

P. Mueller, J.-N. Cao, and C.-L. Wang (Eds.): Infoscale 2009, LNICST 18, pp. 135–151, 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Tuning Performance of P2P Mesh Streaming System
Using a Network Evolution Approach*

Rui Wang, Depei Qian, Danfeng Zhu, Qinglin Zhu, and Zhongzhi Luan

Beihang University,
Xueyuan Road. 37, 100191 Beijing, China

{rui.wang,depei.qian,danfeng.zhu,qinglin.zhu,
zhongzhi.luan}@jsi.buaa.edu.cn

Abstract. Resilience and startup delay are the most important performance
metrics to evaluate the P2P streaming systems. To simultaneously improve the
two metrics, we propose several mechanisms at different system evolution
stages. At the first stage, media server encodes the stream into multiple sub-
streams of the same length. Redundancy is introduced by using Reed-Solomon
(RS) coding before distributing the sub-streams to different successors. Each
peer in the network establishes a cooperative relationship with others to obtain
all required sub-streams. At the stage of new peer arrival, a parent selection al-
gorithm with relatively lower complexity is proposed which takes full advan-
tage of redundant coding. After the peer builds up streaming transmission, it
replaces some parents with a latency-based decision mechanism. In case of
node failure, a swap-in-turn repairing algorithm between different sub-stream
sources is proposed to ensure the high continuity of steaming transmission.
Simulation results show that 1) the redundant coding and the parent replace al-
gorithm in case of node failure can effectively reduce interruption of data
streams; 2) the codes with higher redundant degree can adapt to more dynamic
scenario. Meanwhile, the codes with redundancy does not significantly de-
crease the effective transmission ratio when network is dynamic; 3) transmis-
sion achieves higher performance when the number of substreams is between 8
and 16; and 4) the parent switching mechanism can significantly decrease the
startup latency for a big proportion of peers.

Keywords: P2P, Streaming, Mesh, Redundant Coding, Churn.

1 Introduction

Streaming service on the Internet has drawn significant attentions recently for its more
interesting content than texts and pictures in web pages. As the participating peers
contribute their upload bandwidth capacities to serve the others, P2P streaming sys-
tem can sustain much more users than that with traditional Client/Server mode under

* This work was supported in part by a grant from NSFC under the contract 60673180 and

90612004, and by grants from National High- Tech Program of China (863 program) under
the contracts 2006AA01A106 and 2006AA01A118.

136 R. Wang et al.

the constraint of server’s outgoing bandwidth. Among the several types of P2P
streaming systems, pull-based random mesh gains dramatic success due to its simplic-
ity and robustness[1]. Many successful commercial systems such as PPLive [2]and
UUSee [3] use this mechanism.

In some systems, streaming server splits data into multiple blocks, and delivers
them to the participating peers. Each peer queries missing blocks from its neighbors.
This block routing introduces great overhead and uncertainty to the transmission of
peers.

Instead of using data block as the routing unit, some systems like CoolStream-
ing[4] uses sub-stream as the routing unit. The streaming server splits data into multi-
ple sub-streams of equal length, and distributes them to different peers. Peers build
neighborhood relationship with each other to obtain the complete set of sub-streams.
Once the connection is built, the packets belonging to the same sub-stream will be
delivered continuously. In this pattern, each peer needs to receive data from several
relay peers. When a peer is disabled, the playback in its successor will be interrupted
until another parent peer is determined. In a highly dynamic network, peers suffer
greatly from the unpredictable user join/quit action.

Since the peer has to receive all the sub-streams before it can playback the stream-
ing, the startup delay is determined by the slowest one. As both the P2P network
organization and the neighbor selection are random, the arrival time of different sub-
streams may vary significantly, and the slower ones will slow down the playback and
increase the startup time.

According to the conclusion of CoolStreaming[4], the system dynamics is the most
critical factor that affects the overall performance, and the critical performance prob-
lem in a P2P streaming system is the excessive startup time. Through the measure-
ment and analysis to some commercial P2P streaming system, [5] found that in these
systems a lot of important decisions, such as how to pick a parent, seem to follow a
randomized greedy algorithm.

This paper uses a network evolution approach to optimize the system performance.
We propose several mechanisms at the different stages of the system evolution in
order to cope with the node dynamics and to decrease the startup delay.

The rest of this paper is organized as follows: Section 2 presents a concise review
of solutions for the nodes dynamics and startup delay in P2P streaming networks.
Section 3 models the system. Section 4 gives the algorithms for parent selection and
adjustment, and node failure handling. Our simulation methodology and results are
described in Section 5. Finally, section 6 gives the conclusion of the paper.

2 Related Works

To solve the problem of transmission interruption caused by nodes departure, PRIME
[6] used the ratio of bandwidth and peer degree as a metric named bandwidth-degree
condition, to evaluate the system performance. Once the ratio value changes, system
can immediately detect the bottleneck and relocate the bandwidth.

Feng [7] and Zimu [8] found that some stable nodes in P2P streaming networks af-
fect the performance greatly though their amount is few. So they tried to identify the
stable nodes and enable them to play more important roles in the system.

 Tuning Performance of P2P Mesh Streaming System 137

Redundant Coding such as Reed-Solomon [9] is another solution to avoid trans-
mission interruption. Encoded to multiple sub-streams redundantly, the data could
be recovered at peers which received any subset containing a certain number of
sub-streams of the streaming.

Damiano[10] analyzed the mesh streaming system with a stochastic graph theory
and drew the relations between delay and the number of sub-streams. It demonstrated
that the transmission with multiple sub-streams is necessary to the system perform-
ance. However, it does not improve the system stability with redundancy of coding,
and does not concern the influence of nodes failure on the successors.

Kumar[11] used buffer to alleviate the interruption when nodes are disabled.
Through the stochastic fluid analysis to the mesh streaming system, it showed that
buffer can dramatically improve the stability of the system, since peers with more
buffered data will have longer time to find a substitute data source when a parent is
disabled. But large buffer will significantly increase the startup delay.

Zhou [12] studied the greedy strategy and the rare first strategy used in data search-
ing using stochastic model, and proposed a mixed strategy that can be used to achieve
a good balance between the continuity and startup latency. It has similar intent with
this paper, while it is in different approach, and does not make use of the redundancy
of the coding.

S. Liu[13] derived the performance bounds for minimum server load, maximum
streaming rate, and minimum tree depth under different peer selection constraints in
P2P streaming networks. Though this work provides excellent insights, it ignores the
dynamics of the network.

3 System Model and Assumption

In this system, following assumptions are taken:

Assumption 1: streaming server splits the data into 'S sub-streams of the same length,

and then encodes it with (, ')RS S S coding to S sub-streams, 'S S> . Peers that

have received any 'S sub-stream can recover the data, as shown in Fig. 1.

….B segmentA segment ….B segmentA segment

Play Direction

….c3c5c1b3b4b5b1a3a5a2a1 ….c3c5c1b3b4b5b1a3a5a2a1

Decoding Decoding

S1 S2 S3 S4 S5

Sub-streams

Blocks

Segments

Fig. 1. Buffer filling in redundant sub-stream pattern (S’=4,S=5)

138 R. Wang et al.

A set of existing peers will be presented to the new peer joining in the system ran-
domly. The new peer selects a subset of this peer set as its neighbors, and requires the
sub-streams from them. Once a peer gets a sub-stream, it can provide the sub-stream
for other peers. Constrained by the limitation of outgoing bandwidth, it only provides
sub-streams with lower latency.

Assumption 2: each node downloads a specific sub-stream from a single node, and
each node downloads only a single stripe from a given parent, even if the parent could
provide multiple sub-streams.

Assumption 3: each peer has B neighbors. Peer selects S neighbors as the data pro-
viders named as active parents, and selects D neighbors as substitutes which will be
used in case of active parent failure.

We define the relationship of peers in the system:

Definition 1. Two peers are neighbors if they are connected with each other.

Definition 2. Peer i is an active parent of peer j about sub-stream k if peer i pro-

vides sub-stream k for peer j , and j is an offspring of peer i .

Definition 3. If peer i could provide sub-stream k for peer j but not really provide it

at the moment, peer i is a substitute parent of peer j about sub-stream k , and j is an

offspring of peer i .

In this paper, we assume that a substitute parent does not reserve bandwidth for its
offspring.

We abstract the network as a graph, the vertices of the graph represent the peers,
and edges connecting vertices represent the connections between peers.

We use a n n× connectivity matrix C to describe the relationship of peers in the

network. The value of element ijc in C represents the relationship of peer i and j .

The definition of ijc is as follows:

 and are not neighbors

 and are neighbors

is active parent of about

is substitute parent of about

0

0

k

k

ij

i j

i j

i j

i j k

i j k

c η
α
β

=⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

Note that the parent relationship is directed. Due to the limitation of outgoing band-
width, each peer has limited offspring peers. This connectivity matrix maintains the
global information, while for an arbitrary peer i , it only needs to maintain the infor-

mation about the i th line, 0 1[, , ,]i i i inL c c c= L , which contains all the offspring of

 Tuning Performance of P2P Mesh Streaming System 139

i , and the i th column, 0 1(, ,)T
i i i niV c c c= L , which contains all the parents of i .

In each of the vector the peer maintains, it omits the element whose value is 0, i.e., the
peer does not maintain the disconnected peers. So this matrix is a distributed descrip-
tion structure that allows the peers to maintain its local information.

4 System Evolution

From the evolution’s point of view, the state transfer of the network is driven by the
change of relationship among nodes. In this section, we describe the processing of
peer arrival and departure.

4.1 Peer Arrival

At any time t , the instantaneous state of network could be represented by the connec-

tivity matrix C . When a new peer b arrives, it contacts one existing node, and initial-
izes its neighbor list. The matrix C will be added with a new row and a new column

and turns to a (1) (1)n n+ × + matrix with the value of each element of the new row

and new column filled withη . The peer b asks its neighbors for available sub-

streams, and gets a vector ,i bV from each neighbor containing the sub-streams that the

neighbor can provide. Each vector has S elements, each of them represents a sub-

stream. The value of the k th element is ka if the k th sub-stream is available in this

neighbor, else it is 0. Within the set of all the vectors 0, 1, ,{ , , }b b x bV V VL , peer b se-

lects the source for each sub-stream. So for arbitrary sub-stream k , b selects a

neighbor as its active parent if in the vector the value of k th element is kα . Besides

the active parents, the peer b also needs to select a roughly equal number of substitute
parents for each sub-stream. That is, in the connectivity matrix, we need to fill in the

column vector 0 1(, ,)T
b b b nbV c c c= L of peer b , ensure that the bV at least contains

all elements in the set 1 2{ , , , }nα α αL , and contains the elements in

1 2{ , , , }nβ β βL as uniformly as possible.

The parent selection problem above could be transferred to a bipartite graph match-

ing problem and solved by Hungarian Algorithm [14] with complexity of 3()O n .

With the redundancy of the coding, we do not need a complete matching. The de-
scription of parent selection algorithm is as follows:

1) Let N be the neighbor set, here we set N n= . Let substrS denote the sub-

stream set. The set of sub-stream set which could be provided by each neighbor

is denoted by 0{ , }nS SΓ = L ;

140 R. Wang et al.

2) Sort the neighbors decreasingly according to the numbers of sub-streams they

can provide, and then get the neighbor vector sN ;

3) Search the provider for each sub-stream in sN . When all the sub-streams get

their provider, stop searching and record the position. Then we get a sub vector

'N of vector sN ;

4) Sort the sub-stream identifies increasingly to form a vector of Str ;
5) For each sub-stream in Str , we select the node as its parent that can provide

fewer sub-streams than other node . Once the node is selected as a parent, it is
deleted from the neighbor set;

6) Search more substitute parents for each sub-stream in Str that does not have
average number of providers until the numbers of its providers reaches the aver-
age value, or all the neighbors are checked.

The complexity of this algorithm is 2()O n which is better than the Hungarian Algo-

rithm. The pseudo code is shown as follows:

Algorithm 1. Parent Selection Algorithm

Input: neighbor set N; sub-stream set S, sub-streams of
each neighbor {S1,S2,…Sn}.
Output: active parents set Vact, substitute set Vsub.
N=SortBySubStreams(N);
foreach n in N do // count the providers of sub-stream
if (Marked(S) and |Ns|>=|S|) break;
foreach s in Sn { Mark(s, S); add n to SRCs} // SRCs
represents the set of neighbor that can provide sub-
stream s.
add n to Ns;

end foreach
Str= SortSubstreamBySourceNumber(S);
foreach s in Str do //select parent
foreach n in SRCs do

 vi = the last n;
 add vi to Vact;
 delete vi from Ns;

end foreach
end foreach
foreach s in S do // add sub parents
if (|SRCs|<Mean{|SRC0,SRC1,…,SRCs|})

 foreach n in N do
 if ((s in Sn) and (n notin Ns)) add n to Vsub;
 end foreach

endif
end foreach

 Tuning Performance of P2P Mesh Streaming System 141

Following is a simple example for the peer arrival processing. We assume that the

number of sub-streams 3S = , ' 2S = , so the possible value of kα is in 1 2 3{ , , }α α α .

There are 5 peers in the network besides the source server. The network connectivity
is shown in Fig. 2(a).

s

1 32

4

3
21

(a)

5

s

1 32

4

3
21

(b)

5 6

s

1 32

3
21

(c)

5 6

s

1 32

4

3
21

(a)

5

s

1 32

4

3
21

(b)

5 6

s

1 32

3
21

(c)

5 6

Fig. 2. Peer arrival and departure (a) Original network (b) peer 6 arrival (c) peer 4 quit

We assume that the connectivity matrix of Fig. 2 (a) is:

1 1 1 1

2 2 2 2

3 3 3 3

2

0

0

0

0

0

C

α α α α
α α α β
α α α α
η η η α
η η η η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Note that for a given network connections, the connectivity matrix is not unique.
Assuming that a new peer 6 arrives and builds the connection relationship as Fig. 2
(b), the matrix C turns to be

1 1 1 1

2 2 2 2

3 2 3 3

2

0

0 0

0

0

0

0 0

C

α α α α η
α α α β
α α α α η
η η η α η
η η η η η
η η η η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Among the matrix, the sixth row represents all the offspring of peer 6, and the sixth
column represents all the parents of peer 6. Then peer 6 asks its neighbors what re-
source they can provide. Let’s assume that peer 6 receives the following resource
vectors:

142 R. Wang et al.

1,6 1 2

3,6 2 3

4,6 3

5,6 1

[, ,0]

[0, ,]

[0,0,]

[,0,0]

V

V

V

V

α α
α α

α
α

=
=
=
=

After the selection algorithm, the matrix turns to

1 1 1 1 1

2 2 2 2

3 2 3 3 2

2 3

1

0

0 0

0

0

0

0 0

C

α α α α α
α α α β
α α α α α
η η η α α
η η η η β
η η η η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

We can see that there is no kα or kβ in the last row of C . When a new peer joins in

the system, the row corresponding to the contribution of the new peer will be formed
this way, which means, the new peer has not contributed its bandwidth to the existing
nodes in the network yet. So we apply a feedback process in the network. New peers
send the sub-stream identities that it can provide to some of the originally existing
peers, so that the new peers could be the substitute parents of the existing ones. Peers
with not enough substitute parents will make use of the feedback periodically. The
procedure is similar to the parent selection illustrated above. The following matrix is a
possible result of the feedback action.

1 1 1 1 1

2 2 2 2

3 2 3 3 2

2 2 2 3

3 1 1

2 3

0

0 0

0

0

0

0 0

C

α α α α α
α α α β
α α α α α
β η β α α
β β η η β
η η β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4.2 Parent Adjustment

A peer needs to receive at least 'S sub-streams of one streaming segment before the
segment can be decoded and played. So the playback delay of each segment depends
on the 'S th received sub-stream. Due to the random neighbor assignment, peers
select the parents without considering the delays of the corresponding sub-streams.
The delays of sub-streams in one segment will be out-of-order. In this way, the last
('S th) required sub-stream is very likely the transmission bottleneck. In order to

 Tuning Performance of P2P Mesh Streaming System 143

decrease the startup delay, we propose a parent adjustment mechanism to replace the
parent of the bottleneck sub-stream. Our approach is focused on checking closeness of
the arrival time of each sub-stream which belongs to the same segment.

Let ()jd i denote the delay of data block belonging to sub-stream j in seg-

ment i .We give the definition of the delay of sub-stream in a segment as follows:

Definition 4. Within each segment, the delay of the first arrived data block is 0; the
delays of following blocks are represented in the difference of arrival time; the delay
of a sub-stream equals to the delay of corresponding data blocks in each segment.

Then we get the delay vector of arbitrary segment i as follows:

{ }0 '() (), , ()
T

SL i d i d i= L

According to the definition 4, we compute the variance ()D d of delays of sub-

streams in each segment. With the value of ()D d , we can judge that whether or not

the sub-streams in each segment have similar delays. We introduce a variance thresh-
old δ which could be used as the criterion to determine whether or not a peer needs to
adjust its parents. The decision is made following the rules below:

1) When ()D d δ> , the peer needs to adjust some of the sub-streams. Let 's de-

note the identity of the 'S th arrival sub-stream, let d represent the mean delay

of the first 'S sub-streams of all, and let idΔ denote the difference between the

delay of each sub-stream and the mean delay d .
2) If the peer only has 'S active parents, calculate the mean value of this differ-

ence ()iE dΔ . If ' ()s id E dΔ > Δ , it implies that the sub-stream 's becomes

the bottleneck of this peer, so we replace the parent providing 's with an ran-
domly selected neighbor.

3) If the peer has more than 'S active parents, not only the parent for sub-stream
's needs to be replaced as mentioned in 2), but also the parents whose sub-

stream slower than 's need to be replaced.

4.3 Peer Failure

When a peer d quits, the connections related with it are canceled. So in the connec-

tivity matrix, the d th column and d th row is filled with 0. If peer d is the substitute
parent of another peer, that peer does not need to react immediately. The node needs
to add a new substitute parent in the next feedback process. If peer d is the active
parent of some node, that peer needs to find a new active parent from the substitute
parent nodes as soon as possible.

Normally, the system search only the backup peers for the missing sub-stream, the
backup peers probably fails to recover the transmission. If the peer does not have any
available backup parents or the backup parent does not provide the required sub-stream

144 R. Wang et al.

in time, the peer will encounter data missing, and the successors of this peer will also
suffer the same problem consequently.

When the backup parent can not provide the required resource directly, we propose
to search the available resource in the current active parents, and find an adaptable
match in all the available neighbors with a swap-in-turn pattern. The algorithm is
shown as follows:

Algorithm 2. Peer Failure Handling Algorithm

input: active parents collection Vi, the failed stripe
id :x; substitute parents collection: Sub.
output: final SubStream collection Vi.
foreach p in Sub do

subnode= find_Substream(ak, x, p);
if subnode not null

 add subnode to Vi; return;
endif

end foreach
foreach ni in Vi do

add ni to V;
end foreach
Vi=Algorithm1(V);

Using the example in Fig. 2, we assume the node 4 fails, and then the connection is

as Fig. 2 (c). According to the set of resource vector{ }1,6 3,6 4,6 5,6, ,V V V V , peer 6

adjusts the data source for the missing sub-stream. The changing of the sixth column
of matrix C is shown in Fig. 3.

1 2

2 3

3

1 1

0 0

0

0 0

α α

α α
α
β α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

→⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Fig. 3. Parents swap-in-turns

In the sixth column, peer 6 loses the source of sub-stream 3, and none of its substi-
tute parents could provide sub-stream 3 at this moment. But peer 3, original source of
sub-stream 2, could provide sub-stream 3 also. So we set peer 3 as the source of sub-
stream 3, peer 1 as the source of sub-stream 2, and change the state of peer 5 as the
active parent for sub-stream 1. This switch mechanism can avoid the situation that the
substitute parents can not provide some sub-streams. Then the matrix C becomes

 Tuning Performance of P2P Mesh Streaming System 145

1 1 1 2

2 2 2

3 2 3 3

3 1 1

3

0 0

0 0 0

0 0

0 0 0 0 0 0

0 0

0 0 0

C

α α α α
α α α
α α α α

β β η α
η η β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Beside peer 6, peer 5 also changes peer 2 to the active parent for sub-stream 2 due to
the quit of peer 4.

5 Simulation

In order to evaluate the parent selection and adjusting algorithm, and the peer failure
handling algorithm, we developed a simulation with Peersim[15] simulator.

5.1 Methodology and Metrics

We initialize the topology in which nodes degree follows power-law. At the begin-
ning, we insert 1000 overlay nodes to the network, and set the link latency using

2DS [16] of Rice University. Nodes join in and leave the system randomly. The
interval of both action subjects to a Poison process with mean of λ . So both the node

arrival and departure actions have an average rate of 1
λ . We can get different aver-

age rate by varying the value of λ .
The streaming bit rate is set to 400kbps according to the setup in CoolStreaming4,

which must be satisfied at all peers during their streaming playback. Each segment
has 50KB data, represents 1 second of playback, and is divided into 400 blocks. The
data in each segment is redundantly encoded. For example, (9,8)RS coding splits

the data into 8 sub-streams, and encodes them into 9 sub-streams, each with a bit rate
of 50kbps.

We define the parameters and performance metrics used in the simulation as fol-
lows: (1) Churn rate: the ratio of the number of node joining in or left to the average
number of nodes in the system. Bigger churn rate means nodes change more fre-
quently. For instance, in a system with churn rate of 2, the value of λ is 0.05, the
average rates of both nodes arrival and nodes leaving are 20 per second. So in 100
seconds, the number of nodes leave the system is about 2000, which is about twice of
average number of nodes in system. (2) Transmission interruption: we check every
offspring node of the peer when it leaves the system. For each offspring that fails to
find the substitution for the missing sub-stream in the current neighbors, we count a
transmission interruption. (3) Steady degree: the ratio of the number of peers with no
transmission interruption to the number of all its brothers when their active parent
failed. (4) Effective transmission ratio: the ratio of the total amount of received and
decoded data by all peers to the total amount of data transmitted in the network.

146 R. Wang et al.

5.2 System Resilience

First we evaluate the resilience of this system. To compare with non-redundant cod-
ing, we use (12,8)RS redundant coding. By varying the churn rate, we get the result

shown in Fig. 4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Churn Rate

S
t
e
a
d
y

D
e
g
r
e
e

Redundant coding+parent switching mechanism

Redundant coding+normal parent reselection

Non-Redundant coding+parent switching mechanism

Non-Redundant coding+parent switching mechanism

Fig. 4. The effect of redundant coding and parent swap-in-turns algorithm

We can see that both the redundant coding and parent switch algorithm is effective
in improving the system resilience. The combinational use of these two mechanisms
can ensure high quality for more than 80% users when churn rate is below 10.

In order to observe the sensitivity of the transmission quality to the number of sub-
streams (value of 'S), we varied the value of 'S from 4 to 16, set the neighbor num-
ber 30N = , and get the result of continuity, startup latency, average hops and
bandwidth usage shown in Fig. 5(a) (b) (c) (d), respectively. Here we use a non-
redundant coding, that is, S= 'S . We can see that when the number of sub-streams is
between 8-16, the performance is acceptable.

68%

70%

72%

74%

76%

78%

80%

82%

84%

4 8 12 16

number of sub-streams

c
o
n
t
i
n
u
i
t
y

Fig. 5. (a) Continuity on different number of sub-streams

 Tuning Performance of P2P Mesh Streaming System 147

0

1000

2000

3000

4000

5000

6000

4 8 12 16

number of sub-streams

s
t
a
r
t
u
p

l
a
t
e
n
c
y

Fig. 5. (b) Startup latency on different number of sub-streams

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6 8 12 16
number of sub-streams

a
v
e
r
a
g
e

h
o
p
s

Fig. 5. (c) Average hops on different number of sub-streams

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4 8 12 16

number of sub-streams

B
a
n
d
w
i
d
t
h

U
s
a
g
e

Fig. 5. (d) Bandwidth usages on different number of sub-streams

We then observe the sensitivity of transmission quality to coding redundancy by
varying the churn rate and redundancy degree. The result is shown in Fig. 6. As the
redundancy increase, the transmission quality becomes better.

Though redundancy improves the transmission quality, we have to answer the fol-
lowing question: Does redundancy cause inefficient transmission? We compared the
transmission efficiency of the redundant and non-redundant coding and the result is
shown in Fig. 7. When the churn rate is relatively lower, the coding schemes with
higher redundancy achieve lower transmission efficiency. While when the churn rate
becomes higher (beyond 8), the transmission efficiency of redundant coding is not
significantly lower than that of non-redundant coding.

148 R. Wang et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Churn Rate

S
t
e
a
d
y

D
e
g
r
e
e

RS(9,8)

RS(10,8)

RS(11,8)

RS(12,8)

Fig. 6. Comparison of different redundancy of coding on resilience

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Churn Rate

E
f
f
e
c
t
i
v
e

T
r
a
n
s
m
i
s
s
i
o
n

R
a
t
i
o

Non-redundant Coding

RS(9,8)

RS(10,8)

RS(11,8)

RS(12,8)

Fig. 7. Comparison of different redundancy of coding on effective transmission ratio

5.3 Startup Latency

In this section, we observe the efficiency of parent switching algorithm. We
set ' 8S = , and get the result shown in Fig. 8 by varying the delay variance threshold.

The best result by adjustment is achieved when the variance threshold is set to a
medium value, like 5000ms-9000ms. Most peers that need a adjustment can achieve
an improvement in delay performance and the whole network delay is reduced by
30%. When the threshold is beyond 9000ms, some peers that do need an adjustment
will be missed.

We set ' 16S = and repeat the experiment. The result is shown in Fig. 9. Besides
the conclusion drawn when ' 8S = , we can further conclude that when the number of
sub-streams becomes larger, the number of peers that need adjustment decreases, and
the appropriate range of variance threshold become narrower. So in this situation, we

 Tuning Performance of P2P Mesh Streaming System 149

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
00
0

2
00
0

3
00
0

4
00
0

5
00
0

6
00
0

7
00
0

8
00
0

9
00
0

10
0
00

11
0
00

12
0
00

13
0
00

14
0
00

15
0
00

Variance Threshold(ms)

Peers need be adjust Adjust succeed

Adjust failure Decrease of whole network delay

Fig. 8. Adjust effect (S’=8)

should be more cautious in determining the threshold so as to achieve the best result.
For example, when the threshold is 5000ms, only 24% of peers need to be adjusted,
and we can achieve almost 100% success rate. Note that the link latency parameter
used in simulation is the practically measured value from the Internet, so the setup of
variance threshold is meaningful in the practical systems.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
00
0

2
00
0

3
00
0

4
00
0

5
00
0

6
00
0

7
00
0

8
00
0

9
00
0

1
00
00

1
10
00

1
20
00

1
30
00

1
40
00

1
50
00

Variance Threshold(ms)

Nodes need be adjust Adjust succeed

Adjust failure Delay decrease of whole network

Fig. 9. Adjust effect (S’=16)

In order to find how many peers still need to be adjusted after the first adjustment,
we compare the result between ' 8S = and ' 16S = in Fig. 10 and can see that the
system with more sub-streams could be adjusted more quickly.

150 R. Wang et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Variance Threshold(ms)

S'=8,nodes need adjust S'=8,nodes need adjust twice

S'=16,nodes need adjust S'=16,nodes need adjust twice

Fig. 10. Comparison of situation after the first adjust between S’=8 and S’=16

6 Conclusion

In this paper, we propose several mechanisms to improve the performance of P2P
streaming systems at the different network evolution stages. Our purpose is to allevi-
ate the influence of network dynamics to the system stability, and to decrease the peer
startup delay. Simulation results show that 1) the redundant coding and the parent
switching algorithm in case of node failure can effectively reduce interruption of data
streams; 2) the codes with higher redundant degree can adapt to more dynamic sce-
nario and the codes with redundancy does not significantly decrease the effective
transmission ratio when network is dynamic; 3) transmission achieves higher per-
formance when the number of substreams is between 8 and 16; and 4) the parent
switching mechanism can significantly decrease the startup latency for a big propor-
tion of peers.

References

1. Magharei, N., Rejaie, R., Guo, Y.: Mesh or Multiple-Tree: A Comparative Study of Live
P2P Streaming Approaches. In: Proc. of IEEE INFOCOM (2007)

2. PPLive, http://www.pplive.com/
3. UUSee, http://www.uusee.com/
4. Li, B., Xie, S., Qu, Y., et al.: Inside the New CoolStreaming: Principles, Measurements

and Performance Implications. In: Proc. of IEEE INFOCOM (2008)
5. Ali, S., Mathur, A., Zhang, H.: Measurement of commercial peer-to-peer live video

streaming. In: Proc. Workshop on Recent Advances in P2P Streaming, Waterloo, ON,
Canada (August 2006)

6. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer Receiver-drIven MEsh-based Streaming.
In: Proc. of IEEE INFOCOM 2007 (2007)

 Tuning Performance of P2P Mesh Streaming System 151

7. Wang, F., Liu, J., Xiong, Y.: Stable Peers: Existence, Importance, and Application in Peer-
to-Peer Live Video Streaming. In: Proc. of IEEE INFOCOM 2008 (2008)

8. Liu, Z., Wu, C., Li, B., Zhao, S.: Distilling Superior Peers in Large-Scale P2P Streaming
Systems. To appear in Proc. of IEEE INFOCOM 2009 (2009)

9. Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed-Solomon codes. IEEE
Transactions on Information Theory 49(11) (2003)

10. Carra, D., Cigno, R., Biersack, E.: Graph based analysis of mesh overlay streaming sys-
tems. IEEE Journal on Selected Areas in Communications 25(9), 1667–1677 (2007)

11. Kumar, R., Liu, Y., Ross, K.: Stochastic Fluid Theory for P2P Streaming Systems. In:
Proc. of IEEE INFOCOM 2007 (2007)

12. Zhou, Y., Chiu, D., Lui, J.C.S.: A Simple Model for Analyzing P2P Streaming Protocols.
In: Proc. of IEEE ICNP 2007 (2007)

13. Liu, S., Zhang, R., Jiang, W., Rexford, J., Chiang, M.: Performance bounds for peer-
assisted live streaming. In: Proceedings of the 2008 ACM SIGMETRICS (2008)

14. Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of ACM 19(2), 248–264 (1972)

15. PeerSim, http://peersim.sourceforge.net/
16. DS2, http://www.cs.rice.edu/~bozhang/ds2/

	Tuning Performance of P2P Mesh Streaming System Using a Network Evolution Approach
	Introduction
	Related Works
	System Model and Assumption
	System Evolution
	Peer Arrival
	Parent Adjustment
	Peer Failure

	Simulation
	Methodology and Metrics
	System Resilience
	Startup Latency

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

