

P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 162–174, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Hasten Dynamic Frame Slotted ALOHA Algorithm for
Fast Identification in RFID System

Siti M. Wasikon and Mustafa M. Deris

Faculty of Information Technology and Multimedia,
Universiti Tun Hussein Onn Malaysia

{mahfuzoh,mmustafa}@uthm.edu.my

Abstract. The problems of identifying a set of tagged objects simultaneously in
an RFID network have hampered the adoption of RFID universally. When mul-
tiple tags transmit their IDs in a single period of time to a single reader over a
shared wireless channel, the tag signals may collide. This collision will disturb
the reader’s identification process. Hence, we proposed a modified version of
Accelerated Frame Slotted ALOHA protocol called Hasten Dynamic Frame
Slotted ALOHA (HDFSA) to condense a number of retransmission for one tag,
thereby reducing the processing time. In HDFSA, the unread tag will be
provided with a new slot in the subsequent reading cycle. The simulation con-
ducted revealed that HDFSA outperformed the present Accelerated Frame Slot-
ted ALOHA up to 78 percent in terms of processing time with less complexity,
while preserving the accuracy of tag identification.

Keywords: RFID, Tag Anti-Collision, Unread Tag.

1 Introduction

In the early stage of RFID existence, various study have shown that RFID system
provides an efficient and inexpensive mechanism for automatically collecting the
identity information of an object [1]. This automatic identification (autoID) device
operates by transmitting a signal (radio wave) from the reader to the tags. Every
command that broadcast by a reader will be processed by all the tags within the range
of reader. The reader then will recognize the objects through the ID that given by tags.

A simultaneous data transmission by several tags to a single reader will lead to mu-
tual interference, and therefore to data loss which also known as tag collision [2]
occurred. Tag collision makes RFID loss their usefulness as a quick, flexible, and
reliable method to electronically detect [3] a variety of objects in one time. This is
especially critical for passive tag due to its limitation to detect collisions or to figure
out neighboring tags. Therefore, the need for anti-collision protocol is necessary to
enable the recognition of multiple tags in a single time.

In general, there are two types of familiar tag anti-collision for passive tags,
namely ALOHA based and tree based protocols. Tree-based protocols such as the
binary tree protocol [4], [5] and the query tree protocol [6], [7], [8] operate by travers-
ing the node sequentially. Every tag that transmits their ID in the same time will form

 Hasten Dynamic Frame Slotted ALOHA Algorithm 163

a set. A splitting mechanism is applied to the colliding set where it is then will be
partitioned into two subsets recursively in turn to be recognized. Thus, the iteration
process will relatively cause an identification delay after the splitting procedure from
one set until all the tags is being identified. Furthermore, in the worst case of some
tree based protocol, the size of tree that the protocol has to traverse might be as equal
as the number of bit of serial number inside the tags.

On the other hand, ALOHA based algorithm such as ALOHA [9], slotted ALOHA
[10], frame slotted ALOHA [11], [12] and dynamic frame slotted ALOHA [13], [14],
[15], [16], [17] is a simple procedure with low complexity. ALOHA based protocol
was introduced in order to cut down the number of probability of collision by provid-
ing the time slot. The time slot given will allow the tags to transmit their ID in their
preferable time which is distinct from each other. Thus, the occurrence of collision
will reduce and this offer low complexity and computation [18].

One of dynamic frame slotted ALOHA family, Accelerated Frame Slotted
ALOHA (AFSA) algorithm which is proposed in [16], had came out with a good idea
of solution to counteract the probability of undetected collision in [14]. AFSA, which
based on Enhanced Dynamic Frame Slotted ALOHA (EDFSA) [14], revealed that by
reducing the length of bit sequence used in the reservation phase, the average tag
reading time had outperformed [14] and [17] more than 40%. However, ‘tag starva-
tion problem’ as happen to other ALOHA based protocol [19], might caused the un-
read tags in the first reading cycle not being identified for a long time in the next
cycle of reading process.

Hence, we proposed a modified version of AFSA, called Hasten Dynamic Frame
Slotted ALOHA (HDFSA) which restrains the unread tag in the first reading cycle
from being collided in the next reading cycle. We focus our attention on scheduling of
the unread tags in the subsequent reading cycle. By reducing collisions in the subse-
quent reading cycle, identification process of tags will be faster and tags can be
recognized with only a few transmissions of ID. The essential element of HDFSA is a
new timeslot that provide specifically for the unread tags in the subsequent reading
cycle. HDFSA make use of the new timeslot allocation after the acknowledgement
phase. If tags are going not to be acknowledged by the reader, then the unread tags
will quickly occupy the exclusive timeslot prepared to allow them send their IDs. The
simulations result showed that our proposed algorithm reduced the total delay time for
identifying all the tags while preserving the accuracy of tag identification.

The remainder of this paper is organized as follows. Section 2 describes the exist-
ing ALOHA based tag anti-collisions protocols and Section 3 introduces the proposed
Hasten Dynamic Frame Slotted ALOHA protocol. Section 4 then will present the
simulation results and analysis, and finally Section 5 draws conclusions.

2 Aloha Based Tag Anti-collision Protocols

The basic of ALOHA based protocol in RFID system relies on the concept of trans-
mitting the ID randomly whenever reader broadcast the query. If collision occurs, tags
will need to wait for random time to retransmit the requested ID.

164 S.M. Wasikon and M.M. Deris

2.1 Slotted ALOHA (SA) Algorithm

SA is a tag identification method that is introduced to curb the problems of receiving
data efficiently in ALOHA protocol. Instead of transmitting data randomly to the
reader, the Slotted ALOHA algorithm brings in a number of slots for each tag trans-
mits its serial number [6]. The reader will simply identify the tag when it receives the
serial number without collision. However, if the number of tags exceeds the number
of slot allocated, the tags are more likely to collide and it cannot guarantee the
reasonable response time to identify all the tags [20].

2.2 Frame Slotted ALOHA (FSA) Algorithm

In order to guarantee the response time in SA algorithm, Philips Semiconductor [20]
was proposed Basic Frame Slotted ALOHA (BFSA) to schedule the transmission of
data. The used of frame in BFSA is advisable to support multiple tags reading by
a single reader in a time. A frame was define by [14] as the time interval between
requests of reader which consists of a number of slots.

In every tag identification process of BFSA, the fixed frame size and the random
number will be broadcasted by a reader to be received by the tags [14]. The random
number generated is then used to assign the slot of tags that will be slotted in. If the
tag collision occurred, those collided tags have to reply to the next request of reader
and this cycle of reading process will be repeated until there is no collision anymore.
However, in certain circumstances such as when there are large number of tags in-
volved [14], [15], there is a possibility that no tag is being identified although the read
cycle is repetitious. This will reduce the efficiency of identification process. Based on
this drawback, a study has proposed a new approach of anti-collision algorithm called
Dynamic Frame Slotted ALOHA (DFSA).

2.3 Dynamic Frame Slotted ALOHA (DFSA) Algorithm

DFSA solves the problem in BFSA by dynamically regulating the frame size accord-
ing to the number of tags. In the tag identification process, DFSA which is introduced
by [13] will use information (ie. number of slot, and number of tags collided) from the
used slot to determine the frame size in the next reading cycle. This approach indi-
rectly makes the identification process of tags more efficient than existing BFSA.
However, the frame sizes indefinitely change according to the number of tag [14],
[15], [21], since its have an upper bound that limits the regulation. The performance
also could be unsatisfied if the number of tags is higher than the permissible frame
size [15] where it will reduce the number of collision [21]. As the technology ad-
vance, research on this algorithm is also being actively done to provide better tag
allocation.

Enhanced Dynamic Frame Slotted ALOHA (EDFSA) Algorithm. Since that, En-
hanced Dynamic Frame Slotted ALOHA (EDFSA) is introduced by [14] with a better
adjustment of frame size by grouping the collided tags. By default, if the estimation
number of tags is under the threshold, EDFSA does not have to group the unread tags.
Otherwise, EDFSA will restrict the number of responding tags by dividing the tags into
group nd only one group have to respond to the reader if the number of unread tags is
higher than the threshold [15]. EDFSA’s new method of grouping the tags offered better

 Hasten Dynamic Frame Slotted ALOHA Algorithm 165

performance in reducing the tag collision probability and was improved the system
efficiency. Furthermore, this fact has been supported by a few researchers [16], [21]
where the system efficiency of EDFSA hovers around 36.8% better than DFSA.

Variant Enhanced Dynamic Frame Slotted ALOHA (VEDFSA) Algorithm. Even
though EDFSA offered better performance than DFSA in reducing the tag collision
probability, its group solution for unread tags is fixed. This means the group will not
change during the whole reading process. Therefore, VEDFSA algorithm is proposed
to overcome this problem. VEDFSA restructured the grouping mechanism in EDFSA
using dynamic division of tags group. In VEDFSA, the tags in each group are going
to give out signal and then being identified by a reader in a different group to achieve
the optimal reading. In the next cycle of reading process, the collection of these col-
lided tags will be grouped into a new group and this will decreases the retransmission
of unread tags when the numbers of tags are very large [15]. Meanwhile in EDFSA,
the unread tags in one group will be recognized repeatedly until its being identified.

Accelerated Frame Slotted ALOHA (AFSA) Algorithm. VEDFSA focused on
improvement of retransmissions information but has not improved the inherent prob-
lem of tag collision probability in EDFSA. Therefore, V. Sarangan [16] was proposed
a new tag anti-collision algorithm called Accelerated Frame Slotted ALOHA (AFSA)
which comprised five phases to reduce the number of collision. The five phases are
advertisement, reservation, reservation summary, data transmission, and acknowl-
edgement phases respectively as shown in Figure 1 below. AFSA had changed the
length of bit sequence in [14] algorithm’s into the optimal value and this has resulted
a better average tag reading time compared to EDFSA.

Fig. 1. AFSA framework

Step 1 – Advertisement Phase. For the first read cycle, the number of frame size (N)
and number of groups (M) are broadcasted by reader. Upon receiving the values N
and M, all tags will generate two random numbers. The first random number plays a
role to determine either the tag can participate or not this first round. The tags are
only allowed to participate if the remainder of modulo operation on first random

166 S.M. Wasikon and M.M. Deris

number with M is zero. The second random number generated using uniform distri-
bution once the tags allowed participating in first round. This second random number
will determine the slot where the tags can transmit their data.

Step 2 – Reservation Phase. In the second phase, tags with the second random num-
ber generated in Step 1 will let reader knows which slot they have been chosen.
Unlikely, in other slotted ALOHA protocols (FSA, DFSA, and EDFSA), tags will sent
their data right away to the chosen slot. While AFSA approached proposed to send n
bit sequence in their chosen slot, where n is a protocol parameter. For a given value n,
there are 2n possible n bit sequences. Every tag will randomly pick one of these 2n
sequences and transmits the value to the slot in the reader that has been chosen.

If the slot in the reader is succeeds receives the n bit sequence transmitted by tag,
then it implies that the tag has successfully reserved this slot for transmitting its data.
Since each tag transmits n bit sequence to the slot, the total duration of this phase will
be N*n bit times.

Step 3 – Reservation Summary Phase. During this phase, reader will let the tags
know their status of reservation. The reservation status will be advertised through a
bitmap of length N. For example, assuming that N = 4, and the bitmap is 1001, this
1001 n bit sequences indicate the successful slot that have been reserved by tag is slot
number 1 and slot number 4. In other words, occurrence of bit 1 in location i indi-
cates that only one tag had chosen slot i. Meanwhile, during slots 2 and 3, the reader
did not receive any n bit sequence. This mean the occurrence of bit 0 in location i
indicates two possibilities: (i) collisions – where there might be more than one tag
chooses the slot. Thus, when the tags transmitted their random number on n bit se-
quences, collision occurred and consequently, the reader will not be able to decode
the receive signal; or (ii) idle – means that the slot is not choose by any of the tags.

Step 4 – Data Transmission Phase. After step 3, all tags will be aware with their
status of reservation. Only for those tags that are successful in their reservation are
allowed to transmit their data in the next phase namely data transmission phase.
Noted that if S is the total number of ‘1’s in the N bit summary bit string, this means
that only S data transmissions are possible. Therefore, there are only S data transmis-
sion into the chosen slot during data transmission phase, where NS ≤ .

Step 5 – Acknowledgement Phase. This is the final phase in a round of reading cycle
of tag identification. During this phase, reader wills acknowledges tag about the data
that have been transmitted by tags. The acknowledgment is sent in the form of a bit
‘1’ indicates that the transmission was received successfully and ‘0’ indicates that the
transmission was not successful.

All tags that received positive acknowledgement from the reader will become
muted or killed, and will not participate in the next reading process again. The dura-
tion of this phase is S bit times.

Through the simulations and analyses conducted, AFSA had minimized the num-
ber of tag collisions and had reduced total wastage of bandwidth owing to unoccupied
slots. Thus, AFSA gives better tag reading time over existing models.

 Hasten Dynamic Frame Slotted ALOHA Algorithm 167

Every phase in Figure 1, will perform a specific task within some duration time.
Let Toc is the total duration of a round reading cycle in AFSA for five different
phases. In the complete process of tag reading, Toc is computed as :

 TTTTTT pppppoc
54321 ++++= (1)

Where T p

1 is duration for advertisement phase, T p

2 is duration time for reservation phase,

T p

3 is duration time for reservation summary phase, T p

4 is duration time for data transmis-
sion phase, and T p

5 is duration time for acknowledgment phase respectively. This means
in the first cycle of reading process contains T

i

p phases which is equivalent to :

 ∑
=

=
RP

i

i
poc TT

1
 (2)

where RP is number of respective phases involved.
If there were T oc times of reading cycles that the unread tag have been through un-

til it is being identified, then the summation of T oc for n number of cycle AFSA is
computed as follow :

 ∑
=

=
n

j

j
ocAFSA TT

1
 (3)

However, the ‘tag starvation’ problem that discussed in the foregoing research [4] still
suffering AFSA algorithm. An improvement still can be made in order to restrain the
unread tag from being collide in the subsequent reading cycle. Therefore, we pro-
posed a modified version called Hasten Dynamic Frame Slotted ALOHA (HDFSA) to
handle the identification of unread tags in the subsequent reading cycle.

3 Hasten Dynamic Frame Slotted Aloha (HDFSA)

Hasten Dynamic Frame Slotted ALOHA (HDFSA) was inspired based on AFSA
algorithm. The basic idea of HDFSA protocol is to improve the processing time of
tag identification process without compromising the accuracy of data transmitted.
HDFSA implementation retained the enhancements incorporated into AFSA, but
modified the subsequent reading cycle operation to include HDFSA mechanism. The
processing time of HDFSA algorithm was measured based on the elapsed time
calculated during the identification process. While the time-complexity of HDFSA
algorithm only consider on the process of HDFSA in handling the unread tags.

3.1 HDFSA Protocol

Figure 2 below illustrates the proposed framework of HDFSA. HDFSA protocol has
prevented the unread tags from going into the same phases as in the first reading cycle
in AFSA. As a resulted, HDFSA has condensed the number of retransmission for
one tag, thereby reducing the time of tag identification process. It is rule of thumb
where the number of collision is reduced when reducing the retransmission of tag.
HDFSA improves the subsequent read cycles of unread tags by providing a new
mechanism once the tag cannot be read.

168 S.M. Wasikon and M.M. Deris

In Figure 2, if there is no acknowledgement from the reader to the tag in the fifth
phase, then this tag is consider as collided tag or unread tag. HDFSA operates by
assuming that each unread tags will be provided with a new slot for them to send their
information. Before tags are sending their information, booking number has been
given to each unread tag which refers as the slot where the tag will send its informa-
tion. One tag will be given one booking number which is according to the turn that the
tag cannot be read. For example, if Tag 5 is the first tag that can not be identify, then
Tag 5 will be given number ‘1’ as its booking number which refer to the slot number
1. It is means that every slot will only contain one tag in one time. Thus, during the
subsequent cycle of reading process, HDFSA algorithm allows the unread tags to send
their data directly to the certain slot which has already assigned according to the given
booking number. It is then reduced the number of retransmission of one tag in order
to identify again when it is being collided in the first reading cycle.

Fig. 2. HDFSA theoretical framework

In HDFSA, when tags are not being identified in the first reading cycle, the reader
will prepare a new slot based on the number of unread tags. Every unread tag then
will be given with a number called booking number. This booking number is referring
to the slot number where the unread tags have to send their information. One tag will
be assigned with one booking number. Thus, only one tag will be slotted into the slot
and being identified. This will reduce the retransmission of tag and consequently
reduce the time used in one identification process.

Let T sr is the total duration of subsequent read cycle, the duration for this cycle
should be as follow:

 TTTT pppsr
543 ++= (4)

Since the unread tag will only through the HDFSA mechanism phase, data transmis-
sion and acknowledgement phase in its next reading cycle, the duration of time in-
volves in identifying one tag is reduced as computed in equation 4.

 Hasten Dynamic Frame Slotted ALOHA Algorithm 169

Consider the total duration of first reading cycle like equation 1. Thus, the total du-
ration T H of one process of HDFSA algorithm are computed as (5) and (6) equation.

 TTT srocH += (5)

 ∑∑
==

+=
RP

i

i
p

RP

i

i
p TTT H

31
 (6)

Thus, for equation (6) and (3) we can say that the total duration of HDFSA is less
than total duration of AFSA i.e., TH < TAFSA

Algorithm 1. HDFSA tag anti-collision algorithm operation
1 BEGIN
2 Step0. Initialization
3 Step 1. Advertisement Phase
4 for all tag, tag < TOTALTAGS
5 Reader r1 broadcast N and M

 (where N=frame size, M=group number)
6 Tag generate 2 random number rnd
7 if first rnd mod N = 0
8 TagObject[i] participate in the cycle
9 if TagObject[i] participate

10 TagObject[i].2nd rnd
 (where second rnd refer to number of slot choose)

11 calculate duration time for advertisement phase
12 Step2.Reservation Phase
13 for all tag, tag < TOTALTAGS
14 TagObject[i] broadcast the slot number to r1
15 TagObject[i] sent n bit sequences to the chosen slot
16 if slot[i] = n bit sequence
17 slot[i] successfully reserved
18 calculate duration time for reservation phase
19 Step 3. Reservation Summary Phase
20 r1 let tag know reservation status
21 calculate duration time for reservation summary phase
22 Step 4. Data Transmission Phase
23 for all tag, tag < TOTALTAGS
24 TagObject[i] transmit data
25 calculate duration time for data transmission phase
26 Step5. Acknowledgment Phase
27 for all tag, tag < TOTALTAGS
28 TagObject[i] acknowledge r1
29 calculate duration time for acknowledgement phase
30 if Ack.TagObject[i] = 1
31 TagObject[i] = sleeping
32 else
33 prepare new_slot
34 Nsleep
35 fsize = Nsleep
36 TagObject[i].booking_number

 (where booking number equivalent to slot number)
37 TagObject[i] transmit data
38 TagObject[i] acknowledge reader
39 END

Fig. 3. HDFSA algorithm

170 S.M. Wasikon and M.M. Deris

3.2 HDFSA Algorithm

From Figure 2, the most important part of HDFSA algorithm is the way this algorithm
handle the unread tag once it has been failed to be identify after through the first
round of reading cycle. A clear step can be seen in step 33 of HDFSA algorithm that
illustrated by Figure 3.

After the last stage of acknowledgement phase in the first reading cycle, a new slot
will be prepared by HDFSA to allocate the unread tag. For every tag that has been
read, reader will send a positive acknowledgement to the tag and become muted (line
31). Meanwhile, for the tags that are failed to be read, reader will send a negative
acknowledgement. Therefore, in HDFSA, a new slot is created for this specific unread
tag. The algorithm of HDFSA begins by preparing a new slot in Step 32 once the tag
is not being acknowledged by the reader. In Step 33, a new slot is prepared to allocate
the unread tag. This unread tag will be given a booking number that represent the
number of a slot that they will transmit their data such present in Step 36. The book-
ing number is generated according to the turn that tag being not identified. For exam-
ple, if tag C is the first tag that cannot be identified then the reader will generate
booking number ‘1’ for tag C which means a new slot for tag C is slot number 1. By
using this booking number, tag C will then be sent their data directly to the allocating
slot as in Step 37. In Step 38 this tag will then be acknowledged by reader that it was
being identified.

3.3 Computational Complexity

Based on HDFSA algorithm shows in Figure 3, time complexity is used to evaluate
the complexity of algorithm proposed.

Time complexity can be expressed as the number of operations that algorithm have
to execute when input has a particular size. We evaluate the complexity of algorithm
exclusively on the segment where the tag is started being unread which begins from
Step 30 as illustrates in Figure 3 and Figure 4.

In the HDFSA algorithm (see Figure 3), to handle the unread tag, HDFSA has to
perform one loop such in Step 30. It is then followed by twenty two operations inside
the loop. Thus, 22n+2 operation is used in HDFSA algorithm and the time complexity
is O(n).

In contrast with AFSA algorithm, there are 7 for loops to execute as illustrates in
Figure 4 below. 5 loops refer to the five phases in AFSA algorithm and the rest of
two loops refer to initialization process. AFSA algorithm handles the unread tag in-
side the while loop. Inside the while loop there are 14+14n operations involved. For
first time through the while loop, it takes 1 + (14 + 14n), which 14n + 15. Second
time through the while loop, it takes 14(N – 1) +15 operations, 14(N – 2) + 15 until
14(1) + 15 the end of operations. The operations performed to handle the unread tag
in AFSA can be simplified as below.

(14n+15)+(14(n–1)+15)+……+(14(2)+15)+(14(1)+15) =
14[n+(n –2)+…..+2+1]+15n=14n(n +1)/2+15n

= 7n2+7n+30n
= 7n2 + 37n

 Hasten Dynamic Frame Slotted ALOHA Algorithm 171

Thus, 7n2 + 37n operation are used to handle the unread tags in AFSA and the time
complexity is O(n2) where it is larger than HDFSA algorithm.

Algorithm 2. AFSA tag anti-collision algorithm operation

1 BEGIN
2 Step 0. Initialization
3 Step 1. Advertisement Phase
4 for all tag, tag < TOTALTAGS
5 Reader r1 broadcast N and M

 (where N=frame size, M=group number)
6 Tag generate 2 random number rnd
7 if first rnd mod N = 0
8 TagObject[i] participate in the cycle
9 if TagObject[i] participate

10 TagObject[i].2nd rnd
 (where second rnd refer to number of slot choosed)

11 culculate duration time for advrtisement phase
12 Step 2. Reservation Phase
13 for all tag, tag < TOTALTAGS
14 TagObject[i] broadcast the slot number to r1
15 TagObject[i] sent n bit sequences to the chosen slot
16 if slot[i] = n bit sequence
17 slot[i] successfully reserved
18 culculate duration time for reservation phase
19 Step 3. Reservation Summary Phase
20 r1 let tag know reservation status
21 culculate duration time for reservation summary phase
22 Step 4. Data Transmission Phase
23 for all tag, tag < TOTALTAGS
24 TagObject[i] transmit data
25 culculate duration time for data transmission phase
26 Step 5. Acknowledgment Phase
27 for all tag, tag < TOTALTAGS
28 TagObject[i] acknowledge r1
29 culculate duration time for acknowledgement phase
30 if Ack.TagObject[i] = 1
31 TagObject[i] = sleeping
32 while (!done)
33 Estimate tag count
34 Set frame size
35 Set group
36 Repeat Step 1
37 Repeat Step 2
38 Repeat Step 3
39 Repeat Step 4
40 Repeat Step 5
41 END

Fig. 4. AFSA algorithm

4 Results and Analysis

In this section, we compare the performance of HDFSA with AFSA based on the
elapsed time taken by both algorithms.

172 S.M. Wasikon and M.M. Deris

Table 1 below presents the comparison of the elapsed time in millisecond (msec)
between HDFSA and AFSA algorithm. The experiment conducted considered five
different input value of number of tags to be identified. From Table 1, Figure 5 illus-
trates the number of comparison into graph. It is noted that the elapsed time of AFSA
algorithm gradually increased when the number of tags is significantly high. This is
due to the number of phases that the unread tags have to recursively through once it is
failed to be identified in the first reading cycle.

However, HDFSA require less processing time as shows in Table 1 where the
elapsed time to complete the identification process is less as compared to AFSA algo-
rithm. Figure 5 illustrated that the elapsed time of AFSA algorithm is gradually in-
creased with the number of tags. Mean while HDFSA’s elapsed time is remained stable
with the number of tags. For example, from Table 1 and Figure 4, when there are 300
of tags presented in the interrogation area of reader, AFSA algorithm acquire 80,000
millisecond to complete one process to identify all tags, meanwhile in AFSA only
10,000 millisecond required to perform one complete process to identify 300 of tags.

This showed that HDFSA algorithm is more efficient compared to AFSA algorithm
up to more than two orders of magnitude. Therefore, HDFSA algorithm outperform
AFSA algorithm approximately 85 percent.

Table 1. Comparison of the elapsed time between HDFSA and AFSA

Number of Tag HDFSA(msec) AFSA(msec)
100 10,000 40,000
200 10,000 56,000
300 10,000 80,000
400 14,000 118,000
500 18,000 138,000
600 18,000 164,000
700 20,000 192,000

0

50000

100000

150000

200000

250000

100 200 300 400 500 600 700

Number of Tags

E
la

p
se

d
 T

im
e

(m
se

c)

HDFSA

AFSA

Fig. 5. Simulation results for elapsed time of HDFSA and AFSA

 Hasten Dynamic Frame Slotted ALOHA Algorithm 173

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700

Number of Tag

N
u

m
b

er
 o

f
U

n
re

ad
 T

ag
s

HDFSA

AFSA

Fig. 6. The number of unread tags in one process

Figure 6 shows the average number of unread tags that obtained in one identifica-
tion process for HDFSA and AFSA algorithm by increasing the number of tags. It is
obviously that HDFSA algorithm performs as well as AFSA algorithm with almost
the same average number of unread tags in each process. Thus, the accuracy of
HDFSA algorithm is remain as AFSA algorithm.

5 Conclusion

This research was focused on tag collision problem that occurred among the passive
tags during identification process in RFID system. A new approached inspired from
AFSA algorithm, called HDFSA was proposed. HDFSA is likely reduced the proc-
essing time with a new technique introduced in handling the unread tags. HDFSA
provide a new slot for the unread tags to allow tags directly transmit their data instead
of through the five phases as in AFSA algorithm. The simulation of RFID static read-
ing system developed with HDFSA tag anti-collision revealed that HDFSA outper-
formed the present AFSA algorithm up to 78% in terms of processing time with less
time complexity, while preserving the accuracy of tag identification.

References

1. Finkenzeller, K.: RFID Handbook. John Wiley & Sons, Inc., New York (1999)
2. Shepard, S.: RFID: Radio Frequency Identification. McGraw-Hill, New York (2005)
3. Krebs, D., Liard, M.J.: White Paper: Global Markets and Applications for Radio Fre-

quency Identification (2001)
4. Myung, J., Lee, W.: Adaptive Binary Splitting for Efficient RFID Tag Anti-Collision.

IEEE Communications Letters 10, 144–146 (2006)
5. Ho-Seung, Kim, J.-H.: Anti-Collision Algorithm Using Bin Slot in RFID System. In: Pro-

ceeding of the TENCON (2005)

174 S.M. Wasikon and M.M. Deris

6. Seol, J.-M., Kim, S.-W.: Efficient Collision-resilient RFID Tag Identification using Bal-
ances Block Design Code. In: Sixth IEEE International Conference on Computer and In-
formation Technology (CIT), p. 220. IEEE Xplore, New York (2006)

7. Law, C., Lee, K., Siu, K.-Y.: Efficient Memoryless Protocol for Tag Identification. In: The
4th International Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications Boston. Massachusetts, United States (2000)

8. Hush, D.R., Wood, C.: Analysis of Tree Algorithms for RFID Arbitration. In: The IEEE
International Symposium on Information Theory. Cambridge, MA, USA (1998)

9. Abramson, N.: The ALOHA System: Another Alternative for Computer Communications.
In: The AFIPS Joint Computer Conferences, Houston, Texas (1970)

10. Metcalfe, B.: Steady-state Analysis of A Slotted and Controlled Aloha System with Block-
ing. ACM SIGCOMM Computer Communication Review 5, 24–31 (1975)

11. Vogt, H.: Efficient Object Identification with Passive RFID Tags. In: Mattern, F.,
Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, p. 98. Springer, Heidelberg
(2002)

12. Schoute, F.C.: Dynamic Frame Length ALOHA. IEEE Transactions on Communica-
tions 31(4), 565–568 (1983)

13. Cha, J.-R., Kim., J.-H.: Novel Anti-collision Algorithms for Fast Identification in RFID
System. In: The 11th International Conference on Parallel and Distributed Systems,
ICPADS 2005 (2005)

14. Lee, S.-R., Joo, S.-D., Lee, C.-W.: An Enhanced Dynamic Frame Slotted ALOHA Algo-
rithm for RFID Tag Identification. In: The Second Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services, MobiQuitous 2005 (2005)

15. Peng, Q., Zhang, M., Wu, W.: Variant Enhanced Dynamic Frame Slotted ALOHA Algo-
rithm for Fast Object Identification in RFID System. In: Proceeding of the IEEE Int.
Workshop on Anti-Counterfeiting, Security, Identification (2007)

16. Sarangan, V., Devarapalli, M.R., Radhakrishnan, S.: A Framework for Fast Tag Reading
in Static and Mobile Environments. Computer Networks: The International Journal of
Computer and Telecommunications Networking 52, 1058–1073 (2008)

17. Khandelwal, G., Lee, K., Yener, A., Serbetli, S.: ASAP: A MAC Protocol for Dense and
Time-Constrained RFID Systems. EURASIP Journal on Wireless Communications and
Networking 9, 4028–4033 (2007)

18. Klair, D.K., Chin, K.-W., Raad, R.: The Suitability of Framed Slotted Aloha Based RFID
Anti-Collision Protocols for Use in RFID-Enhanced WSN’s. In: The 16th International
Conference on Computer Communications and Networks (ICCCN), Honolulu (2007)

19. Myung, J., Lee, W.: Adaptive Splitting Protocols for RFID Tag Collision Arbitration. In:
Proceeding of the MobiHoc 2006, Florence, Italy (2006)

20. Semiconductor, P.: I-Code1 System Design Guide: Technical Report (2002)
21. Bonucelli, M.A., Lonetti, F., Martelli, F.: Tree Slotted ALOHA: A New Protocol for Tag

Identification in RFID Networks. In: The International Symposium on World of Wireless,
Mobile, and Multimedia Networks, WoWMom 2006 (2006)

	Hasten Dynamic Frame Slotted ALOHA Algorithm for Fast Identification in RFID System
	Introduction
	Aloha Based Tag Anti-collision Protocols
	Slotted ALOHA (SA) Algorithm
	Frame Slotted ALOHA (FSA) Algorithm
	Dynamic Frame Slotted ALOHA (DFSA) Algorithm

	Hasten Dynamic Frame Slotted Aloha (HDFSA)
	HDFSA Protocol
	HDFSA Algorithm
	Computational Complexity

	Results and Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

