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Abstract. Drug design is the approach of finding drugs by design using compu-
tational tools. When designing a new drug, the structure of the drug molecule 
can be modeled by classification of potential chemical compounds. Kernel 
Methods have been successfully used in classifying chemical compounds, 
within which the most popular one is Support Vector Machine (SVM). In order 
to classify the characteristics of chemical compounds, methods such as fre-
quency of labeled paths have been proposed to map compounds into feature 
vectors. In this study, we analyze the path frequencies computed from chemical 
compounds, and reconstruct all possible compounds that share the same path 
frequency with the original ones, but differ in their molecular structures. Since 
the computation time for reconstructing such compounds increase greatly along 
with the size increase of the compounds, we propose an efficient algorithm 
based on multi-core processing technology. We report here that our algorithm 
can infer chemical compounds from path frequency while effectively reduce 
computation time and obtained high speed up. 

Keywords: Chemical compound, feature space, Multi-Core Processing, 
Branch-and-Bound, OpenMP. 

1   Introduction 

In recent years, many researchers have worked on the drug design problem in order to 
develop new drugs based on computation methods. When designing a new drug, the 
structure of the drug molecule can be modeled by classifying candidate chemical 
compounds using Kernel Methods [4, 5, 6, 7], within which the most popular one is 
Support Vector Machine (SVM) [10]. Kernel method is a type of pattern analysis, the 
task of which is to discover the relationships, such as clusters, rankings, classifica-
tions, in the data (such as sequences, vectors, sets of points, images, etc). Kernel 
methods approach the problem by first mapping the data into a high-dimensional 
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feature space. Recently, it has also been applied to the classification of chemical com-
pounds [4, 5, 6, 7]. In these approaches, chemical compounds are mapped to fea-
ture vectors and then SVMs [9, 10] are employed to learn the rules for classifying 
these feature vectors. Several mapping methods for feature vectors have been pro-
posed; among them, the mapping of feature vectors based on the frequency of la-
beled paths [6, 7] or the frequency of small fragments in chemical compounds [4, 
5] are widely used. 

In kernel methods, an object in the input space can be mapped into a point (or fea-
ture vector) in a space called feature space. Through a suitable function ∅, a given 
point y in the feature space can be mapped back into an object in the input space. 
Such object is called pre-image. The problem exists when mapping a given y in fea-
ture space back into an object in the input space such that y=∅(x) is satisfied, as x may 
not exist. 

In [1], a feature vector g is a multiple set of strings of labels with length at most K 
which represents path frequency. Given a feature vector g, they considered the prob-
lem of finding a vertex-labeled graph G that attains a one-to-one correspondence 
between g and the set of sequences of labels along all paths of length at most K in G. 

In previous works [1, 2], a graph can be inferred from the numbers of occurrences 
of vertex-labeled paths. In [1], they showed that this problem can be solved in poly-
nomial time of the size of an output graph if graphs are trees of bounded degree and 
the lengths of given paths are bounded, by a constant, whereas this problem is 
strongly NP-hard even for planar graphs of bounded degree. 

In this study, we have taken into account the situation when chemical compounds 
become increasingly complex, the computation time required to infer pre-images from 
the feature vectors of these compounds increase at a much faster rate. We resort to 
parallel computing, in which the computation tasks are assigned to multiple cores 
appropriately to reduce the overall computation time. We extend the algorithms in [3], 
and therefore the modified algorithms can support multi-core processing technology. 

The rest of this paper is organized as follows. Section 2 introduces the background 
about problem and definition. Next we describe our proposed algorithms in section 3. In 
section 4, we show the experimental result. Finally we conclude this paper in section 5. 

2   Related Work 

For classification of the characteristics of chemical compounds to work, chemical 
compounds are often mapped into feature vectors. Several methods for converting 
chemical compounds into feature vectors have been proposed. Among them, methods 
such as frequency of labeled paths [6, 7] or frequency of small fragments [4, 5] are 
popular. Recently, the pre-image methods have been proposed. In [4], pre-images 
were found in a general setting by using Kernel Principal Component Analysis and 
regression. In [8], stochastic search algorithm is used to find pre-images for graphs. 
However, these pre-image methods are not derived from a computational viewpoint. 
In [4], the obtained results and performance of the algorithm was unclear because it 
was applied only to a few similar cases. Other related pre-image studies include infer-
ring a tree from walks in [12], as well as inferring by graphic reconstruction [13]. 
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In [3], chemical structures are modeled as trees or tree-like structures. They extend 
algorithms in [1, 2] so that constraints on valences of atoms are taken into account. 
They proposed an algorithm, Branch-and-Bound Chemical compound Inference from 
Path Frequency (BB-CIPF), which can infer tree from related chemical structures. 
BB-CIPF works within a few or a few tens of seconds for inferring moderate size of 
chemical compounds (e.g., the number of carbon atoms are less than 20) with tree or 
tree-like structures, and can be modified for inferring more general classes of chemi-
cal compounds and/or for feature vectors based on frequency of small fragments. 

In BB-CIPF, given a tree Tcur to be inferred to a target tree Ttarget, Tcur is first in-
serted into a node n to become Tnext. If the feature vector fnext of Tnext does not comply 
with the feature vector ftarget of Ttarget, the Tnext will be discarded and then the Tcur will 
be re-inserted into another node and be compared to Ttarget. 

The advantage of BB-CIPF algorithm is to effectively reduce the computation 
time, as it terminates the computation process immediately and displays the results 
once it obtains a solution; this also means that there is only one solution [3]. For ex-
ample, if there are three objects, a, b and c, which all correspond to the same feature 
vectors v. Through BB-CIPF algorithm, only one of the objects a, b, c can be inferred 
from v, so the inferred solution is not necessarily be the most useful one in practice. 
Therefore, how to produce all possible compounds that are mapped back from the 
same feature vector but differ in their molecular structures is an important issue in the 
problem. Moreover, when a compound structure is more complex, it will require more 
computation time for inference of its solutions.  

Parallel computing is a suitable technique in shortening the inference procedure. 
Parallel computing is a form of computation in which several calculations are carried 
out simultaneously [11], operated on the principle that large problems can often be 
divided into smaller ones, and then solved concurrently to provide the solution in a 
shorter time. While clusters, Massive parallel processing (MPP), and Grids use multi-
ple computers to work on the same task, multi-core and multi-processor computers 
employ multiple processing elements to work on the same task. 

A multi-core processor (or chip-level multiprocessor) combines two or more inde-
pendent cores (normally a CPU) into a single package that consisted of a single inte-
grated circuit. A dual-core processor contains two cores, and a quad-core processor 
contains four cores. A multi-core microprocessor implements several processing units 
in a single physical package. In general, programming is required to orchestrate proc-
esses in several cores in order to solve problems. 

The OpenMP (Open Multi-Processing) standard allows programmers to take ad-
vantage of the new shared-memory, multiprocessor programming systems from ven-
dors like Compaq, Sun, HP, and SGI. Aimed at the researcher working with C/C++ or 
Fortran programming languages, OpenMP explains both what this standard is and 
how to use it to create software that takes full advantage of parallel computing. 
OpenMP support Sun compiler, GNU compiler and Intel compiler. 

In this paper, we extend the inference algorithm [3] to obtaining all possible com-
pounds that are mapped back from the same feature vector but differ in their molecu-
lar structures. We used the Branch-and-Bound concept to derive the trees or tree-like 
structures of chemical compounds. Our algorithm is committed to obtain all possible 
compounds that can be inferred from the same feature vector but differ in their mo-
lecular structures. We develop our algorithm based upon the algorithm in [3] so that 
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the computation process will not terminate on the first obtained solution, but will 
continue to search for all possible solutions. However, in order to output more chemi-
cal compounds, it also means that the algorithm will consume more computation time. 
Therefore, we also propose adopting the multi-core computing technology to reduce the 
computation time in our proposed algorithm. We hope that by providing more thorough 
and practical solutions to the inference problem, we can improve on the development of 
drug design. 

3   Multi-Core Chemical Compound Inference from Path 
Frequency (MC-CIPF) 

In the previous section, we have described that when a compound structure is more 
complex, it will require more computation time for inference of its solutions. That is 
to say, if the feature vector v in feature space has been mapped from a compound c 
thought a function ∅, and we want to find c’ where c’= ∅(v). If a compound is more 
complex in structure, its feature vector in feature space is also more complex, and it 
will require substantially more computation time to map back to c’ from v. Therefore, 
in this paper, we divide computation tasks into several smaller tasks and distribute 
these tasks appropriately among several processing cores for computation. We pro-
pose the Multi-Core Chemical Compound Inference from Path Frequency (MC-CIPF) 
to obtain all possible compounds. 

 

Fig. 1. Each job is initiated based on the atoms that existed in the target compound 

In the first step of MC-CIPF, the algorithm loads into the master core a target com-
pound for inference of all other chemical compounds that share the same feature vec-
tor. The master core employs the Breadth-First-Search (BFS) algorithm to analyze the 
target compound and obtain its path frequency for distributing jobs later. Each job is  
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Fig. 2. An example of balancing the load in each core in MC-CIPF 

initiated based on the atoms that exist in the target compound (Fig. 1). However, H 
atoms are not included in this step. 

Each job requires different amount of time for computation, and a more complex 
one will require more time. For example, if there are four cores C1, C2, C3 and C4, the 
master core will analyze the target compound, initiate four jobs T1, T2, T3, T4, and 
distribute them among four corresponding cores for execution. If T1, T2 and T3 have 
completed their jobs while T4 is still in process, T1, T2 and T3 cores will be in idle as 
there are no more jobs to allocate to these cores. Therefore, we balance the overall 
computation loads by increasing the number of jobs that can be allocated by the mas-
ter core and reducing the computation time demanded for each job. The scenario is 
depicted in Fig. 2. 

Each core applies the Depth-First-Search (DFS) algorithm to insert an atom into a 
candidate compound. After inserted an atom, the candidate compound will be com-
pared with target compound, and if the feature vector of candidate compound has the 
same structure as parts of target compound structure, the inserted atom will be kept; 
otherwise, the inserted atom will be dropped, and the algorithm continues on applying 
DFS to insert the next atom in queue into the candidate compound. If the resulted 
structure of the candidate compounds is in line with the target structure, it is output as 
one of the solution. The algorithm iterates until all cores have completed all candidate 
compounds in their queues. 
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Procedure BFS (Ttarge) 
  Let Tqueue be a queue that stores all candidate compounds; 
  for all a ∈ all atoms exist in Ttarget do 
    Let Ttemp be a temporary compound 
    Ttemp ← ∅; 
    Insert a into Ttemp; 
    if Ttemp ∈ Ttarget then 
      Add Ttemp to Tqueue; 
    else 
      continue (examine the next atom in Ttarget); 
    end 
  end 
  while Tqueue is not empty do 
    for each core compute a compound from Tqueue per time do 
      Compute feature vector ftempi from T

temp
i in T

queue; 
      if MC-CIPF(Ttempi, f

temp
i, T

target, ftarget)=false then 
        output “no solution”; 
      end 
    end 

Procedure MC-CIPF(Ttempi, f
temp

i, T
target, ftarget) 

  if ftempi = f
target then output Ttempi; 

    popup Ttempi from T
temp; 

    return true; 
  else  
    return false; 
  for all a ∈ all atoms exist in Ttarget do 
    L ← ∅; 
    if { L(u)|u ∈ V(Ttemp)} ∪ {a} ⊈ atomset(ftarget) then 
      continue; 
    for all w ∈ V(Ttemp) do 
      Let Tnext be a tree gotten by connecting new leaf u 
with label a to w by bond b; 
      if w does not satisfy the valence constraint then 
        continue; 
      Compute fnext from Tnext and ftemp; 
      if MC-CIPF(Tnext, fnext, Ttarget, ftarget)=true then 
        return true; 
      end 
    end 
  return false; 

4   Experimental Results 

For verifying the effectiveness of MC-CIPF, we implemented the proposed algo-
rithm and compared the performance when using single core, dual core and quad  
,  
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Fig. 3(a). Computing time of C00097 

 

Fig. 3(b). Computing time of C00497 

core for computation. The simulation environment is built by using a personal com-
puter equipped with Intel Core 2 Quad Q6600 CPU and 4 GB RAM and installed 
with the operating system of Windows Vista with Service Pack 1. MC-CIPF was 
implemented using C language and experimental datasets are retrieved from KEGG 
LIGAND Database.  

In the experiment, we randomly chosen 5 chemical compounds (C00097, C00497, 
C11109, C14601, and C15987; the number of atoms of compound size with hydrogen 
are 14, 15, 16, 15 and 19, respectively) from KEGG LIGAND Database and exam-
ined them with K = 1, 2, 3, 4, where K is the length of sequence label of feature  
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Fig. 3(c). Computing time of C11109 

 

Fig. 3(d). Computing time of C14601 

vectors in MC-CIPF. Larger K means more constraints for target compound, which 
leads to less variation for its molecular structure. Fig. 3(a)-(e) are the computing time 
for each chemical compound. In each case, we have found that the computing time 
was reduced as the number of cores was increased. For example, in Fig. 3(c), when K 
was equal to 4, the computing time was reduced from 11.9337 second with 1 core to 
5.542821 second with 4 cores.  

When the K value increases, the constraints of the feature vectors increase accord-
ingly. As a result, MC-CIPF spends less computing time in searching for the combina-
tions of target compound, as there is less permitted variations to compute for. However, 
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the path frequency will be longer, so MC-CIPF needs to spend more execution time in 
re-computing path frequency. Consequently, the shortest computing time occurs when 
K is equal to 2 in the experiment, since the number of constraints has not increased too 
much and the length of path frequency is not too long. Details of the computing time are 
shown in Table 1. 

 

 

Fig. 3(e). Computing time of C15987 

Table 1. Computing time of MC-CIPF for various chemical compounds 

Instances Cores detail CPU time (sec.) 
 

 K=1 K=2 K=3 K=4 

1 Core  4.27 0.96 1.49 3.71 

2 Cores Core 1 2.99 0.26 1.17 2.81 

Core 2 3.00 0.72 1.17 2.81 

Max 3.00 0.72 1.17 2.81 

C00097 

4 Cores Core 1 2.91 0.20 0.72 1.56 

 Core 2 2.67 0.36 0.46 0.98 

 Core 3 0.77 0.35 0.50 0.97 

 Core 4 2.91 0.51 0.72 1.56 

 Max 2.91 0.51 0.72 1.56 

C00497 1 Core  75.44 31.95 47.23 131.42 

 2 Cores Core 1 28.82 8.78 31.26 35.33 

 Core 2 54.10 25.12 31.27 88.09 
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Table 1. (Continued) 

 Max 54.10 25.12 31.27 88.09 

 4 Cores Core 1 13.76 3.93 24.43 11.05 

 Core 2 31.23 7.77 12.25 28.88 

 Core 3 12.47 7.88 12.26 30.69 

 Core 4 56.14 21.67 24.43 64.10 

 Max 56.14 21.67 24.43 64.10 

C11109 1 Core  6.88 5.42 5.63 11.93 

 2 Cores Core 1 5.47 3.59 3.55 6.73 

 Core 2 5.48 3.59 3.56 6.73 

 Max 5.48 3.59 3.561 6.73 

 4 Cores Core 1 5.13 3.18 2.90 5.53 

 Core 2 1.83 2.06 1.91 3.53 

 Core 3 2.48 2.05 1.18 1.93 

 Core 4 5.13 3.18 2.90 5.54 

 Max 5.13 3.18 2.90 5.54 

C14601 1 Core  0.72 0.57 1.02 2.02 

 2 Cores Core 1 0.62 0.40 0.51 0.83 

 Core 2 0.62 0.40 0.55 1.16 

 Total 0.62 0.40 0.55 1.16 

 4 Cores Core 1 0.54 0.27 0.40 0.37 

 Core 2 0.13 0.23 0.38 0.55 

 Core 3 0.21 0.25 0.40 0.68 

 Core 4 0.54 0.29 0.35 0.58 

 Max 0.54 0.29 0.40 0.68 

C15987 1 Core  25.73 3.49 6.77 14.52 

 2 Cores Core 1 16.02 2.00 0.35 4.95 

 Core 2 11.43 2.00 3.67 7.67 

 Max 16.02 2.00 3.67 7.67 

 4 Cores Core 1 14.41 1.87 1.28 2.03 

 Core 2 5.78 1.48 1.65 3.16 

 Core 3 12.85 1.87 3.25 6.76 

 Core 4 1.42 0.72 0.55 0.68 

 Max 14.41 1.87 3.25 6.76 
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More importantly, we want to compare the speedup ratios of MC-CIPF with re-
spect to the core number used in the experiments. Fig. 4(a)-(e) are the speedup ra-
tios of C00097, C00497, C11109, C14601, and C15987. In these figures, the 
speedup ratios are increased from 1 core to 4 cores, with the best speedup ratio 
close to 3 (Fig. 4(c)). Interestingly, when the K value is increased, the speedup ratio 
is raised accordingly. 

 

Fig. 4(a). Speedup ratio of C00097 

 

Fig. 4(b). Speedup ratio of C00497 
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Fig. 4(c). Speedup ratio of C11109 

 

Fig. 4(d). Speedup ratio of C14601 
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Fig. 4(e). Speedup ratio of C15987 

5   Conclusions 

In this research, we proposed a multi-core algorithm for solving Chemical Compound 
Inference from Path Frequency problem. We adopted the Branch-and-Bound concept 
to evolve the tree-like structures of chemical compounds in the paper. The experimen-
tal results show that our algorithm can practically reduce computing time, with the 
best speedup ratio close to 3 folds while using 4 cores in the experiment. Therefore, 
our proposed algorithm can infer chemical compounds from path frequency effec-
tively and reduce computation time by employing the multi-core technology. 
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