

P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 206–216, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

A Practical OpenMP Implementation of Bit-Reversal for
Fast Fourier Transform

Tien-Hsiung Weng1, Sheng-Wei Huang1, Ruey-Kuen Perng1, Ching-Hsien Hsu2,
and Kuan-Ching Li1

1 Department of Computer Science and Information Engineering Providence University
Shalu, Taichung 43301 Taiwan

{thweng,rkperng,kuancli}@pu.edu.tw
2 Department of Computer Science and Information Engineering Chung Hua University

Hsinchu 300 Taiwan
robert@grid.chu.edu.tw

Abstract. In this paper, we describe our experience of creating an OpenMP im-
plementation of Bit-reversal for Fast Fourier Transform programs from the ex-
isting un-parallelizable sequential algorithm. The aim of this work is to present
an analysis of a case study showing the development of a shared memory paral-
lel Bit-reversal for the FFT parallel code with practical and efficient use of
multi-core machines. We present our implementation and discuss the results of
the case study in terms of program improvement that may be needed to help
parallel application developers with similar high performance goals. Our pre-
liminary studies, results and experiments based on FFT code running on a
four 4-cores Intel Xeon64 CPUs /Dell 6850 platform. The experimental results
show that the performance of our new parallel code on 16 cores shared-memory
machine are promising.

Keywords: Shared-memory parallel programming, OpenMP, Bit-reversal, FFT.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most important algorithms used in
many fields of science and engineering, especially in signal processing and computa-
tional fluid dynamics for solving PDEs. The FFT [2] uses a divide and conquer strat-
egy to evaluate a polynomial of degree n at the n complex nth roots of unity. FFT is
easier to parallelize and many parallel FFT algorithms on shared memory machines
have been well studied and developed. But practical implementation of The FFT pro-
grams consist of two main parts. First, data reordering in the Fast Fourier Transform
by permuting the element of the data array using Bit-reversing of the array index. This
first stage involves finding the DFT of the individual values, and it simply passes
the values along. Next, each remaining stages the computation of a polynomial of
degree n at the n complex nth roots of unity is used to compute a new value depends
on the values of the previous stage; this process, we called butterfly operation. A Bit-
reversal is an operation for an exchange data between A[i] and A[bit-reversal[i]],
where the value of i is from 0 to n-1 and value of n is usually 2 to the power of b.

 A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform 207

Then bit-reverse[i] = j, the value of j is obtained from reversing b bits from value of i.
When the Bit-reversal is not properly designed, it can take a substantial fraction of
total execution time to perform the FFT [4].

Our aim in this work was to realize an OpenMP implementation of the Bit-reversal
for FFT from un-parallelizable sequential one. Our approach relies on performing
single program multiple data (SPMD) style by adding the OpenMP parallel directives.
We first discuss the related works. Later, we discuss the important design of our algo-
rithm and compared with the original sequential algorithm. Then, we present the re-
sults of our evaluation of this parallel version of Bit-reversal on a four 4-cores Intel
Xeon64 CPUs / Dell 6850 platform. We also discuss the possibilities for and chal-
lenges of further improvement of the parallel program in Section 5. Finally, we give
our conclusions and future plans.

2 Related Work

Our aim in this work was to realize an OpenMP implementation of the Bit-reversal
for FFT from un-parallelizable sequential one. Our approach relies on performing
single program multiple data (SPMD) style by adding the OpenMP parallel directives.
We first discuss the related works. Later, we discuss the important design of our
algorithm and compared with the original sequential algorithm. Then, we present the
results of our evaluation of this parallel version of Bit-reversal on a four 4-cores Intel
Xeon64 CPUs / Dell 6850 platform. We also discuss the possibilities for and chal-
lenges of further improvement of the parallel program in Section 5. Finally, we give
our conclusions and future plans.

The data reordering in the FFT program using Bit-reversing of array index has
been well studied [3][4][6][8][9][10][12]. Most of the algorithms proposed are mainly
for the uniprocessor [4][6][8][9]. The optimal Bit-reversal using vector permutations
have been proposed by Lokhmotov [6]; their experiments have been run on single
processor, but they claimed that their algorithm can be parallelized as well. Takahashi
[13] implemented an OpenMP parallel FFT on IA-64 processors. Their code is a re-
cursive FFT algorithm written in Fortran 90, but their bit-reversal algorithm is not
presented. An algebraic framework for FFT permutation algorithm using Sisal, a
functional language , an performance measurement was done on a Cray C-90 and
SUN Sparc 5 machines [3][10]. Bit-reversal program must be carefully designed
because it may take about 10-30% of the overall FFT computational time [6]. Not
only that, it also can produce significant cache misses when its input data size is very
large. This is due to the exchange between two data elements of an array that located
in the distance far apart during the permutation of the data element using Bit-reversal
of the array index. In addition, some of Bit-reverse sequential algorithms are non-
trivial to be parallelized.

Our work is based on the sequential Bit-reversal algorithm proposed by Rodriguez
[8], in which they designed an improved Bit-reversal algorithm for FFT. Even though
their sequential algorithm appeared to be the best, it is not parallelizable without
completely rewriting of its algorithm into a parallel one.

208 T.-H. Weng et al.

In this paper, we proposed our OpenMP implementation of Bit-reversal for the FFT
using the so-called SPMD (Single Program Multiple Data) style of OpenMP, in which
reducing number of cache misses and data locality are the main concern in the design
of our code. The SPMD style of OpenMP code is distinct from ordinary OpenMP code.
In most ordinary OpenMP program, shared arrays are declared and parallel for direc-
tives are used to distribute work among threads via explicit loop scheduling. In the
SPMD style, systematic array privatizations by creating private instances of sub-arrays
gives opportunities to spread computation among threads in the manner that ensures
data locality [5]. An in depth study about SPMD style of OpenMP can be found in [5].
Programs written in SPMD style of OpenMP has been shown to provide scalable per-
formance that is superior to a straightforward parallelization of loop for ccNUMA
systems [6][11]. More advantages of using OpenMP to parallelize our code are port-
ability, easy to use, easy to maintain as well as incremental parallelization. OpenMP
[7] is an industry standard for shared memory parallel programming agreed on by a
consortium of software and hardware vendors. It consists of a collection of compiler
directives, library routines, and environment variables that can be easily inserted into a
sequential program to create a portable program that will run in parallel on shared-
memory architectures. It is considerably easier for a non-expert programmer to develop
a parallel application under OpenMP than under either Pthreads or the de facto mes-
sage passing standard MPI. OpenMP also permits the incremental development of
parallel code. Thus it is not surprising that OpenMP has quickly become widely ac-
cepted for shared-memory parallel programming.

3 OpenMP Implemention

In this section, we give an overview of original un-parallelizable sequential Bit-
reversal programs developed by Rodriguez [8]. Next, in Section 3.2 we present and
discuss our OpenMP implementation. We describe the steps taken to create the
OpenMP program as well as how we rewrote the program from the un-parallelizable
one. We also explain our development of parallel Bit-reversal implementation using
OpenMP SPMD style by examples.

3.1 Brief Overview of Sequential Bit-Reversal

Our work is based on an improved bit-reversal algorithm for the FFT by Rodriguez
[8]. In their original algorithm, computation of the bit-reversal of index for data reor-
dering calculates only the required bit-reversal of indices, which also eliminates the
number of unnecessary bit-reversal and swaps. The bit-reversal is computed as bi-

trev= ∑
=

−−

k

p

k
kpb

0
1 2 ; this corresponds to the sequential pseudo-code as shown in Figure 1.

It uses only array A to store its input data and final results. When the algorithm uses
only array A, the data reordering must perform the exchange between elements of A.
Even though the swapping is only a simple exchange between the two elements of an
array, it actually involves three assignment statements or copies actions. For in-
stances, the swap(A[1],A[2]) produces the copy A[1] to Temp, then A[2] to A[1], and
then Temp to A[1].

 A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform 209

In this original sequential code as shown in Figure 1, it computes the index upper
bound for the variable last = (N - 1 - N2) where N2 is N when number of bits is

even and is N2 when number of bits is odd. This eliminates the unnecessary com-
putation of bit-reversal, which reduces number of swaps. In term of the number of
moves, it is actually takes 3*(N-N2)/2 moves, which is 1.5*(N-N2).

0 Bit-reverse(N,p) {
1 NV2 = N >>1;
2 last = (N-1)-(1<<((p+1)>>1));
3 j=0;
4 for(i=1;i<=last; i++)
5 { for(k=NV2; k<=j; k>>=1) j -=k;
6 j += k;
7 if (i < j) Swap(A[i],A[j]);
8 }

Fig. 1. An Improve Bit-reversal function by Rodriguez

3

657

t

t,ot,o

t,o

t,o

t,o

t

t,o

Fig. 2. Data dependence graph of Figure 1

In Figure 1, the program code is not parallelizable due to true and output data de-
pendences between loop iterations of statements j = j - k, j = j + k, and if (i<j). Its
data dependence graph is shown in Figure 2; there are true and output dependences
between the statements labeled on each edge as t and o respectively. For instance,
there are true dependence between statement 3 and 7; true and output dependences
between statements 5 and 6, between 5 and 7; the loop on node 6 means there is true
and output dependence between statement 6 itself on different iteration of the for
loop. As the result, the value of variable j is accumulated for the entire nested for
loop, this means that the computation for value of j is depend on the previous value of
j. Hence, in order to parallelize this code, modification of this code is mandatory.

210 T.-H. Weng et al.

3.2 Our OpenMP Version of Bit-Reversal

We implemented our parallel code in this paper; it is quite similar to the one devel-
oped by Rodriguez, but with modification as shown in Figure 3 and 4. The original
program designed by Rodriguez was not parallelizable because there are true data
dependences, and therefore it is impossible to directly add the parallel OpenMP direc-
tive to this original for loop.

Figure 3 shows part of the FFT code that only computes data reordering performed
by permuting the element of the data array A into Mf using Bit-reversing of the array
index. That is Mf[i]=A[Bit-reverse[i]]. Instead of putting the result in A, we store the
result into Mf. Both arrays have size of n, where n is 2 to power of k, where k is the
number of bit to be reversed. In our program, we use more memory spaces in order to
parallelize the code, reduce the total number of data copy; so we trade the space for
shorter execution time.

In order to write a Bit-reversal parallel code using the SPMD style of OpenMP
from the existing un-parallelizable sequential code, we first remove the true data

FFT(*A,n,nthreads) {
struct COMPLEX Mf[n],Nth[n/2],Tmp[n/2];
chunksize = n / nthreads;
int offset[nthreads];
for(i=0;i<nthreads;i++) {
if(i==0) j=0;
else {
 k=nthreads/2;
 while(k<=j) {
 j=j-k; k=k/2;
 } //end while
 j=j+k;
} //end else
offset[i]=j;
} // end for
#pragma omp parallel private(threadid, address)
 { threadid = omp_get_thread_num();
 address = chunksize * threadid;
 Bit_reverse(A,Mf+address,
 n,chunksize,offset[threadid]);
}
...
...
}

Fig. 3. Main function of the OpenMP FFT

 A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform 211

dependence between iteration of variable j, in this case, by the pre-computation of the
accumulated value of j for each starting chunk of iteration that will be executed in
parallel by a thread. These accumulated starting values of j for each chunk of iteration
are stored in the array offset. During the parallel execution of each threads, master
thread or thread 0 will access the j from offset[0], thread 1 will access the accumu-
lated starting value of j from offset[1], thread 2 will access accumulated starting value
of j from offset[2], and so on. At the first glimpse on this observation,, it seems more
pre-computation for accumulated value of j to be done, in reality, it actually only
compute k number of elements for array offset, where k is number of threads.

Depends on nthreads (the number of threads), we compute chunk size by dividing
the input size by the number of threads. Inside the parallel region where we added the
pragma omp parallel directive, each thread will compute its address by multiplying
the chunk size with its thread id (where master thread is 0, thread 1 is 1, etc.); the two
variables (treadid and address) are declared to be private to thread using private
clause. Next, each thread will call Bit-reversal function with five parameters as shown
in Figure 4. First parameter is the first location of array A. Second is address or loca-
tion of the Mf (Mf+address). Third, n is the size of input, then chunk size, and finally,
the offset that have computed earlier.

In each thread, the Bit-reversal function is executed to compute different chunk of
element Mf[i], which is correspond to different part data element of Mf that is passed
from Mf+address. For example, with n equals to 16, and number of threads equals to
2, master thread (or thread 0) will handle the Mf [0] corresponds to Mf +0; thread 1
will process Mf [0] corresponds to Mf +8, this means Mf[0] is the pointer to actual
location 8 of Mf, Mf [1] is location 9 of Mf, and so on.

To better illustrate our OpenMP implementation of parallel code shown in Figure 3,
we use a call to FFT(A, 32, 4) as an example, that is we call FFT with size of 32 and 4
number of threads. The chunk size of 8 is calculated. We then allocate array of size

Bit_reverse(*A, *Mf, n, chunksize, offset) {
 for(i=0;i<chunksize;i++) {
 if(i==0) j=0;
 else {
 k=n/2;
 while(k<=j) {
 j=j-k; k=k/2;
 }//end while
 j=j+k;
}//end else
 Mf[i]=A[j+offset];

 }

}

Fig. 4. Bit-reversal function

212 T.-H. Weng et al.

equal to number threads for offset, in this case, int offset[4]. Before we perform the
Bit-reversal in parallel using OpenMP SPMD style to perform the permutation, we
compute only four values to store in four elements of the offset, in this examples, we
obtain 0, 2, 1, and 3 for offset[0], offset[1], offset[2], and offset[3] respectively. In-
side the OpenMP parallel region where the pragma omp parallel directive is added,
four threads will be created; each thread executes Bit-reversal function in Figure 4
with parameters to perform different part of data computation. In this case, thread 0,
1, 2, and 3 will call Bit-reverse with parameters (Mf+(0*8) and value of offset[0] is
0), (Mf+(1*8) and the value of offset[1] is 2), (Mf+(2*8) and offset[2] is 1), (Mf+(3*8)
and the value of offset[3] is 3) respectively.

Hence, as shown in Figure 5, master thread(or thread 0) will handle the Mf[0] cor-
responds to Mf+0; then it computes Mf [i]=A[j+offset] for i from 0 to number of
chunk size; where the offset[0] is 0, then Mf[0]=A[0+0], Mf[1]=A[16+0], Mf[2]=
A[8+0], Mf[3]=A[24+0], up to Mf[7]=A[28+0].

Thread 1 will process Mf[0] corresponds to Mf+8, is the pointer to actual location 8
of Mf, Mf [1] is location 9 of Mf, and so on. The offset[1] is 2. So, Mf[0]=A[0+2],
Mf[1]=A[16+2], Mf [2]=A[8+2], Mf[3]=A[24+2], up to Mf[7]=A[28+2]. Note that
Mf[0] is actually the Mf[8], Mf[1] is Mf[9], Mf[2] is Mf[10], etc. Other threads are also
performed in similar manner

Thread Starting Value Mapping
ID address of
 offset
0 0 0 0 16 8 24 4 20 12 28
1 8 2 2 18 10 26 6 22 14 30
2 16 1 1 17 9 25 5 21 13 29
3 24 3 3 19 11 27 7 23 15 31

Fig. 5. The result of mapping computed by threads

Note that in Figure 5, the variables n, chunksize, offset, i, j, and k are private vari-
ables, only array A and Mf are shared variables. Private data is usually stored locally
to thread, which promote data locality.

As the results, each of the four threads will call Bit-reverse function that is shown
in Figure 5 and they are run in parallel. Thread 0 computes the mapping of 0-0, 1-16,
2-8, 3-24, 4-4, 5-20, 6-12, 7-28. During the generation of this mapping i-j, it copy
Mf[i]=A[j]. Thread 1 computes 8-2, 9-18, 10-10, 11-26, 12-6, 13-22, 14-14, 15-30,
and so on. The complete computation of the mapping of the data reordering is shown
in Figure 5.

4 Experiments

Our experimental results based on data reordering by Bit-reversal are performed on a
four 4-cores CPUs 2.6Ghz Intel Xeon64 / Dell 6850 platform with 4 GB of main

 A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform 213

memory, 16KB L1 cache, 1MB L2 cache, and 4 MB L3 cache. We compile the par-
allel version of our program shown in Figure 3 with icc Intel OpenMP compiler with
flag –O2 –openmp and run on Linux Cent OS. We run this program with size of 2
to the power of 24, 25, 26, and 27 respectively. Each of this was run in parallel using
1, 2, 4, 8, 16 threads (one thread per core). Most of the related works have been run
with data size of less than 223. Our experiment with data size of 227, the program
approximately allocates total of 1 GB main memory.

To explain the shortcoming about the performance of our design algorithm on a uni-
processor machine, we also wrote a version of sequential algorithm, compiled with gcc
with –O2 flag, and then run with different size of input data to compare with the original
sequential code designed by Rodriguez. The experimental result is shown in Figure 6.

Our version of sequential code labels Wen and original sequential version by Rod-
riguez label Rod. Both run with input data size of 220, 221, up to 227. The results show
that the performance of our sequential code is around 50% percent slower than the
original sequential code as the input size grows larger. In the original program, Rod,
there are approximately only N/2 number of swap; even though each swap involves 3
copies or moves, so with total of 1.5N number of copies or moves, but only one cache
miss on each swap will occurred, so the total of misses is N/2 times. Our sequential
code involves only N copies or moves, but each move will cause cache miss, hence
there will be approximately the total of N cache misses.

Sequential bit-reversal code

0

10

20

30

40

2^20 2^21 2^22 2^23 2^24 2^25 2^26 2^27

Input data size

E
x
e
c
u
ti
o
n
 t
im
e

Rod

Wen

Fig. 6. Sequential codes run on uniprocessor

Figure 7 shows the performance of our OpenMP Bit-reversal. Our experiment is
performed base on our SPMD style of OpenMP parallel code with different input
sizes starting from 224 up to 227. The performance results of our parallel SPMD style
of OpenMP code shows scalable as the number of processors increases. With number
of thread equals to one, the large number of cache misses overhead occurred, this lead

214 T.-H. Weng et al.

to longer execution time, which is twice as much as the number of size increases. This
overhead is amortized by the increasing number of threads. With increased number of
threads, the total number of cache misses is reduced to as the number of chunk size.
For instance, with n equals to 224, with one thread, the number of cache miss will be
224 times, and with 16 threads, the cache misses will reduce to 224/16 times.

Bit-reversal for FFT

0

5

10

15

20

25

30

35

1 2 4 8 16

Number of threads

E
x
ec
u
ti
o
n
 t
im
e
in
 s
ec
o
n
d
s

2^24

2^25

2^26

2^27

Fig. 7. Data reordering in FFT by permuting by bit-reversal

5 Possible Improvement

First we discuss the short coming encounter for the original code. In Figure 1, when
we call this Bit-reverse with N=16 and p=4, we obtain the swap of A between 1-8, 2-
4, 3-12, 5-10, 7-14, and 11-13. The upper bound index is 11, the value calculated for
the variable, last. This program can significantly reduce the number of swaps from N
to (N-N2)/2. Even though it reduces the number of swaps, in reality the swap involves
three copy actions. But, since the algorithm reduces the number of swap, there are
only N/2 numbers of cache misses.

In our sequential code, the problem will occur when N is significantly large. Then,
the swap between the two array elements involved exchange of the far distant element
which causes large number of cache misses. For example, when N=226, then there are
assignment statements as the following: Mf[1] = A[33554432], Mf [2] =
A[16777216], and Mf [3] = A[50331648], and so on. The copy of Mf[1] from
A[33554432], cause the first cache miss from reading from location 33554432, this
causes it to load a consecutive block of array from location 33554432 into the cache
probably up to the cache size. Then second assignment also cause the cache miss
from reading A[16777216], which also load consecutive block of array from location
33554432 into the cache probably up to the cache size. Similar situations occur for
the next iteration.

 A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform 215

In our sequential code, it encounters more cache misses for very large input size,
moreover, since we only run our code in shared-memory platform that has large
(4MB) L3 cache and lower latency of memory access, the impact maybe minor. But
to run on ccNUMA machines that have greater latency of remove memory access, the
consequence is significant. Therefore, good data locality is needed to overcome these
problems.

The possible improvement may be to use Bit-reversal data reordering by vector
permutations proposed by Lokhmotov [6], They improved the cache optimal methods
for Bit-reversal proposed earlier by Zhang [12], where it is designed to be cache op-
timal; the input source is copied into the buffer to form the tile. Finally, it copies the
data from the buffer tile into the target tile. Its practicality, efficiency, and perform-
ance are still under our study and are currently our ongoing works.

6 Conclusions and Future Work

We have developed a practical OpenMP SPMD style Bit-Reversal for parallel FFT
program from the existing un-parallelizable sequential code. It is a practical, easy to
develop and maintain, as well as required only less programming effort. In our algo-
rithm, we design to reduce the number of copy to variable and cache miss as possible
when the number of threads getting large enough. Our experimental results are prom-
ising in this respect despite more memory spaces are used. Still, there may be more
improvements are possible; especially the performance on ccNUMA machines where
the memory latency is more significantly larger; therefore, the reduction of the num-
ber of cache misses, even for small number of threads is necessary, however, they do
require more programming effort. We will continue to work to implement Bit-
reversal code into the whole parallel FFT program, either iterative or parallel recur-
sive one using Intel task queuing construct of OpenMP. We will also implement this
algorithm using Cilk [14], and then compared them with other implementations.

Acknowledgements

This paper is based upon work supported in part by Taiwan National Science Council
(NSC) Grants no. NSC95-2221-E-126-006-MY3 and NSC96-2221-E-126-004-MY3.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the NSC.

References

1. Chapman, B., Bregier, F., Patil, A., Prabhakar, A.: Achieving High Performance under
OpenMP on ccNUMA and Software Distributed Shared Memory Systems. Concurrency
and Computation Practice and Experience 14, 1–17 (2002)

2. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Math. Comput 19, 297–301 (1965)

3. Bollman, D., Seguel, J., Feo, J.: Fast Digit-Index Permutations. Scientific Progress 5(2),
137–146 (1996)

216 T.-H. Weng et al.

4. Karp, A.H.: Bit Reversal on Uniprocessors. SIAM Review 38, 289–307 (1996)
5. Liu, Z., Chapman, B., Wen, Y., Huang, L., Weng, T.H., Hernandez, O.: Analyses for the

Translation of OpenMP Codes into SPMD Style with Array Privatization. In: Voss, M.J.
(ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 26–41. Springer, Heidelberg (2003)

6. Lokhmotov, A., Mycroft, A.: Optimal bit-reversal using vector permutations. In: Proceed-
ings of ACM Symposium on the 19th Parallel Algorithms and Architectures, pp. 198–199
(2007)

7. OpenMP Architecture Review Board. Fortran 2.0 and C/C++ 2.0 Specifications,
http://www.openmp.org

8. Rodriguez, J.J.: An improved Bit-reversal algorithm for the fast Fourier transform. In: Pro-
ceedings of International Conference on Acoustics, Speech, and Signal Processing, vol. 3,
pp. 1407–1410 (1988)

9. Rubio, M., Gómez, P., Drouiche, K.: A new superfast bit reversal algorithm. International
Journal of Adaptive Control and Signal Processing 16(10), 703–707 (2002)

10. Seguel, J., Bollman, D., Feo, J.: A Framework for the Design and Implementation of FFT
Permutation Algorithms. IEEE Transactions on Parallel and Distributed Systems 11(7),
625–635 (2000)

11. Wallcraft, A.J.: SPMD OpenMP vs. MPI for Ocean Models. In: Proceedings of First Euro-
pean Workshops on OpenMP (EWOMP 1999), Lund, Sweden (1999)

12. Zhang, Z., Zhang, X.: Fast Bit-Reversals on Uniprocessors and Shared-Memory Multi-
processors. SIAM Journal on Scientific Computing 22(6), 2113–2134 (2000)

13. Takahashi, D., Sato, M., Boku, T.: An OpenMP Implementation of Parallel FFT and Its
Performance on IA-64 Processors. In: Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716,
pp. 99–108. Springer, Heidelberg (2003)

14. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Multithreaded
Language. In: ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, pp. 212–223 (1998)

	A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform
	Introduction
	Related Work
	OpenMP Implemention
	Brief Overview of Sequential Bit-Reversal
	Our OpenMP Version of Bit-Reversal

	Experiments
	Possible Improvement
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

