
A Lightweight Mechanism to Mitigate

Application Layer DDoS Attacks

Jie Yu1,2, Chengfang Fang2, Liming Lu2, and Zhoujun Li3

1 Department of Computer Science, National University of Defense Technology,
China

2 Department of Computer Science, National University of Singapore, Singapore
3 School of Computer Science and Engineering, Beihang University, China
yj@nudt.edu.cn, {c.fang,luliming}@comp.nus.edu.sg, lizj@buaa.edu.cn

Abstract. Application layer DDoS attacks, to which network layer so-
lutions is not applicable as attackers are indistinguishable based on pack-
ets or protocols, prevent legitimate users from accessing services. In this
paper, we propose Trust Management Helmet (TMH) as a partial solu-
tion to this problem, which is a lightweight mitigation mechanism that
uses trust to differentiate legitimate users and attackers. Its key insight
is that a server should give priority to protecting the connectivity of
good users during application layer DDoS attacks, instead of identifying
all the attack requests. The trust to clients is evaluated based on their
visiting history, and used to schedule the service to their requests. We
introduce license, for user identification (even beyond NATs) and storing
the trust information at clients. The license is cryptographically secured
against forgery or replay attacks. We realize this mitigation mechanism
and implement it as a Java package and use it for simulation. Through
simulation, we show that TMH is effective in mitigating session flooding
attack: even with 20 times number of attackers, more than 99% of the
sessions from legitimate users are accepted with TMH ; whereas less than
18% are accepted without it.

Keywords: DDoS Attacks, Trust, Lightweight, Application layer.

1 Introduction

Distributed denial of service (DDoS) attack refers to the attempt to prevent a
server from offering services to its legitimate users, typically by sending requests
to exhaust the server’s resources, e.g. bandwidth or processing power. DDoS
attack, which makes a server suffer in having slow responses to clients or even
refusing their accesses, may be exploited by one’s business competitors expect-
ing to gain an edge in the market or political enemies trying to stir chaos. Since
more and more efficient DDoS defense mechanisms and tools are proposed and in-
stalled on routers and firewalls, the traditional network layer DDoS attacks, such
as SYN flooding, ping of death, Smurf, etc, are much easier to be detected and
defended against. Nowadays, they are giving way to sophisticated application
layer attacks [15]. Application layer DDoS attack is a DDoS attack that sends

P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 175–191, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

176 J. Yu et al.

out requests following the communication protocol and thus these requests are
indistinguishable from legitimate requests in the network layer. Most application
layer protocols, for example, HTTP1.0/1.1, FTP and SOAP, are built on TCP
and they communicate with users using sessions which consist of one or many
requests. An application layer DDoS attack may be of one or a combination of
the following types[15,24]: (1) session flooding attack sends session connection
requests at a rate higher than legitimate users; (2) request flooding attack sends
sessions that contain more requests than normal sessions; and (3) asymmetric
attack sends sessions with more high-workload requests. In this paper, we focus
on how to mitigate the session flooding attack.

Constrained by the bandwidth and processing power, application layer servers
will set a threshold for the maximum number of simultaneously connected ses-
sions to guarantee the quality of services. Under session flooding attack, a defense
mechanism is needed by the server to reject attackers and to allocate the avail-
able sessions to legitimate users. The fraction of the rejection of requests from
legitimate users over the total number of requests from legitimate users is called
the False Rejection Rate (FRR), similarly, False Acceptance Rate (FAR) can
be defined. Although a DDoS defense mechanism should reduce both FRR and
FAR, reducing FRR is more important for the sake of user experience. That
is, a server would rather maximally accommodate the legitimate user sessions,
even if a small number of attacker sessions are not detected. Furthermore, the
defense mechanism must be lightweight, to prevent itself from being the target
of DDoS attacks. It is also preferred that the defense mechanism is independent
of the details of the services, as then it can be deployed at any server without
modification.

In this paper, we propose a lightweight mechanism, named Trust Manage-
ment Helmet (TMH), that uses trust management to mitigate session flooding
DDoS attack. For every established connection it records four aspects of trust
to the user: short-term trust, long-term trust, negative trust and misusing trust
which are used to compute an overall trust that helps in determining whether
to accept a client’s next connection request. These values are stored as part of a
license at clients and when a client revisits the server, he attaches his license to
the session connection request. Based on the license, TMH computes the client’s
overall trust, updates his license, and decides whether to accept his request. The
license is designed such that the server can easily identify the client and verify
his associated trusts, but license forgery or replay is computationally infeasi-
ble. We also extend TMH to collaborative trust management among multiple
servers. Our mechanism is independent from services deployed on servers and is
portable1. We have implemented it as a Java package and it can run separately
and then redirect scheduled requests to servers protected or be integrated with
other open-source application layer servers after slight modification.

As far as we know, our work is the first in applying trust management to
application layer DDoS defense. Trust of a client is built up through his visiting
history, and used as the criteria in evaluating the likelihood of the client being

1 The mechanism is called as a helmet for this reason as well as its lightweight.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 177

legitimate or not. Most existing schemes use packet rate as the metric to identify
attackers. It is potential that intelligent attackers can adjust their packet rate
based on server’s response to evade detection [7]. In contrast, clients’ visiting
histories are hard to be modified, because servers keep access logs, and the data
used in trust evaluation are secured using cryptography. Hence using trust as
the evaluation criteria will be more reliable in application layer DDoS attacks.

The organization of this paper is as follows. In Section 2, we discuss related
work. We describe the legitimate user model and attacker model in Section
3. We then propose our TMH defense mechanism in Section 4 and in Section
5, we simulate and analyze it. Finally, we extend TMH to collaborative trust
management in Section 6 and conclude in Section 7.

2 Background and Related Work

There are extensive works on defending against network layer DDoS attacks
with different strategies and heuristics, for example, anomaly detection [11],
ingress/egress filtering [20], IP trace back [9,18], ISP collaborative defense [3],
etc. Recently, the more sophisticated application layer DDoS attack [15] is threat-
ening the security of the Internet content providers, especially web servers. One
critical application layer DDoS attack is the index reflection attack [8]. In this
attack, attackers declare to be the victim and pretend to share lots of resources
in peer-to-peer network, so as to fool a large number of peers into requesting
download of resources from the victim. It has been verified on many P2P ap-
plications, such as Gnutella [2], Bittorrent, Overnet [13], FastTrack [8], ESM
[13], etc. We also verified this attack on Kad [25], which is the first DHT imple-
mented in real applications and has millions of simultaneous users as to date.
E. Athanasopoulos et al. [2] found that attackers can construct HTTP pack-
ets by misusing Gnutella protocol and then build new HTTP connections with
victim (web servers) and download high workload resources. In index reflection
attack, attackers do not need to control any botnets and thus it is very easy to
perform this attack. Since application layer DDoS attacks are non-intrusive and
protocol-compliant, attackers are indistinguishable based on packets or protocols
and thus these attacks cannot be defended using network layer solutions. Clearly,
new defense mechanisms are required for application layer DDoS attacks.

M. Walfish et al. [21] proposed a speak-up method, which encourages clients to
send more session connection requests. This method is based on the assumption
that attackers are already using most of their upload bandwidth so that they
cannot react to the encouragement. S. Ranjan et al. [15] proposed a counter-
mechanism by building legitimate user model for each service and detecting
suspicious requests based on the content of the requests. S. Khattab et al. [6]
proposed living baiting for applications that can be decomposed into several
virtual services. It leverages group-testing theory to detect attackers with small
state overhead. J. Yu et al. [24] introduced a detection and offense mechanism to
protect legitimate sessions, but it is too resource consuming to be implemented.
M. Srivatsa et al. [17] performed admission control to limit the number of con-
current clients served by the online service. Admission control is based on port

178 J. Yu et al.

hiding that renders the online service invisible to unauthorized clients by hiding
the port number on which the service accepts incoming requests. This mecha-
nism need a challenge server which can be the new target of DDoS attack. Y.
Xie et al. [22,23] proposed a anomaly detector based on hidden semi-Markov
model to describe the dynamics of Access Matrix and to detect the attacks.
The entropy of document popularity fitting to the model was used to detect the
potential application-layer DDoS attacks.

Trust management has been well studied in distributed systems to ensure the
fairness in resource sharing or to evaluate the reliability of a resource provider.
It has many potential applications in P2P networks. Trust management often
uses peers’ records, such as their upload and download data amount, or peer
reviews, to build up trust information [4,16]. P2PRep [4] provided a protocol
on top of Gnutella to estimate the trustworthiness of a node. M. Srivatsa et al.
[16] identified three vulnerabilities of decentralized reputation management and
proposed TrustGuard that let reputation grow slowly but drop quickly. In this
paper, we apply trust management to defend against application layer DDoS
attacks.

3 Legitimate User and Attacker Model

In this section, we build the legitimate user model, and the attacker model with
several attack strategies of different complexity. Firstly, we would like to make
two assumptions about the server.

Assumption 1. Under session flooding attacks, the bottleneck of a server is the
maximal number of simultaneous session connections, called as MaxConnector.
It depends not only on the bandwidth of the server, but also on other resources
of the server, e.g. CPU, memory, maximal database connections.

Assumption 2. Without attacks, the total number of session connections of
the server should be much smaller than MaxConnector, e.g., smaller than 20%
of MaxConnector, as a server would set the threshold much higher to tolerate
the potential burst of requests, e,g., flash crowds on websites.

3.1 Legitimate User Model

In contrast to attackers, legitimate users are people who request services for
their benefit from the content of the services. Therefore, the inter-arrival time
of requests from a legitimate user would form a certain density distribution
density(t) [5]. With this insight, we build the user model in the following way:

1. Use traces of Internet accesses to build an initial model density0(t), where
t is a inter-arrival time and density(t) is the probability a legitimate user
will revisit the service after t seconds. Many traces has been done by re-
searchers, e.g. F. Douglis et al. [5] traced web users to investigate caching
technique in World Wide Web, and M. Arlitt et al. [1] presents a workload
characterization study for Internet Web servers. Six different data sets are
traced in this study: three from academic (i.e., university) environments, two

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 179

from scientific research organizations, and one from a commercial Internet
provider.

2. Rebuild user model densityi+1(t) with the newly collected inter-arrival times
of all legitimate users after TMH runs d days under model densityi(t), where
d is randomly chosen from [dmin, dmax]. Note that we build the new density
distribution using the data of legitimate users, whose requests are accepted
by TMH. It means that densityi+1(t) is tightly derived from densityi(t) and
hence is difficult to be fooled by attackers.

As a practical legitimate user model, it should satisfy the following properties:
firstly, it should converge fast to the users’ accesses interval distribution; sec-
ondly, it should be dynamic as the distribution may change from time to time;
and most importantly, it should be lightweight to be easily implemented and
monitored in the defense mechanism. The user model we proposed in this sec-
tion can satisfy the first two requirements as the density function is updated
regularly; and it is lightweight as the update to density distribution is incre-
mental and it does not try to capture the complicated reasons for the changes
reflected.

In our implementation, we employ the traces collected at AT&T Labs-Research
and Digital Equipment Corporation by F. Douglis et al. [5] to build density0(t).
In this initial density distribution model, there are a number of peaks in the user
request arrival intervals, with the most prominent ones corresponding to intervals
of one minute, one hour and one day. The mean inter-arrival time was 25.4 hours
with a median of 1.9 hours and a standard deviation of 49.6 hours.

3.2 Attacker Model

The goal of session flooding DDoS attack is to keep the number of simultaneous
session connections of the server as large as possible to stop new connection re-
quests from legitimate users being accepted. Therefore, an attacker may consider
using the following strategies when he controls a lot of zombie machines or can
misuse P2P network as an attack platform as introduced in section 2:

1. Send session connection requests at a fixed rate, without considering the
response or the service ability of victim.

2. Send session connection requests at a random rate, without considering the
response or the service ability of victim.

3. Send session connection requests at a random rate and consider the response
or the service ability of victim by adjusting request rate according to the
proportion of accepted session connection requests by the server.

4. First send session connection requests at a rate similar to legitimate users to
gain trust from server, then start attacking with one of the above attacking
strategies.

The tradeoff of these strategies is between cost and ability to avoid the detection.
Strategy 1 and 2 are easy to implement, but they are also easier to be detected;
strategy 3 and 4 are more complicated as they consider the server responses or

180 J. Yu et al.

modeling legitimate users. Strategy 4 requires long-term preparation of attackers
in order to gain a high trust level. This strategy needs attackers being more
“patient”. In session flooding attacks, attackers cannot spoof their IPs or change
them within a session, because a session is set up on TCP connection which
requires a three-way handshake. Since attackers cannot hide themselves through
modifying IPs, they would prefer using strategy 3 and 4 to mimic behavior of
legitimate users, to evade detection. We will simulate each strategy in Section 5.

4 Mitigation by Trust Management

We have considered the following properties in designing our mitigation mech-
anism: (1) It should be deployed at the server for incentive and performance
reasons [14]. (2) It should be lightweight, to reduce the processing delay and to
avoid being a new target of attacks. (3) It should be easy to deploy and inde-
pendent to the details of servers. The defense mechanism need not know what
services the server runs or what configuration it uses. (4) It should be adap-
tive to the server’s resource consumption and differentiate between concurrent
requests.

To evaluate the visiting history of clients2 effectively, we use trust. The client
who behaves better in history will obtain higher degree of trust. Here we define
several components of it before defining trust.

Definition 1. Short-term trust Ts, estimating the recent behavior of a client. It
is used to identify those clients who send session connection requests at a high
rate when the server is under session flooding attacks.

Definition 2. Long-term trust Tl, estimating the long-term behavior of a client.
It is used to distinguish clients with normal visiting history and those with
abnormal visiting history.

Definition 3. Negative trust Tn, cumulating the distrust to a client, each time
the client’s overall trust falls below the initial value T0. It is used to penalize a
client if he is less trustworthy than a new client.

Definition 4. Misusing trust Tm, cumulating the suspicious behavior of a client
who misuses its cumulated reputation. It is used to prevent vibrational attacks
by repeatedly cheating for high trust.

Definition 5. Trust T , representing the overall trustworthiness of a client, which
takes into account all of his short-term trust, long-term trust, negative trust and
misusing trust.

To reduce the processing overhead brought by TMH, a short-term blacklist
should be implemented. The blacklist records the list of clients whose trust values
are too low. When a client’s trust T drops below some threshold, he is recorded

2 Clients are used to represent both legitimate users and malicious attackers in this
paper.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 181

Fig. 1. The components of TMH and its communication with other modules

into the blacklist with an expiration time. He is then banned from accessing the
server until his blacklist record expires.

The TMH mitigation mechanism is deployed at the server. A session connec-
tion request first reaches TMH and it checks whether the client is blacklisted; if
not, it computes the trust to the client and use trust-based scheduling to sched-
ule the connection request for the server. The architecture of TMH is shown in
Fig.1. We will introduce the components of it in the rest of this section.

4.1 License Management

Because of mobile technology, users can make connections at different network
segments. It is difficult to identify mobile users with dynamic IPs. Users con-
nected from a proxy (e.g. HTTP proxy) are also difficult to be identified. There-
fore, one way to mitigate session flooding attacks is to give priority in serving
a subset of the good users, who we can identify and trust. The identification
information and trust states can be stored at clients and verified by the server.

We call the information stored at clients as license. It contains the following:
64-bit identifer ID, IP address of client IP , the overall trust T to the client,
negative trust Tn, misusing trust Tm, last access time LT , average access interval
AT , the total number of accesses AN , and a keyed hash H of the concatenation
of all the above, with a 128-bit server password SP as the key. SP is private
to the server. Note that we identify a client by his public IP and the server
assigned identifier. If IP address alone is used, clients behind NATs cannot be
distinguished, because they share the same public IP address. Including the
identifier ID enables uniquely identifying a client even if he is hidden behind
NATs.

A license serves two functionality: for user identification and trust computa-
tion. The identification information, such as ID and IP , must be stored at the
client license. The state variables for trust computation can be stored at the
client or at the server. Each has its advantages and drawbacks. Keeping licenses
at a server largely prevents attackers from tempering them, but it is a single
point of data failure. Issuing licenses to users distributes the storage, making
TMH more scalable in supporting clients, but the server needs to verify the

182 J. Yu et al.

authenticity of a license. It trades off between a server’s storage and computa-
tion resources. We use client-based license for distributing the data and better
scalability. The license can be dispensed to clients using cookies or by additional
application layer protocols.

Client provides his license whenever he requests a connection. TMH verifies
the license by first checking if the request originates from the IP address included
in the license3 and whether the last access time LT matches the server’s log, then
validating if the hash H agrees with the hash computed using the license and
the server password SP . Connection request without a license will be treated
as from new users and a new license will be issued if TMH decides to accept
it. Note that an attacker can not change its IP address during a single session
since a session must be set up according a full-TCP connection which needs
three-handshake. Even in different sessions, an attacker is only able to change
its IP address in a limited range, such as in a small network segment; otherwise,
ISPs can not route handshake packets to the attacker.

Correctness. If the hash is one way and weak-collision resistant (e.g., MD5 or
SHA-1), then a user is not able to create a valid license without the server pass-
word, except with negligible probability. The proof follows from the definition
of weak-collision resistance and one way function.

Implementation. We mainly consider the protection of the most important ap-
plication layer server on Internet, i.e. web server, which is also the most favourite
target of known DDoS attacks. Cookies (RFC 2965, 2109) are small bits of tex-
tual information that a web server sends to a browser and that the browser
returns unchanged when visiting the same web site or domain later. They are
widespread used for convenient purposes, e.g. identifying a user during an e-
commerce session, avoiding username and password, customizing a site, and so
on. The default setting of most operation systems and browsers allow cookies.
Hence, we employ them to keep the license information of the client. In our im-
plantation, we use Java Servlet Cookie API to manage licenses. Table 1 shows
the license set and get functions in our implantation of TMH. These functions are
very lightweight and need little process power. Note that although each cookie
is limited to 4KB, it is enough for us since each license needs only 544 bits.

4.2 Adaptive Trust Computing

The computation of trust T
′

employs T , Tn, Tm, LT , AT and AN in license,
current time now, and usedRate (i.e., the percentage of connected sessions over
MaxConnector) of the server. Based on Assumption 2 in Section 3, usedRate �
1 normally. As we explained, a server should give priority to protecting the
connectivity of good users during session flooding attacks, instead of identifying
all the attack requests. Since a higher trust value means a request is more likely
to be accepted, it is desired to satisfy: Tlegitimate user > Tnew client > Tattacker.

3 It is suggested that we only compare the class prefixes of IP s to support DHCP
users.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 183

Table 1. License management functions

void setLicense(String license, long maxAge){
Cookie cookie = new Cookie(“TMH.license”, license);
cookie.setMaxAge(maxAge);
response.addCookie(cookie);

}

String getLicense(){
Cookie[] cookies = request.getCookies();
String license = ServletUtilities.getCookieValue(

cookies, “TMH.license”, null);
return license;

}

Short term trust is very important in distinguishing attackers, as almost all
DDoS attacks are carried out in a relatively short period. For short-term trust,
we consider both the interval of latest two accesses of the client and the current
process ability of the server. Considering two different session connection requests
with the same access interval at different arrival time, for the client when it
arrives the server is relatively busy, it has a higher possibility to be an attacker
and thus the short-term trust of it will be relatively lower. We give the formula
of short-term trust as follows:

T
′
s =

density(now − LT)
eα×usedRate

(1)

where α is a weight factor deciding the influence of usedRate. It is a positive real
number with default value 1 and can be modified by servers as needed. When
α ≈ 0, the short-term trust mainly relies on the interval of the latest two accesses
of the client.

Long term trust is the most important factor when a legitimate user builds
up his credit. For long-term trust, the negative trust, average access interval and
the total number of accesses should all be taken into account. They can represent
the long-term behavior of a client. The formula of long-term trust is:

T
′
l =

lg(AN) × density(AT)
eTn

(2)

Using the short-term trust and long-term trust computed above and the misusing
trust provided in license, we can then compute trust T

′
as follows:

T
′
= min(2 × β × T

′
s + (1 − β) × T

′
l

eTm
, 1) (3)

where β ∈ [0, 1] with default value 0.5, it decides the weight of short-term trust
and long term trust in the overall trust computation.

184 J. Yu et al.

Negative trust is used to penalize users that have carried out attack, or carried
out abnormal requests during periods that the server is busy. It cumulates the
difference of trust T ′ to the initial value T0 each time T ′ is smaller than T0. The
formula is as follows:

T
′
n = max(Tn + γ × (T0 − T

′
), Tn) (4)

Misusing Trust prevents vibrational attacks that repeatedly cheat for high trust
by checking whether a user’s trust is decreasing. It cumulates the difference in
trust values if trust T ′ is smaller than the last time. The formula is as follows:

T
′
m = max(Tm + γ × (T − T

′
), Tm) (5)

where γ ∈ (0, 1], which is a weight factor deciding the degree of cumulation. It
can be assigned by servers according to their demands with default value 1.

Recall that in above four formulas, Tn and Tm are the negative trust and
misuse trust provided by the license respectively. For a client accessing the server
for the first time, its initial value of the overall trust is 0.1, and its initial value
of negative trust and misusing trust are both 0, i.e. T0 = 0.1, Tn0 = Tm0 = 0.

Computation overhead. As can be seen from the formulas, the computation
in updating a trust value is minimal. The major factor of computation overhead
is in generating the cryptographic hash of a license. Yet each hash input is only
544 bits, and MD5 can compute more than 120,000 such hashes per second
(measured in software using Java 5.0 and a PC with 2.13GHz CPU and 2GB
memory). Even if using an off-the-shelf PC as a server, the server is capable
of verifying more licenses than the normal network bandwidth can transmit.
Besides, servers usually have more computational resources.

4.3 Trust-Based Scheduler

When a session connection request reaches TMH, it firstly validates the license
the client provides. If passed, it will compute the client’s new overall trust,
negative trust and misusing trust and then update this information into the
license. Afterwards, the scheduler in TMH decides whether to redirect it to the
server based on the trust values.

TMH schedules session connection requests once every time slot. If the total
number of the on-going sessions and the sessions waiting to be connected is not
larger than the MaxConnector of the server, the scheduler will redirect all re-
quests to the server. Otherwise, suppose there are N session connection requests
waiting to be connected and the percentage of requests should be dropped is θ,
we propose following the scheduling policies to drop suspicious requests:

1. Foot-n: sort all requests in current time slot by the clients’ trusts in the
decreasing order. For clients that have the same overall trust, sort them by
their misusing trusts in the increasing order. We then drop the last n = θ×N
requests.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 185

2. Probability-n: give each client i a probability pi

pi = min(
T i × (1 − θ) × N

∑N
j=1 T j

, 1) (6)

to denote the probability at which his session connection request will be
accepted. Thus we drop his request with probability 1 − pi.

4.4 Possible Attacks

We discuss some possible attacks to TMH in this subsection.

Index reflection attack. In Section 2, we described the index reflection attack.
The peers manipulated into flooding session connection requests are either new
users to the server or behave as attackers with strategy 4. During attack, TMH
gives priority in serving the known users with high trusts. As the attacking peers
frequently request for session connections, the trust of them drops till they are
blacklisted. Thus they are penalized.

License forgery, replay and deletion attacks. Clients might not follow the
protocol of TMH exactly, they might try to cheat about the license, for example,
forging a new one, sharing a license, using an old license, or refuse to store a
license.

As mentioned, the license is hashed with a server password, thus, it is compu-
tationally infeasible for a forgery to be valid. If attackers send random licenses to
make TMH verify, TMH risks exhausting its computation power. However, the
computation performed by TMH is lightweight, it can verify as many licenses
in time as the network can transmit. And as the license stores the IP address,
sharing a license is only possible for clients within the same subnet or NAT. Fur-
thermore, since the last access time is included in the license, THM can detect
if a client reuses an old license, by cross-checking the last access information the
server logs, i.e. 64-bit identifer ID and last access time LT .

If an attacker discards his license of low trust to pretend to be a new user,
he will still be assigned lower priority than the known users with high trusts.
Additional efforts can be made to distinguish a benign new user and an apparent
new user but who is actually a zombie attacker having discarded his license. For
example, TMH can issue a request on the server’s behalf, asking the new users
to send their connection requests to another IP which is also under the server’s
control. If a user responds to the request and redirects his connections correctly,
the user is not a zombie machine [19]. Graphical turing test [12] is another
possible solution to tell apart zombies from benign new users.

5 Simulation

We implement TMH as a package, which consists of about 500 lines of Java
source code. This package can run separately and then redirect scheduled re-
quests to web servers or be integrated with other open source web servers after

186 J. Yu et al.

slight modification, such as Tomcat or JBoss. In this section, we present the
simulation results to analyze the performance of TMH against different attack
strategies and to compare the effect of different scheduling policies.

5.1 Simulation Setup

The simulation is set up in a local area network with 100Mbps links. We simu-
lated 100 legitimate users, varying number of attackers and a server protected by
TMH. Clients request the server for HTTP sessions. The server directly responds
to them if they pass the verification and get scheduled by TMH.

Constrained by the server’s memory and other resources, MaxConnector is
set to 1000. That is, the server can serve maximally 1000 concurrent sessions;
beyond that, the session requests will be dropped. In our simulation, legitimate
users follow the model described in Section 3.1, we set dmin=15 and dmax=20;
while attackers attack with different strategies described in Section 3.2. The life
time of a session follows an exponential distribution with mean equals to 20
seconds.

TMH uses default values of α, β and γ in the computation of trust. It issues
license to new users with density(now − LT) and density(AT) set to be 0.1.
After it verifies a license and updates the trust, it schedules the requests using
the policies described in Section 4.3. For comparison, we also implemented two
simple scheduling policies: (1) Tail-n: drop the n = θ × N requests that arrive
last in a time slot. (2) Random-n: randomly drop n = θ × N requests in a time
slot. A time slot is one second.

5.2 Results and Analysis

Fig.2 shows the change of overall trusts of legitimate users and attackers. Its
result is obtained using Probability-n as the scheduling policy. For Fig.2(a), there
are 100 legitimate users and no attacker; for Fig.2(b) to Fig.2(f), there are 500
attackers, besides the 100 legitimate users. All the users and attackers are started
sequentially. In each simulation, the change of overall trusts of each legitimate
user is very similar to each other. To illustrate this, we keep track of three
representative users, that is, users started at the beginning, in the middle and
at the end. Following the same argument, we select three attackers based on the
starting sequence.

Fig.2(a) plots the trusts of three selected users when there is no attacker.
All requests are accepted. It shows that the trusts of legitimate users quickly
increase from 0.1 to 0.3 in the first few sessions. After 50 sessions, their trust
values are over 0.5.

For Fig.2(b), attackers use strategy 1. They send session connection requests
with a fixed rate at one request per 5 seconds. Fig.2(b) shows the trusts of
legitimate users increase slower than in Fig.2(a). That is due to the high used
rate of server’s session connections under attacks. After 50 sessions, the trusts
of legitimate users are around 0.4. However, the trusts of attackers decrease to
around 0.01 in the first few sessions due to their high request rate, and they keep
reducing slowly in the following sessions.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 187

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0 5 10 15 20 25 30 35 40 45 50

T
ru

st

Number of sessions

Legitimate user #10
Legitimate user #50
Legitimate user #90

(a) No attack

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50

T
ru

st

Number of sessions

Attacker #100
Attacker #300
Attacker #500

Legitimate user #10
Legitimate user #50
Legitimate user #90

(b) Attack with strategy 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50

T
ru

st

Number of sessions

Attacker #100
Attacker #300
Attacker #500

Legitimate user #10
Legitimate user #50
Legitimate user #90

(c) Attack with strategy 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50

T
ru

st

Number of sessions

Attacker #100
Attacker #300
Attacker #500

Legitimate user #10
Legitimate user #50
Legitimate user #90

(d) Attack with strategy 3

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80

T
ru

st

Number of sessions

Attack starts

Attack stops

Legitimate user #10
Legitimate user #50
Legitimate user #90

(e) Attack with strategy 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120

T
ru

st

Number of sessions

Attack stops

Attack starts

Attacker #100
Attacker #300
Attacker #500

(f) Attack with strategy 4

Fig. 2. Global trusts over the number of sessions

For Fig.2(c), attackers use strategy 2. They send session connection requests
with varying rate at one request in every 5 to 10 seconds uniformly. The ran-
domness in attack rate causes the server to experience some burst of session
requests. This decreases the misusing trust of legitimate users, which results in
the fluctuation of their trust values, as shown in the figure. After 50 sessions,
the trusts of the legitimate users are about 0.38.

188 J. Yu et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

200 400 600 800 1000
1200

1400
1600

1800
2000

R
at

e
of

 a
cc

ep
te

d
le

gi
tim

at
e

se
ss

io
ns

Number of attackers

Tail-n
Random-n

Probability-n
Foot-n

Fig. 3. The rate of accepted legitimate sessions over the number of attackers

For Fig.2(d), attackers use strategy 3. They adjust their sending rate between
5 to 10 seconds for a request, according to the rate of accepted requests by TMH.
This attack strategy brings in more randomness to the used rate of server’s
session connections, and thus increasing the fluctuation of trusts of legitimate
users. After 50 session requests, the trusts of legitimate users are about 0.35.
Notice that the trust of attackers in Fig.2(b) is smaller than the trust of the
same session in Fig.2(c) which is then smaller than the trust in Fig.2(d).

When attackers use strategy 4, the change of the overall trusts of three le-
gitimate users are plotted in Fig.2(e) and that of three attackers are plotted
in Fig.2(f). Attackers first send session connection requests complying with the
legitimate user model; then attack using strategy 1 for a period; finally they
follow the legitimate user model again. When attack starts or stops, the number
of sessions requested by clients differs because the access interval in the legit-
imate user model is probabilistic. Fig.2(e) shows that the trusts of legitimate
users decrease by 30% in three sessions after the attack starts. This is because of
the sudden increase of used rate of server’s session connections. However, they
slowly increase even when the attack is carrying on and almost recover to about
their original level after attack stops. Fig.2(f) shows that the trusts of attackers
decrease to a much lower level and is at around 0.1 even they stop attacking.
Note that we have removed some middle results under attacks in Fig.2(f) so that
it is convenient to compare with Fig.2(e).

We compare different scheduling policies by plotting the acceptance rate of
legitimate sessions, i.e. 1−FRR, in Fig.3. The number of legitimate users is 100
and the proportion of each kind of attackers who adopt one of the four attack
strategies is 25%. We can see that under trust-based scheduling strategies, the
acceptance rate of legitimate sessions keeps at a high level and is insensitive to the
number of attackers. Even when the number of attackers is 2000, the acceptance
rate of legitimate user sessions is still 99.1% and 99.7% with Probability-n and
Foot-n scheduling policies respectively. However, it is only 16.0% using Tail-n
policy and 17.2% using Random-n policy.

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 189

6 Collaborative Trust Management

Many services are related but provided by different servers, e.g., online auction
and PayPal, or e-newspaper and its advertisements. The related servers probably
share a large group of clients. For the common good or economic incentives,
TMH s deployed at these servers can collaborate with one another by sharing
trust information of clients. We say these TMH s form a collaboration group.
The trust information shared is particularly useful in distinguishing legitimate
users. The collaborating TMH s can take either or both actions below:

1. Exchange blacklist : a TMH exchanges its blacklist (including client ID and
its expiration time) with other TMH s periodically. When a TMH receives a
blacklist, it merges the received blacklist into its own.

2. Exchange the trust values of clients: a TMH sends its overall trust of clients
to other TMH s periodically. A client may visit the same server multiple times
within a period. Only the latest overall trust logged by TMH is exchanged.
When client j requests a new session, TMH i uses following formula to
recompute the overall trust T j

G of the client, which considers both the local
trust T j computed by TMH i and the recommended trust T j

r from other
TMH s:

T j
G = τ × T j + (1 − τ) ×

∑

r∈I(i)

Cir × T j
r∑

r∈I(i) Cir
(7)

where I(i) is the collaboration group of TMH i, Cir is the confidence level
that TMH i has for the recommended trust from TMH r, and τ ∈ [0, 1] is
the confidence level of TMH i itself, 1 means the most confident and 0 the
least.

The collaboration of TMH s can reduce the false negatives of a single TMH and
accelerate the identification of attackers.

7 Conclusion

To defend against application DDoS attacks is a pressing problem of the Internet.
Motivated by the fact that it is more important for service provider to accom-
modate good users when there is a scarcity in resources, we present a lightweight
mechanism TMH to mitigate session flooding attack using trust evaluated from
users’ visiting history. We verify its effectiveness with simulations under different
attack strategies. Comparing to other defense mechanism, TMH is lightweight,
independent to the service details, adaptive to the server’s resource consump-
tion and extendable to allow collaboration among servers. In future work we will
investigate how to apply TMH into real-world applications and how to defend
against other types of application layer DDoS attacks, including request flooding
attack and asymmetric attack.

190 J. Yu et al.

References

1. Arlitt, M., Williamson, C.: Web Server Workload Characterization: The Search for
Invariants. In: Proceedings of ACM SIGMETRICS 1996 (1996)

2. Athanasopoulos, E., Anagnostakis, K., Markatos, E.: Misusing Unstructured P2P
systems to Perform DoS Attacks: The Network That Never Forgets. In: Zhou, J.,
Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 130–145. Springer,
Heidelberg (2006)

3. Chen, Y., Hwang, K., Ku, W.: Collaborative Detection of DDoS Attacks over
Multiple Network Domains. IEEE Transations on Parallel and Distributed Systems
(2007)

4. Cornelli, F., Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: Choosing
reputable servents in a p2p network. In: Proceedings of WWW 2002 (2002)

5. Douglis, F., Feldmannz, A., Krishnamurthy, B.: Rate of change and other metrics:
a live study of the World Wide Web. In: Proceedings of USENIX Symposium on
Internetworking Technologies and Systems (1997)

6. Khattab, S., Gobriel, S., Melhem, R., Mossäe, D.: Live Baiting for Service-level
DoS Attackers. In: Proceedings of INFOCOM 2008 (2008)

7. Li, Q., Chang, E., Chan, M.: On the Effectiveness of DDoS Attacks on Statistical
Filtering. In: Proceedings of INFOCOM 2005 (2005)

8. Liang, J., Naoumov, N., Ross, K.W.: The Index Poisoning Attack in P2P File
Sharing Systems. In: Proceedings of INFOCOM 2006 (2006)

9. Lu, L., Chan, M., Chang, E.: Analysis of a General Probabilistic Packet Marking
Model for IP traceback. In: Proceedings of ASIACCS 2008 (2008)

10. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service: Attack
and Defense Mechanisms. Prentice Hall PTR, Englewood Cliffs (2004)

11. Mirkovic, J., Prier, G.: Attacking DDoS at the source. In: Proceedings of ICNP
2002 (2002)

12. Morein, W.G., Stavrou, A., Cook, D.L., Keromytis, A.D., Misra, V., Rubenstein,
D.: Using graphical turing tests to counter automated DDoS attacks against web
servers. In: Proceedings of ACM CCS 2003 (2003)

13. Naoumov, N., Ross, K.: Exploiting P2P Systems for DDoS Attacks. In: Proceedings
of INFOSCALE 2006 (2006)

14. Natu, M., Mirkovic, J.: Fine-Grained Capabilities for Flooding DDoS Defense Us-
ing Client Reputations. In: Proceedings of LSAD 2007 (2007)

15. Ranjan, S., Swaminathan, R., Uysal, M., Knightly, E.: DDoS-Resilient Scheduling
to Counter Application Layer Attacks under Imperfect Detection. In: Proceedings
of INFOCOM 2006 (2006)

16. Srivatsa, M., Xiong, L., Liu, L.: TrustGuard: Countering Vulnerabilities in Repu-
tation Management for Decentralized Overlay Networks. In: Proceedings of WWW
2005 (2005)

17. Srivatsa, M., Iyengar, A., Yin, J., Liu, L.: Mitigating application-level denial of
service attacks on Web servers: A client-transparent approach. ACM Transactions
on the Web (2008)

18. Stone, R.: CenterTrack: An IP Overlay Network for Tracking DoS Floods. In:
Proceeding of 9th Usenix Security Symposium (2002)

19. Thing, V.L.L., Lee, H.C.J., Sloman, M.: Traffic Redirection Attack Protection Sys-
tem (TRAPS). In: Proceedings of IFIP SEC 2005 (2005)

20. Tupakula, U., Varadharajan, V.: A Practical Method to Counteract Denial of Ser-
vice Attacks. In: Proceedings of ACSC 2003 (2003)

A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks 191

21. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.: DDoS De-
fense by Offense. In: Proceedings of SIGCOMM 2006 (2006)

22. Xie, Y., Yu, S.: Monitoring the Application-Layer DDoS Attacks for Popular Web-
sites. IEEE/ACM Transactions on Networking (2009)

23. Xie, Y., Yu, S.: A large-scale hidden semi-Markov model for anomaly detection on
user browsing behaviors. IEEE/ACM Transactions on Networking (2009)

24. Yu, J., Li, Z., Chen, H., Chen, X.: A Detection and Offense Mechanism to Defend
Against Application Layer DDoS Attacks. In: Proceedings of ICNS 2007 (2007)

25. Yu, J., Li, Z., Chen, X.: Misusing Kademlia protocol to perform DDoS attacks. In:
Proceedings of ISPA 2008 (2008)

	A Lightweight Mechanism to Mitigate Application Layer DDoS Attacks
	Introduction
	Background and Related Work
	Legitimate User and Attacker Model
	Legitimate User Model
	Attacker Model

	Mitigation by Trust Management
	License Management
	Adaptive Trust Computing
	Trust-Based Scheduler
	Possible Attacks

	Simulation
	Simulation Setup
	Results and Analysis

	Collaborative Trust Management
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

