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Abstract. We examine eavesdropping over wireless channels, where se-
cret communication in the presence of an eavesdropper is formulated as
a zero-sum game. In our problem, the legitimate receiver does not have
complete knowledge about the environment, i.e. does not know the exact
values of the channels gains, but instead knows just their distribution.
To communicate secretly, the user must decide how to transmit its in-
formation across subchannels under a worst-case condition and thus, the
legal user faces a max-min optimization problem. To formulate the op-
timization problem, we pose the environment as a secondary player in a
zero-sum game whose objective is to hamper communication by the user.
Thus, nature faces a min-max optimization problem. In our formulation,
we consider signal-to-interference ratio (SINR) as a payoff function. We
then study two specific scenarios: (i) the user does not know the channels
gains; and (ii) the user does not know how the noise is distributed among
the main channels. We show that in model (i) in his optimal behavior the
user transmits signal energy uniformly across a subset of selected chan-
nels. In model (ii), if the user does not know the eavesdropper’s channel
gains he/she also employs a strategy involving uniformly distributing
energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, the
user may better tune his/her power allocation among the channels. We
provide criteria for selecting which channels the user should transmit
on by deriving closed-form expressions for optimal strategies for both
players.

1 Introduction

Security is one of the most prominent problems surrounding wireless communi-
cations, largely due to the broadcast nature of the wireless medium, which facil-
itates eavesdropping. Although much of the work in confidentiality for wireless
systems has focused on cryptographic solutions, which necessitate key manage-
ment, there has been a recent movement towards exploring new security mecha-
nisms for wireless systems. There has been an effort by the wireless
research community to develop new forms of confidential communication that

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 142–162, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009



An Eavesdropping Game with SINR as an Objective Function 143

exploit the fading characteristics of the wireless channel to achieve secret com-
munications through appropriate coding constructions[1,2,3,4,6,7]. Such work
has largely built upon prior information-theoretic work of [8,9,10,11], where the
notion of secrecy capacity was introduced to describe the rate at which a sender
could communicate in an information-theoretically confidential manner in the
presence of an eavesdropper. Recent results have sought to incorporate mod-
ern communication system design, and take advantage of the many degrees of
freedom available in a dynamic wireless fading environment. For example, it is
possible to use multiple subcarriers in order to provide a large number of parallel
subchannels, as is utilized in OFDM transceivers (which is becoming a de facto
physical layer strategy for many existing and emerging wireless systems, includ-
ing 802.11g and WiMax), and the underlying frequency selectivity induced by
multipaths can provide a diversity advantage. Recent results related to secret
communication over independent, parallel channels has been reported in [4,5].

In the basic formulation of confidential communication, we have three entities:
Alice, Bob and Eve. Alice seeks to communicate secretly with Bob while in
the presence of an eavesdropper Eve. In this formulation, there are two sets
of channels of interest, first is the channel from Alice to Bob, and second is
the channel from Alice to Eve. Using G as a generic representation for the
Alice to Bob channel, and H as a generic representation for the Alice to Eve
channel, a natural question that arises is how secret communication rates can
be characterized under different assumptions regarding which entities know the
states of various channel states. The results of [4], for example, were formulated
for the case of complete channel state information where Alice, Bob and Eve
all have perfect knowledge of the CSI for channels G and H . For complete CSI
it has been shown that the secrecy capacity for a collection of independent
parallel channels can be solved through appropriate water-filling of the channel
differences between G and H .

Unfortunately, the case of complete CSI is not representative of what one
would expect to face in an adversarial setting, where the eavesdropper is not
likely to reveal its presence. Instead, incomplete CSI cases are more appropriate
but, for the most part, have not been considered in the literature. Generally, it is
reasonable to assume that the receiver has knowledge of the state of the channel
from the transmitter. Hence, we are interested in cases where Alice does not have
complete knowledge of G or H . In this paper, we examine the problem of secret
communication over fading channels for several specific cases of incomplete CSI.

To address the problem of how the sender can best communicate secretly to
a legitimate receiver while having varying levels of knowledge about the cor-
responding channel states, we formulate the problem of secret communication
as a zero-sum game. Here, the user must decide how to transmit information
across which subchannels under a worst-case condition, while we pose the envi-
ronment as a secondary player in a zero-sum game whose objective is to hamper
successful communication by the user. We consider signal-to-interference ratio
(SINR) as a payoff function since, in the regime of low SINR, this objective is
an approximation to the secrecy rate.
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We begin the paper in Section 2 by presenting our three entities (Alice, Bob
and Eve), and providing a description of the basic communication model that we
will use throughout this paper. In the sections that follow, we examine several
distinct cases where different assumptions are placed on how well Alice or Eve
know the channel gains. Throughout the paper we present conclusions that can
be drawn from theoretically formulating the eavesdropping problem in a game-
theoretic scenario. We provide proofs in the Appendix.

2 Problem Overview

Alice seeks to communicate secretly with Bob, while in the presence of a potential
(passive) eavesdropper, Eve. We consider a communication system involving n
independent subchannels, as might arise in an OFDM system. Letting Alice’s
transmitted signal on channel i be Xi, then Bob’s received signal is

Yi =
√

giXi + WAB
i , (1)

while Eve receives the signal

Zi =
√

hiXi + WAE
i . (2)

We may collect Alice’s channel input as Xn = [X1, · · · , Xn], and similarly define
Bob’s received signals as Y n, and Eve’s as Zn. In the communication literature,
the channel gains gi and hi may follow many different distributions and one of the
most common is the Rayleigh fading model, where gi and hi follow an exponential
distribution with an average channel gain E[gi] or E[hi] capturing distance-
dependent attenuation and shadowing. In general the Alice-to-Bob channel and
Alice-to-Eve channel will have different average characteristics, i.e. in general
E[gi] �= E[hi]. Further, we note that the WAB

i and WAE
i are additive noise

terms that (unless noted otherwise) have been normalized appropriately (relative
to the main Alice-to-Bob channel gains gi) to have unit variance.

In [4], it was shown under the complete CSI assumption, that the secrecy
capacity of the system of n independent channels for Alice-Bob-Eve can be ex-
pressed as Cn(g,h,P∗) =

∑n
i=1 CAWGN (gi, hi, Pi), where CAWGN(gi, hi, Pi) is

the secrecy capacity for an additive white Gaussian noise channel model, and
was given by Leung-Yan-Cheong and Hellman in [13]. Further, P∗ is the opti-
mal power allocation across the n subchannels and corresponds to waterfilling
appropriately by considering the relative differences between g and h.

3 Optimization with SINR as the Objective Function

In this section, we formulate the secret communication problem as an optimiza-
tion problem. As noted earlier, Alice would like to transmit information through
n channels, and to do this she must allocate power P = (P1, . . . , Pn) across these
channels, where
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Pi ≥ 0 for i ∈ [1, n] (3)

and
n∑

i=1

Pi = P̄ . (4)

Here P̄ > 0 denotes the signal total power budget she may transmit. Up to a
normalization factor, Alice’s payoff is given as follows

v(P ) =
n∑

i=1

[
ln (1 + giPi) − ln (1 + hiPi)

]

+
(5)

where gi and hi are the corresponding fading channel gains of the main (Alice
to Bob) and eavesdropper (Alice to Eve) channels. The individual secrecy rate
terms ln (1 + giPi) − ln (1 + hiPi) are generally unwieldy, and as a useful ap-
proximation, we may instead define a more convenient payoff function, which we
shall refer to as the SINR payoff. The SINR payoff for Alice is given as follows

v(P ) =
n∑

i=1

giPi −
n∑

i=1

hiPi. (6)

SINR has been considered in non-eavesdropping communication scenarios. Specif-
ically, it has been used as an objective function in the power control game in [16],
[17] and [15]. In [16], the Braess paradox in the context of the power control game
has been studied and in [17] all users have a single common channel and choose
between several base stations, while in [15] jamming and cooperative scenarios are
considered. Lastly, we note that in the regime of low SINR the present objective
serves as an approximation to the secrecy rate.

Since the payoff is linear in P the optimal power strategy assigns transmis-
sion power across the channels by placing a preference to channels with greater
difference between the channel gains of the main and eavesdropper channels,
gi − hi. Namely, the following result holds.

Theorem 1. The optimal power allocation strategy, P , for Alice for the secret
communication optimization problem with SINR as the payoff, under condition
(3) and (4), is given as follows

Pi

{
= 0 for i ∈ [1, n]\I∗,
≥ 0 such that

∑
i∈I∗ Pi = P̄ for i ∈ I∗,

where I∗ = {i ∈ [1, n] : gi − hi = max{gj − hj : j ∈ [1, n]}} is the maximal
difference between fading channel gains of the main (Alice to Bob) and eaves-
dropper (Alice to Eve) channels. The payoff corresponding to this strategy is
v = P̄ max{gj − hj : j ∈ [1, n]}.
Now look at the problem assuming that Alice has fixed the power allocation,
i.e. the vector P = (P1, . . . , Pn) satisfying (3) and (4), yet the environmental
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parameters are not completely known, i.e. Alice does not know the exact values
of the channels gains. To capture this assumption, we shall further assume that
Alice knows the best case scenario for the main and eavesdropper channel gains,
but does not know the precise values of any instantaneous realization. Hence,
we assume that the gains gi for the main subchannel i is given by

gi = g0
i − Gi, (7)

where g0
i is the best possible channel gain, and Gi reflects additional degradation

of the channel that might arise from fading or other factors. For analysis, we
assume that Alice knows that the degradation Gi is such that

Gi ≥ 0 for i ∈ [1, n] (8)

and that she knows an (ensemble) characterization of this degradation across all
n subchannels

n∑

i=1

Gi = Ḡ, (9)

where Ḡ > 0 thus corresponds to the total main channel perturbation.
Similarly, we assume that Alice has imprecise knowledge of the gains of the

eavesdropper subchannel i, given by

hi = h0
i + Hi, (10)

where h0
i is (best, and hence smallest) possible channel gain and is known to the

user. However, as before, about the perturbation of this channel gain, Hi, she
knows only that it is such that

Hi ≥ 0 for i ∈ [1, n] (11)

and
n∑

i=1

Hi = H̄, (12)

where H̄ > 0 is the total eavesdropper’s channels perturbation known to Alice.
The payoff is then given as follows

v((G, H)) =
n∑

i=1

(g0
i − Gi)Pi −

n∑

i=1

(h0
i + Hi)Pi

=
n∑

i=1

ξ0
i Pi −

n∑

i=1

(Gi + Hi)Pi,

(13)

where ξi is the difference between fading channel gains of the main (Alice to
Bob) and eavesdropper (Alice to Eve) channels i, namely,

ξ0
i = g0

i − h0
i , i ∈ [1, n]. (14)

We will assume that g0
i > h0

i for i ∈ [1, n], so ξ0
i > 0 for i ∈ [1, n]. The following

result allows Alice to quantify the worst payoff she could have, as she would like
to minimize (13) for any admissible (G, H).
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Theorem 2. Let Imax = {i ∈ [1, n] : Pi = Pmax} where Pmax = maxj∈[1,n] Pj.
Then the optimal strategy (G, H) is given as follows

Gi

{
= 0, i ∈ [1, n]\Imax,

≥ 0 such that
∑

j∈Imax
Gj = Ḡ, i ∈ Imax,

(15)

Hi

{
= 0, i ∈ [1, n]\Imax,

≥ 0 such that
∑

j∈Imax
Hj = H̄, i ∈ Imax.

(16)

The payoff corresponding to this strategy is v =
∑n

i=1 ξ0
i Pi − Pmax(Ḡ + H̄).

4 An Eavesdropping Game with Unknown Gains

We continue our analysis of the situation where Alice does not know the exact
values of the channels gains, as described previously. Alice faces the problem of
allocating power so that information can be transmitted under the worst-case
conditions or, in other words, Alice faces a maxmin problem. To address this
question we draw upon game theory since we may consider Alice as a player
in a game, while we may model the environment (nature) as a second player
with a goal opposite to Alice’s, namely, to hamper information transmission by
Alice (by selecting channel states so as to benefit the eavesdropper Eve)1. Thus,
nature faces a minmax problem and the optimal strategies of the players for the
maxmin and minmax problems will coincide with each other.

We assume that the gains of the main channel i is given by (7) and the
gains of the eavesdropper channel i is given by (10). The strategy for the en-
vironment is governed by appropriately selecting (G, H), which consists of two
components: G = (G1, . . . , Gn) – the main channel’s degradations about g; and
H = (H1, . . . , Hn) – the eavesdropper’s channel degradations about h, as per
the conditions (8), (9) and (11), (12). Alice’s P is given by satisfying (3) and
(4). The SINR payoff for Alice is given as follows

v(P, (G, H)) =
n∑

i=1

(g0
i − Gi)Pi −

n∑

i=1

(h0
i + Hi)Pi. (17)

Both players know the values of g0
i , h0

i , i ∈ [1, n] as well as P̄ , Ḡ and H̄ . We
consider the situation as a zero-sum game Alice versus nature with Alice’s payoff
as (36), while the payoff to nature is −v(P, (G, H)).

We will look for the value of the game v and the optimal strategies P ∗ of
Alice and (G∗, H∗) for nature. Recall that optimal strategies and the value of
the game satisfy the conditions:

v(P, (G∗, H∗)) ≤ v := v(P ∗, (G∗, H∗)) ≤ v(P ∗, (G, H))

for any strategies P and (G, H) for the players (Alice and nature).
1 We note, contrary to intuition, Eve is not the second player in our formulation, but

is a passive beneficiary of the strategy employed by the environment.
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Note that the payoff (17) of the game by (14) can be rewritten in the following
equivalent form

v(P, (G, H)) =
n∑

i=1

ξ0
i Pi −

n∑

i=1

(Gi + Hi)Pi. (18)

Without loss of generality we can assume that the channels are arranged in such
a way that

ξ0
1 ≥ ξ0

2 ≥ . . . ≥ ξ0
n > 0. (19)

We introduce the following auxiliary notation,

ϕk :=
k∑

i=1

(ξ0
i − ξ0

k) for k ∈ [1, n]. (20)

It is clear that the sequence ϕk, k ∈ [1, n] is increasing since the following
relations hold:

ϕk+1 − ϕk =
k+1∑

i=1

(ξ0
i − ξ0

k+1) −
k∑

i=1

(ξ0
i − ξ0

k) = (ξ0
k − ξ0

k+1)k ≥ 0,

and ϕ1 = 0. For this game we can prove the following result describing the
optimal strategies as well as the value of the game.

Theorem 3. (a) Let
Ḡ + H̄ ≥ ϕn, (21)

then the value of the game is given by

v =
P̄

n

(
n∑

i=1

ξ0
i − Ḡ − H̄

)

. (22)

Alice’s optimal strategy P ∗ assigns power uniformly across all the n channels,
i.e.

P ∗
i = P̄ /n for i ∈ [1, n]. (23)

Nature’s optimal strategy (G∗, H∗), meanwhile, involves assigning the eavesdrop-
per and main channel components H∗ and G∗ to equalize the difference in quality
between the fading channel gains of the main (Alice to Bob) and eavesdropper
(Alice to Eve) channels, namely, H∗ satisfies (11) and (12), G∗ satisfies (8) and
(9) and

G∗
i + H∗

i =
1
n

⎛

⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ , (24)

say,

G∗
i =

Ḡ

n(Ḡ + H̄)

⎛

⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ , (25)
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H∗
i =

H̄

n(Ḡ + H̄)

⎛

⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ (26)

for i ∈ [1, n].
(b) Let

Ḡ + H̄ < ϕn.

Then, there is a k∗ ∈ [1, n− 1] such that

ϕk∗ ≤ Ḡ + H̄ < ϕk∗+1. (27)

The value of the game is given as follows

v =
P̄

k∗

(
k∗∑

i=1

ξ0
i − Ḡ − H̄

)

.

Alice’s optimal strategy P ∗ assigns power equally among the first k∗ channels,
i.e.

P ∗
i =

{
P̄ /k∗ for i ∈ [1, k∗],
0 for i ∈ [k∗ + 1, n].

(28)

Nature’s optimal strategy (G∗, H∗) assigns G∗ only to the main channel compo-
nents unused by Alice, while H∗ and G∗ are assigned across the eavesdropper’s
subchannels so as to equalize the k∗ best differences in quality between fading
channel gains of the main (Alice to Bob) and eavesdropper (Alice to Eve) chan-
nels. Namely, H∗ satisfies (11) and (12), G∗ satisfies (8) and (9),

G∗
i = H∗

i = 0 for i ∈ [k∗ + 1, n] (29)

and

G∗
i + H∗

i =
1
k∗

⎛

⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ , (30)

say,

G∗
i =

Ḡ

k∗(Ḡ + H̄)

⎛

⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ , (31)

H∗
i =

H̄

k∗(Ḡ + H̄)

⎛

⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ (32)

for i ∈ [1, k∗].
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5 Either the Eavesdropper’s Channels Gains or the Main
Channels Gains Are Unknown

In this section, we first consider the case where Alice does not know the exact
values of gains of the eavesdropper’s channels, but she does have full knowledge
about the main (Alice to Bob) channel gains. The payoff for Alice is

v(P, H) =
n∑

i=1

g0
i Pi −

n∑

i=1

(h0
i + Hi)Pi. (33)

Nature’s strategy thus consists only of appropriately selecting the eavesdropper’s
channels component H while satisfying (11) and (12). For this case we can prove
the following result, which basically states that in order to harm Alice (and
thus help Eve), nature has to spoil equalizing k channels with the largest gains
differences, while Alice has to assign power uniformly across these k channels.

Theorem 4. The value of the game is given as follows

v =
P̄

k

(
k∑

i=1

ξ0
i − H̄

)

.

where

k =

{
n for ϕn ≤ H,

k∗ : ϕk∗ ≤ H̄ < ϕk∗+1 for ϕn > H.

Alice’s optimal strategy P ∗ has her using an equalizing strategy among the k best
channels. Namely,

P ∗ =

{
P̄ /k, i ∈ [1, k],
0, otherwise.

(34)

Nature’s optimal strategy H∗ involves equalizing the k best channels. Namely,

H∗
i =

{1
k

(
H̄ −∑k

j=1(ξ
0
j − ξ0

i )
)

, i ∈ [1, k]

0, otherwise.

If Alice does not know the exact values of the gains of the main subchannels,
while she has full knowledge about eavesdropper’s channel gains, then the payoff
to Alice is given as follows

v(P, G) =
n∑

i=1

(g0
i − Gi)Pi −

n∑

i=1

h0
i Pi. (35)

Theorem 5. The value of the game is given as follows

v =
P̄

k

(
k∑

i=1

ξ0
i − Ḡ

)

.
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where

k =

{
n for ϕn ≤ G,

k∗ : ϕk∗ ≤ Ḡ < ϕk∗+1 for ϕn > G.

Alice’s optimal strategy P ∗ has her using an equalizing strategy among the k best
channels. Namely,

P ∗ =

{
P̄ /k, i ∈ [1, k],
0, otherwise.

Nature’s optimal strategy G∗ involves equalizing the k best channels. Namely,

G∗
i =

{1
k

(
Ḡ −∑k

j=1(ξ
0
j − ξ0

i )
)

, i ∈ [1, k]

0, otherwise.

Let us demonstrate some numerical results showing how information about the
channels impacts the value of the eavesdropping game we have formulated. Sup-
pose there are five subchannels, n = 5, and ξi is given by an exponential law,
namely, let ξi = 4κi−1 for i ∈ [1, n] and κ = 0.7. We examine the value of the
game and the number of channels employed to communicate for the two cases:
(1) with unknown gains as in Section 4, (2) with unknown eavesdropper chan-
nels gains. For both plots we will assume that P̄ = 3 and Ḡ ∈ [1, 7] and H̄ = 1.
However, for the second case we assume that H̄ is uniformly distributed across
the subchannels Hi. In Table 1 we present the value of the game for different
values of k. Of course, when the players use all the five channels then the value
of the two cases of the eavesdropping game coincide, which occurs for large Ḡ
(in this example, Ḡ = 7). If Ḡ is small (equals 1) then having extra information
about the channels (the second case) allows her to improve her SINR (and hence
secrecy) payoff by a factor of roughly 1.5.

Table 1. The value of the game and k for two plots

Ḡ Case 1 k Case 2 k

1 1.587 3 2.400 1
2 1.283 4 1.800 2
3 1.033 4 1.320 3
4 0.818 5 0.987 3
5 0.618 5 0.683 4
6 0.418 5 0.433 4
7 0.218 5 0.218 5

6 The Worst Case for the Main Gains Are Known

To show that the optimal strategies essentially depend on the information the
players have, in this section we slightly change the formulation of the game to
assume that the worst possible values for the main channels gains are known
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(instead of the best possible values), and then demonstrate the impact that such
a change has on the optimal strategies. We assume that the SINR payoff for
Alice is given as follows

v(P, (G, H)) =
n∑

i=1

(g0
i + Gi)Pi −

n∑

i=1

(h0
i + Hi)Pi, (36)

where now g0
i is the worst possible value for the main subchannel i’s gain.

For this game we can prove the following result describing the optimal strate-
gies as well as the value of the resulting eavesdropping game:

Theorem 6. (a) Let (21) hold. Then the value of the game is given by

v =
P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)

. (37)

Alice’s optimal strategy P ∗ assigns power uniformly across all n subchannels,
i.e. by (23). Nature’s optimal strategy (G∗, H∗), meanwhile, involves assigning
the eavesdropper channel component H∗ to equalize the eavesdropper channels,
while assigning the main channel component G∗ uniformly across subchannels,

G∗
i = Ḡ/n, (38)

H∗
i =

1
n

⎛

⎝H̄ −
n∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ (39)

for i ∈ [1, n].
(b) Let H̄ < ϕn. Then, there is a k∗ ∈ [1, n− 1] such that (27) holds.Also, let

A < 0, (40)

where

A := Ḡ − 1
k∗

n∑

i=k∗+1

⎛

⎝
k∗∑

j=1

(ξ0
j − ξ0

i ) − H̄

⎞

⎠

= Ḡ − 1
k∗

(
(n − k∗)

k∗∑

j=1

ξ0
j

− k∗
n∑

j=k∗+1

ξ0
j − H̄(n − k∗)

)
.

(41)

Then the value of the game is v = P̄
(∑k∗

i=1 ξ0
i − H̄

)
/k∗. Alice’s optimal strategy

P ∗ assigns power equally among the first k∗ channels, i.e. it is given by (28).
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Nature’s optimal strategy (G∗, H∗) assigns G∗ only to the main channel com-
ponents not used by Alice, while H∗ is assigned across the eavesdropper’s sub-
channels so as to equalize the quality of the k∗ best channels for Alice. Namely,

G∗
i

⎧
⎪⎪⎨

⎪⎪⎩

= 0, i ∈ [1, k∗],

≤ 1
k∗

(∑k∗
j=1(ξ

0
j − ξ0

i ) − H̄
)

such that
∑n

j=k∗+1 G∗
i = Ḡ, i ∈ [k∗ + 1, n],

(42)

H∗
i =

{ 1
k∗

(
H̄ −∑k∗

j=1(ξ
0
j − ξ0

i )
)

, i ∈ [1, k∗],

0, i ∈ [k∗ + 1, n].
(43)

(c) Let H̄ < ϕn and A ≥ 0. The value of the game is given by (37). Alice’s
optimal strategy P ∗ is given by (23). Nature’s optimal strategy (G∗, H∗) assigns
H∗ according to (43), and equalizes the quality of the k∗ best channels, while
component for the main channel G∗ is assigned to supplement all the channels
until they have an equal level, as follows

G∗
i =

{A
n , i ≤ k∗,
A
n + 1

k∗

(∑k∗
j=1(ξ

0
j − ξ0

i ) − H̄
)

, i > k∗.
(44)

Since the inequality

P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)

<
P̄

k∗

(
k∗∑

i=1

ξ0
i − H̄

)

is equivalent to

k∗Ḡ < (n − k∗)
k∗∑

j=1

ξ0
j − k∗

n∑

j=k∗+1

ξ0
j − H̄(n − k∗)

or, by (41), to A < 0, we can summarize the result of Theorem 6 about the value
of the game in the following statement.

Theorem 7. The value of the game is given as follows: if ϕn > H̄, then

v = max

{
P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)

,
P̄

k∗

(
k∗∑

i=1

ξ0
i − H̄

)}

.

We now present some numerical results to illustrate the implications of Theorem 6
and 7. As before, suppose there are five subchannels, n = 5 and ξi is given by the
exponential law, namely, let ξi = 4κi−1 for i ∈ [1, n] and κ = 0.7. We compare
how the optimal strategies change around the switching point A. In Table 2 we put
together the optimal strategies for nature when Ḡ = 1, P̄ = {3, 4} corresponding
to the values of the game 5.76 and 4.855. In spite of the fact that k∗ = 3 for both
cases, there is a switching point between P̄ = 3 and P̄ = 4 since for the first case
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Table 2. The optimal strategies for the nature player in the example eavesdropping
game

H∗&G∗(P̄ ) 1 2 3 4 5

H∗(3) 2.08 0.88 0.04 0 0
G∗(3) 0 0 0 ≤0.446 ≤0.858
H∗(4) 2.413 1.213 0.373 0 0
G∗(4) 0.032 0.032 0.032 0.246 0.658

A = −0.507 and for the second case A = 0.159. In the case P̄ = 3 a variety of
G components is possible that do not use the first three channels. For example, it
could be any G∗ = (0, 0, 0, G∗

4, G
∗
5) such that G∗

4 ≤ 0.446, G∗
5 = 0.858, G∗

4 +G∗
5 =

1. Meanwhile, in the case P̄ = 4 the G∗ component uses all the channels.

7 The Optimization Problem with Unknown Noise and
Eavesdropper’s Channel Gains

In this section, we relax the assumptions about the noise term (WAB
i from

Section 2), and consider the situation where Alice does not know how the noise
is distributed among the main (Alice to Bob) subchannels. For example, the
noise power may not be uniform across subchannels. To reflect this case, we
assume that the main channels gains are given by

gi = 1/(N0
i + Ni) for i ∈ [1, n],

where N0
i is a constant part of the noise level in the main channel i and Ni is a

variable component for which Alice knows only the total perturbation N̄ , which
satisfies

n∑

i=1

Ni = N̄ (45)

and
Ni ≥ 0 for i ∈ [1, n]. (46)

We note that this is representation allows us to reflect the variable noise terms
directly in the channel gains gi. For example, low levels of noise (i.e. small N0

i

and Ni) leads to a correspondingly large subchannel gain gi, which implies that
the ith subchannel is good.

Assume that Alice has fixed the power allocation strategy for signal transmis-
sion, i.e. the vector P = (P1, . . . , Pn) satisfying (3) and (4), but the parameters
for the environment are not completely known, i.e. Alice does not know how the
noise is distribution for Eve, or the values the eavesdropper’s channels gains.
The payoff is given as follows

v((N, H)) =
n∑

i=1

Pi

N0
i + Ni

−
n∑

i=1

(h0
i + Hi)Pi. (47)
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Alice would like to know what the worst payoff she could have, so, she would
like to minimize (47) by (N, H).

Since the payoff is linear in H and concave in N , the strategy (N∗, H∗) is the
optimal one if and only if there is ν, such that

Pi

(N0
i + N∗

i )2

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0,

(48)

H∗
i

{
≥ 0 for Pi = Pmax,

= 0 otherwise.
(49)

Then the optimal H∗ is given by (16) and the optimal N∗ is of the form

N∗
i = Ni(ν) =

[√
Pi/ν − N0

i

]

+
for i ∈ [1, n],

where ν = ν∗ is the unique positive root of the equation

n∑

i=1

[√
Pi/ν − N0

i

]

+
= N̄.

The payoff corresponding to (N∗, H∗) is given as follows

v =
√

ν∗
∑

Ni(ν∗)>0

√
Pi −

n∑

i=1

h0
i Pi − H̄Pmax.

8 The Game with Unknown Noise in the Main
Subchannels

In this section we consider the situation where there is unknown noise in the
main subchannels, and examine this case from game-theoretical position. There
are two players: Alice and nature. Alice has to transmit the total power P̄ using
strategy P satisfying (3) and (4). Recall that nature’s objective is to harm Alice-
to-Bob communication, and thus in this case nature’s strategy consists only of a
jamming component N satisfying (45) and (46), i.e. nature introduces noise to
the main subchannels. The payoff to Alice is given as follows

v(P, N) =
n∑

i=1

Pi

N0
i + Ni

−
n∑

i=1

h0
i Pi (50)

The payoff to nature is −v(P, N).
In the following theorem we find the value of the game and the optimal strate-

gies for the players. In particular, we show that nature should hamper precisely
the same channels that Alice employs. The optimal strategy for nature is a water
filling strategy, but from an adversarial point of view.
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Theorem 8. The value of the game is ω∗P̄ where ω∗ is the unique root in
[−mini h0

i ,∞) of the water filling equation

HN(ω) :=
n∑

i=1

[
1

h0
i + ω

− N0
i

]

+

= N̄ . (51)

The optimal nature’s strategy is given by

N∗
i = Ni(ω) =

[
1

h0
i + ω

− N0
i

]

+

, i ∈ [1, n]. (52)

The optimal Alice’s strategy is given as follows

P ∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

P̄
1/(h0

i + ω∗)2∑

j:Nj(ω∗)>0

(1/(h0
j + ω∗)2)

if Ni(ω∗) > 0.

0 otherwise.

Remark 1. It is interesting that the optimal strategy for nature does not take
into account the power of signal Alice has to transmit but only the parameters of
the environment, which is quite reasonable because nature is Alice’s rival.

As a numerical example we consider five channels n = 5 case. Let N0
i and h0

i

are given by the same exponential law, namely, N0
i = h0

i = κi−1 for i ∈ [1, n]
where κ = 0.5. Also, let P̄ = 1 and N̄ = 0.5 In Table 3 the value of the game
and the players’ optimal strategies are given as a function of κ. For κ = 0.1
these strategies use four out of the five subchannels, for κ = 0.8 they use two
subchannels, and for intermediate values these strategies use three subchannels.

Table 3. The value of the game and the optimal strategies of the players

κ v 1 2 3 4 5

0.1 6.315 N 0.000 0.047 0.142 0.154 0.157
P 0.000 0.230 0.248 0.258 0.263

0.2 5.314 N 0.000 0.000 0.140 0.176 0.184
P 0.000 0.000 0.321 0.336 0.344

0.3 4.655 N 0.000 0.000 0.114 0.182 0.204
P 0.000 0.000 0.319 0.336 0.345

0.4 3.858 N 0.000 0.000 0.083 0.187 0.229
P 0.000 0.000 0.316 0.336 0.347

0.5 3.056 N 0.000 0.000 0.052 0.189 0.258
P 0.000 0.000 0.312 0.337 0.351

0.6 2.345 N 0.000 0.000 0.025 0.189 0.286
P 0.000 0.000 0.306 0.338 0.356

0.7 1.764 N 0.000 0.000 0.006 0.186 0.307
P 0.000 0.000 0.298 0.339 0.363

0.8 1.314 N 0.000 0.000 0.000 0.183 0.317
P 0.000 0.000 0.000 0.478 0.522
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It is interesting to note that for κ ∈ [0.2, 0.7] the maximal difference is 11% (it
is accentuated in bold font) from the uniform strategy, and arises right before
switching to using smaller number of channels and smallest in 1% (accentuated
in italic font right after the switching point).

9 Conclusion

Recently, there has been increasing interest in using the properties of the phys-
ical layer in a wireless system to support security (specifically, confidentiality)
objectives. The basic principle behind this new form of confidentiality is to take
advantage of conditions where the main Alice-to-Bob channel is better than the
adversarial channel Alice-to-Eve. One fundamental challenge facing the formu-
lation of such physical layer secrecy is understanding the implications of varying
assumptions for what knowledge the participants (Alice, Bob and Eve) have
in the secret communication. In this paper we have examined the problem of
eavesdropping over fading channels, where the problem of secret communication
in the presence of an eavesdropper is formulated as a zero-sum game. In our
problem, the legitimate receiver does not have complete knowledge about the
environment, i.e. does not know the exact values of the channels gains. Rather,
we consider that the receiver has some partial knowledge characterizing the
channel, such as its distribution. The transmitter’s task then involves deciding
how to transmit its information across which subchannels. We have posed this
problem as an optimization problem, where the environment acts as a secondary
player in a zero-sum game whose objective is to hamper successful communica-
tion by the user. In our formulation, we have chosen to use signal-to-interference
ratio (SINR) as the payoff function, due to the tractability it provides, but note
that at low SINR our objective function approximates the secrecy capacity. We
have studied a variety of scenarios where different assumptions are placed on
the amount of knowledge that the transmitter, Alice, has in the eavesdropping
game. In the case where Alice does not know the gains for the various subchan-
nels, then the best strategy is to distribute energy equally across a subset of
selected channels. On the other hand, if Alice does not know the eavesdropper’s
channel gains, then Alice should also employ a strategy involving uniformly dis-
tributing energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, then we
show how Alice may better tune her power allocation among the channels.
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A Appendix

Proof of Theorem 3. Since the payoff is linear in P , G and H , the strategies P ∗,
(G∗,H∗) for Alice and nature are in equilibrium (so, these strategies are the best
response to one another) if and only if there are ω, νG and νH such that

P ∗
i

{
≥ 0 for ξ0

i − G∗
i − H∗

i = ω,

= 0 for ξ0
i − G∗

i − H∗
i < ω,

(53)

G∗
i

{
≥ 0 for P ∗

i = νG,

= 0 for P ∗
i < νG,

(54)

H∗
i

{
≥ 0 for P ∗

i = νH ,

= 0 for P ∗
i < νH .

(55)
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(a) Let P ∗ be given by (23). Then, by (54) and (55), νG = νH = P̄ /n and
any strategy (G, H) is the best response one for (23), in particular, the strategy
given by (29). Let H∗ and G∗ be given by (29). Then, by (21) they present a
strategy and ξ0

i −G∗
i −H∗

i = ω for i ∈ [1, n] where ω =
(∑n

j=1 ξ0
j − H̄ − Ḡ

)
/n.

Then, by (53), any strategy for Alice is the best response strategy to nature’s
strategy given by (29). This proves (a).

(b) Let P ∗ be given by (28). Then, by (54) and (55), νG = νH = P̄ /k∗ and
any strategy for nature (G, H) satisfying the following conditions is the best
response for (28).

Hi = 0 and Gi = 0 for i ∈ [k∗ + 1, n]. (56)

By (27), (G∗, H∗) given by (29) and (30) is a strategy which satisfies to (56). So,
(G∗, H∗) is the best response one for (28). Let (G∗, H∗) be given by (29) and
(30). Then

ξ0
i − G∗

i − H∗
i

{
= ω, i ∈ [1, k∗],
≤ ω, i ∈ [k∗ + 1, n],

where ω =
(∑k∗

j=1 ξ0
j − H̄ − Ḡ

)
/k∗. So, (28) is the best response to (29) and

(30) by (53).

Proof of Theorem 6. Since the payoff is linear in P , G and H , the strategies P ∗,
(G∗,H∗) for Alice and nature is in equilibrium (so, these strategies are the best
response each other) if and only if there are ω, νG and νH such that

P ∗
i

{
≥ 0 for ξ0

i + G∗
i − H∗

i = ω,

= 0 for ξ0
i + G∗

i − H∗
i < ω,

(57)

G∗
i

{
≥ 0 for P ∗

i = νG,

= 0 for P ∗
i > νG,

(58)

H∗
i

{
≥ 0 for P ∗

i = νH ,

= 0 for P ∗
i < νH .

(59)

(a) Let P ∗ be given by (23). Then, by (58) and (59), νG = νH = P̄ /n and any
strategy (G, H) is the best response one for (23), in particular, the strategy given
by (38) and (39). Let H∗ be given by(39). It is clear that for this H∗ (11) holds
and, by (39), (19) and (21),

H∗
j =

1
n

⎛

⎝H̄ −
n∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ ≥ 1
n

(
H̄ − ϕn

) ≥ 0 for j ∈ [1, n].

So, (11) also holds and H∗ is the eavesdropper’s channel component arising
in nature’s strategy to harm the secrecy of communication between Alice and
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Bob. It is clear that G∗ given by (38) satisfies (8) and (9) and for G∗ and
H∗ holds the following relation: ξ0

i + G∗
i − H∗

i = ω for i ∈ [1, n] where ω =(∑n
j=1 ξ0

j − H̄ + Ḡ
)

/n. Then, by (57), any strategy for Alice is the best response
strategy to nature’s strategy given by (38) and (39). This proves (a).

(b) Let P ∗ be given by (28). Then, by (58) and (59), νG = 0 and νH = P̄ /k∗
and any nature’s strategy (G, H) satisfying the following conditions is the best
response for (28).

Hi = 0 for i ∈ [k∗ + 1, n],
Gi = 0 for i ∈ [1, k∗].

(60)

Let H∗ be given by (43). It is clear that for this H∗ (11) holds. Also, by (22),
(19) and (21)

H∗
j =

1
k∗

⎛

⎝H̄ −
k∗∑

j=1

(ξ0
j − ξ0

i )

⎞

⎠ ≥ 1
k∗

(
H̄ − ϕk∗

) ≥ 0 for j ∈ [1, k∗]. (61)

So, for H∗, (12) also holds and it is the eavesdropper’s channel components for
a strategy employed by nature. By (19) and (27),

k∗∑

j=1

(ξ0
j − ξ0

i ) − H̄ ≥
k∗∑

j=1

(ξ0
j − ξ0

k∗+1) − H̄

= ϕk∗+1 − H̄ ≥ 0 for j ∈ [k∗ + 1, n].

(62)

Thus, for G∗ given by (42), (9) holds. Then, by (40), it is the main channels
component of a strategy by nature. It is clear that H∗ and G∗ satisfy (60).
Therefore, they present the best response to (28).

Let G∗ and H∗ be given by (43) and (42). Then

ξ0
i + G∗

i − H∗
i

{
= ω, i ∈ [1, k∗],
≤ ω, i ∈ [k∗ + 1, n],

where ω =
(∑k∗

j=1 ξ0
j − H̄

)
/k∗. So, (28) is the best response to (43) and (42).

(c) Let P ∗ be given by (23), then any strategy (G, H) is the best response for
(23), in particular to the strategy given by (43) and (44).

Let G∗ and H∗ be given by (43) and (44). Then, by (22), (19), (21) and (61),
H∗ are the eavesdropper channel components of a strategy by nature. Also, as
A > 0, then, by (62), G∗ corresponds to the main channel components for a
strategy employed by nature. Then ξ0

i + G∗
i − H∗

i = ω for i ∈ [1, n] where

ω =
A

n
+

1
k∗

(
k∗∑

i=1

ξ0
i − H̄

)

.
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Thus, any Alice strategy is the best response for (H∗, G∗), such as the strategy
given by (23), and ωP̄ is the value of the game. Then, since

A

n
+

1
k∗

(
k∗∑

i=1

ξ0
i − H̄

)

=
1
n

⎛

⎜⎜
⎜
⎜
⎜
⎝

Ḡ −
(n − k∗)

k∗∑

j=1

ξ0
j − k∗

n∑

j=k∗+1

ξ0
j − H̄(n − k∗)

k∗

⎞

⎟⎟
⎟
⎟
⎟
⎠

+
1
k∗

(
k∗∑

i=1

ξ0
i − H̄

)

=
1
n

(
n∑

i=1

ξ0
i + Ḡ − H̄

)

.

the value of the game is given by (37). This completes the proof of Theorem 6.

Proof of Theorem 8. Since the payoff is linear in P and concave on N , the
strategies P ∗, N∗ of Alice and nature is in equilibrium (so, these strategies are
the best response to each other) if and only if there are ω, ν such that

P ∗
i

⎧
⎨

⎩

≥ 0 for 1
N0

i + N∗
i

− h0
i = ω,

= 0 for 1
N0

i + N∗
i

− h0
i < ω,

(63)

P ∗
i

(N0
i + N∗

i )2

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0.

(64)

Thus, by (64), if P ∗
i = 0 then N∗

i = 0. It is reasonable to look for the optimal
nature strategy in a subclass of strategies which hamper only the channels em-
ployed by Alice to transmit the signal, so for the strategies that have P ∗

i > 0
then N∗

i > 0. Then, by (63), the optimal strategy N∗ is of the form

N∗
i = Ni(ω) =

[
1

h0
i + ω

− N0
i

]

+

, (65)

where ω = ω∗ is the unique root in [−mini h0
i ,∞) of the following water filling

equation

HN(ω) :=
n∑

i=1

[
1

h0
i + ω

− N0
i

]

+

= N̄ . (66)

By (64) and (65) we have that the Alice’s optimal strategy is of the form

P ∗
i = Pi(ν) =

⎧
⎨

⎩

ν
(h0

i + ω∗)2
if Ni(ω∗) > 0,

0 otherwise
(67)
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and ν = ν∗ can be found as the unique root of HP (ν) :=
∑n

i=1 Pi(ν) = P̄ . Thus,

ν∗ =
P̄

∑
j:Nj(ω∗)>0(1/(h0

j + ω∗)2)
.

It is clear that the strategies defined by (65) and (67) satisfies the conditions
(63) and (64). That is why they are the optimal ones. This completes the proof
of Theorem 8.
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