let Tnext be a tree gotten by connecting new leaf u
with label a to w by bond b;
 if w does not satisfy the valence constraint then
 continue;
 Compute fnext from Tnext and ftemp;
 if MC-CIPF(Tnext, fnext, Ttarget, ftarget)=true then
 return true;
 end
 end
 return false;

4 Experimental Results

For verifying the effectiveness of MC-CIPF, we implemented the proposed algo-
rithm and compared the performance when using single core, dual core and quad
,

264 K.-M. Yu et al.

Fig. 3(a). Computing time of C00097

Fig. 3(b). Computing time of C00497

core for computation. The simulation environment is built by using a personal com-
puter equipped with Intel Core 2 Quad Q6600 CPU and 4 GB RAM and installed
with the operating system of Windows Vista with Service Pack 1. MC-CIPF was
implemented using C language and experimental datasets are retrieved from KEGG
LIGAND Database.

In the experiment, we randomly chosen 5 chemical compounds (C00097, C00497,
C11109, C14601, and C15987; the number of atoms of compound size with hydrogen
are 14, 15, 16, 15 and 19, respectively) from KEGG LIGAND Database and exam-
ined them with K = 1, 2, 3, 4, where K is the length of sequence label of feature

 Chemical Compounds with Path Frequency Using Multi-Core Technology 265

Fig. 3(c). Computing time of C11109

Fig. 3(d). Computing time of C14601

vectors in MC-CIPF. Larger K means more constraints for target compound, which
leads to less variation for its molecular structure. Fig. 3(a)-(e) are the computing time
for each chemical compound. In each case, we have found that the computing time
was reduced as the number of cores was increased. For example, in Fig. 3(c), when K
was equal to 4, the computing time was reduced from 11.9337 second with 1 core to
5.542821 second with 4 cores.

When the K value increases, the constraints of the feature vectors increase accord-
ingly. As a result, MC-CIPF spends less computing time in searching for the combina-
tions of target compound, as there is less permitted variations to compute for. However,

266 K.-M. Yu et al.

the path frequency will be longer, so MC-CIPF needs to spend more execution time in
re-computing path frequency. Consequently, the shortest computing time occurs when
K is equal to 2 in the experiment, since the number of constraints has not increased too
much and the length of path frequency is not too long. Details of the computing time are
shown in Table 1.

Fig. 3(e). Computing time of C15987

Table 1. Computing time of MC-CIPF for various chemical compounds

Instances Cores detail CPU time (sec.)

 K=1 K=2 K=3 K=4

1 Core 4.27 0.96 1.49 3.71

2 Cores Core 1 2.99 0.26 1.17 2.81

Core 2 3.00 0.72 1.17 2.81

Max 3.00 0.72 1.17 2.81

C00097

4 Cores Core 1 2.91 0.20 0.72 1.56

 Core 2 2.67 0.36 0.46 0.98

 Core 3 0.77 0.35 0.50 0.97

 Core 4 2.91 0.51 0.72 1.56

 Max 2.91 0.51 0.72 1.56

C00497 1 Core 75.44 31.95 47.23 131.42

 2 Cores Core 1 28.82 8.78 31.26 35.33

 Core 2 54.10 25.12 31.27 88.09

 Chemical Compounds with Path Frequency Using Multi-Core Technology 267

Table 1. (Continued)

 Max 54.10 25.12 31.27 88.09

 4 Cores Core 1 13.76 3.93 24.43 11.05

 Core 2 31.23 7.77 12.25 28.88

 Core 3 12.47 7.88 12.26 30.69

 Core 4 56.14 21.67 24.43 64.10

 Max 56.14 21.67 24.43 64.10

C11109 1 Core 6.88 5.42 5.63 11.93

 2 Cores Core 1 5.47 3.59 3.55 6.73

 Core 2 5.48 3.59 3.56 6.73

 Max 5.48 3.59 3.561 6.73

 4 Cores Core 1 5.13 3.18 2.90 5.53

 Core 2 1.83 2.06 1.91 3.53

 Core 3 2.48 2.05 1.18 1.93

 Core 4 5.13 3.18 2.90 5.54

 Max 5.13 3.18 2.90 5.54

C14601 1 Core 0.72 0.57 1.02 2.02

 2 Cores Core 1 0.62 0.40 0.51 0.83

 Core 2 0.62 0.40 0.55 1.16

 Total 0.62 0.40 0.55 1.16

 4 Cores Core 1 0.54 0.27 0.40 0.37

 Core 2 0.13 0.23 0.38 0.55

 Core 3 0.21 0.25 0.40 0.68

 Core 4 0.54 0.29 0.35 0.58

 Max 0.54 0.29 0.40 0.68

C15987 1 Core 25.73 3.49 6.77 14.52

 2 Cores Core 1 16.02 2.00 0.35 4.95

 Core 2 11.43 2.00 3.67 7.67

 Max 16.02 2.00 3.67 7.67

 4 Cores Core 1 14.41 1.87 1.28 2.03

 Core 2 5.78 1.48 1.65 3.16

 Core 3 12.85 1.87 3.25 6.76

 Core 4 1.42 0.72 0.55 0.68

 Max 14.41 1.87 3.25 6.76

268 K.-M. Yu et al.

More importantly, we want to compare the speedup ratios of MC-CIPF with re-
spect to the core number used in the experiments. Fig. 4(a)-(e) are the speedup ra-
tios of C00097, C00497, C11109, C14601, and C15987. In these figures, the
speedup ratios are increased from 1 core to 4 cores, with the best speedup ratio
close to 3 (Fig. 4(c)). Interestingly, when the K value is increased, the speedup ratio
is raised accordingly.

Fig. 4(a). Speedup ratio of C00097

Fig. 4(b). Speedup ratio of C00497

 Chemical Compounds with Path Frequency Using Multi-Core Technology 269

Fig. 4(c). Speedup ratio of C11109

Fig. 4(d). Speedup ratio of C14601

270 K.-M. Yu et al.

Fig. 4(e). Speedup ratio of C15987

5 Conclusions

In this research, we proposed a multi-core algorithm for solving Chemical Compound
Inference from Path Frequency problem. We adopted the Branch-and-Bound concept
to evolve the tree-like structures of chemical compounds in the paper. The experimen-
tal results show that our algorithm can practically reduce computing time, with the
best speedup ratio close to 3 folds while using 4 cores in the experiment. Therefore,
our proposed algorithm can infer chemical compounds from path frequency effec-
tively and reduce computation time by employing the multi-core technology.

References

1. Tatsuya, A., Daiji, F.: Inferring a graph from path frequency. In: Garijo, F.J., Riquelme, J.-
C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 371–392. Springer,
Heidelberg (2002)

2. Tatsuya, A., Daiji, F.: On inference of a chemical structure from path frequency. In: Proc.
2005 International Joint Conference of InCoB, AASBi, and KSBI, pp. 96–100 (2005)

3. Tatsuya, A., Daiji, F.: Inferring a Chemical Structure from a Feature Vector Based on Fre-
quency of Labeled Paths and Small Fragments. In: APBC, pp. 165–174 (2007)

4. Byvatov, E., Fechner, U., Sadowski, J., Schneider, G.: Comparison of support vector ma-
chine and artificial neural network systems for drug/nondrug classification. Journal of
Chemical Information and Computer Sciences 43, 1882–1889 (2003)

5. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based ap-
proaches for classifying chemical compounds. IEEE Trans. Knowledge and Data Engi-
neering 17, 1036–1050 (2005)

6. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In:
Proc. 20th Int. Conf. Machine Learning, pp. 321–328 (2003)

 Chemical Compounds with Path Frequency Using Multi-Core Technology 271

7. Mahé, P., Ueda, N., Tatsuya, A., Perret, J.-L., Vert, J.-P.: Graph kernels for molecular
structure-activity relationship analysis with support vector machines. Journal of Chemical
Information and Modeling 45, 939–951 (2005)

8. Bakir, G.H., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Rasmussen, C.E.,
Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175,
pp. 253–261. Springer, Heidelberg (2004)

9. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge Univ. Press, Cambridge (2000)
11. Almasi, G.S., Gottlieb, A.: Highly Parallel Computing. Benjamin-Cummings Publishers,

Redwood City (1989)
12. Maruyama, O., Miyano, S.: Inferring a tree from walks. Theoretical Computer Sci-

ence 161, 289–300 (1996)
13. Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruction. Cambridge

Univ. Press, Cambridge (2003)

	Chemical Compounds with Path Frequency Using Multi-Core Technology
	Introduction
	Related Work
	Multi-Core Chemical Compound Inference from Path Frequency (MC-CIPF)
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

