Formal Analysis of FPH Contract Signing Protocol
Using Colored Petri Nets

Magdalena Payeras-Capella, Macia Mut-Puigserver, Andreu Pere Isern-Deya,
Josep L. Ferrer-Gomila, and Lloren¢ Huguet-Rotger

Departament de Matematiques i Informatica, Universitat de les Illes Balears
{mpayeras ,macia.mut,andreupere.isern, jlferrer, 1. huguet}@uib .es

Abstract. An electronic contract signing protocol is a fair exchange protocol
where the parties exchange their signature on a contract. Some contract signing
protocols have been presented, and usually they come with an informal analysis.
In this paper we use Colored Petri Nets to formally verify the fairness and the re-
sistance to five previously described attacks of FPH contract signing protocol. We
have modeled the protocol and the roles of the signers, a trusted third party, mali-
cious signers as well as the role of an intruder. We have proven that the protocol is
resistant to typical attacks. However, we have detected three cases where the pro-
tocol generates contradictory evidences. Finally, we have explained which should
be the behavior of an arbiter to allow the resolution of these conflicting situations.

Keywords: contract signing protocol, Coloured Petri Nets, formal verification.

1 Introduction

Contract signing procedures, certified electronic mail or electronic purchases are good
examples of fair exchange protocols. A fair exchange of values always provides an
equal treatment to all users, and, at the end of the execution of the exchange, all parties
have the element that wished to obtain, or the exchange has not been solved success-
fully (in this case, nobody has its expected element). These protocols make use of non-
repudiation services, so they have to produce evidences to guarantee non-repudiation
services. In case of dispute an arbiter has to be able to evaluate the evidences and take a
decision in favor of one party without any ambiguity. Contract signing protocols allow
the signature of a previously accorded contract by two or more signers. The fair ex-
change protocol ensures that at the end of the exchange all the signers have the signed
contract or none of them have it. Fair exchange protocols often use Trusted Third Parties
(TTPs) helping users to successfully realize the exchange. Several electronic contract
signing protocols have been presented, with TTPs involved in different degrees. Among
them there are a few proposals where the exchange can be finished in only three steps.
Micali’s protocol [1] and FPH protocol [2] are both efficient protocols with 3 messages
in the exchange protocol. These protocols differ in the resolution protocol as well as in
the elements exchanged in the three steps. However, they have another common aspects
like the use of an off-line TTP, called optimistic approach. This concept of optimistic
protocol was introduced in [3] by Asokan et al. In an optimistic fair exchange protocol
the TTP only intervenes in case of problems to guarantee the fairness of the exchange.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 101120./2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

102 M. Payeras-Capella et al.

Bao et Al. described [4] three attacks to Micali’s protocol and proposed an improved
protocol. Recently, Sornkhom and Permpoontanalarp [5] have applied a formal method
to analyze the security of Micali’s protocol by using Colored Petri Nets (hereinafter
CPNs). This method allows the demonstration of the vulnerability of Micali’s protocol
to the three attacks described by Bao. Additionally, the method has been used to find
two new attacks to Micali’s protocol.

In this paper we have created a new model for the formal analysis of FPH protocol,
similar to that used by Sornkhom and Permpoontanalarp but adapted to the features of
the present analysis. Once the protocol is modeled, we can formally prove the behavior
of the protocol in case of malicious users. Our first goal is to prove the fairness of this
protocol; first we will do that in case of malicious signers, and then we have modeled a
malicious intruder.

We have organized the paper as follows, in Section 2 we summarize FPH protocol
with its security characteristics. Section 3 includes the description of the simulation
model using CPNs. Section 4 presents the analysis of the protocol and the results ob-
tained in different execution scenarios. Finally, section 5 includes the conclusions and
describes future applications of the simulation model.

2 FPH Contract Signing Protocol

2.1 Ideal Features of a Contract Signing Protocol

Practical solutions for contract signing require of the existence and possible involve-
ment of a TTP. To obtain efficiency, three objectives are usually pursued:

— To reduce the involvement of the TTP.

— To reduce the number of messages to be exchanged.

— Possible implication of the TTP should not require expensive operations, neither
the storage of high volume of information.

The first objective has been achieved in some proposals. They are the optimistic so-
lutions [3,6,7,8,9] and the TTP are not involved in every protocol run. Regarding the
number of messages to be exchanged, [6] states that three is the minimum number of
messages for a contract signing protocol. Protocols for contract signing have to provide
evidence to parties to prove, at the end of the exchange, if the contract is signed and
the terms of the contract. Some additional properties have to be achieved in optimistic
protocols [7,9]:

Effectiveness: if the parties behave correctly the TTP will not be involved;
Fairness: no party will be in advantageous situation at any stage of a protocol run;
Timeliness: parties can decide when to finish a protocol run;

Non-repudiation: parties can not deny their actions;

Verifiability of the third party: if the TTP misbehaves, all damaged parties will be
able to prove it.

In this section we describe the FPH protocol that will be formally evaluated in next
sections. This protocol achieves the previous requirements.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 103

2.2 Description of FPH Contract Signing Protocol

It is assumed that both (A)lice and (B)ob have already agreed on a plaintext contract C
before the exchange. Then they sign the contract using the protocol. The channel used
among the signers is an unreliable channel, so it cannot be assumed that the messages
sent through this channel arrive to their recipient. The channel between a signer and the
TTP is a resilient channel, that is, the messages will eventually arrive to their recipient
but the time of the arrival cannot be predicted. The originator, A, and the recipient,
B, will exchange non-repudiation evidence directly. Only in case they cannot get the
expected items from the other party, the TTP will be invoked, by initiating cancel or
finish sub-protocols. The notation and elements used in the protocol description are in
Table 1 while the exchange sub-protocol is described in Table 2.

Table 1. Elements

X, Y Concatenation of two messages X and Y

H(X) Collision-resistant one-way hash function of message X

Si(X) Digital signature on message X with the private key, or signing
key, of i (using some hash function, H(), to create a digest of X)

i—jpX i sends message X to j

M={A,B,C} Message containing the contract to be signed, C, the originator,
A(lice), and the recipient, B(ob)

ha = Sa(M) Signature of A on the contract M

he = SB(M) Signature of B on the contract M

ACK4 = Sa(hB) Signature of A on hp; acknowledgement that A knows that the
contract is signed, and is part of the necessary evidence for B

ACKr = Sr(hg) Signature of the TTP on hp; this is an equivalent acknowledge-
ment to which A should have sent

har = Sa[H(M), ha] Evidence that A has requested TTP’s intervention

hpr = Sp[H(M),ha,hg] Evidence that B has requested TTP’s intervention

hg = Sr(hs) Signature of the TTP on hp to prove its intervention

Table 2. Exchange sub-protocol

1.A— B: M, ha
2.B— A: hB
3.A — B: ACK

If the protocol run is completed, the originator A will hold non-repudiation (NR)
evidence, hp, and the recipient B will hold non-repudiation evidence, h4 and ACK 4.
So the protocol meets the effectiveness requirement. If it is not the case, A or B, or
both, need to rectify the unfair situation by initiating the cancel or finish sub-protocol,
respectively, so that the situation returns to a fair position.

If A ”says” (A could be trying to cheat or being in a wrong conception of the exchange
state) that she has not received message 2 from B, A may initiate the cancel sub-protocol
(Table 3).

104 M. Payeras-Capella et al.

Table 3. Cancel sub-protocol

'A—T: HM), ha,har

IF (finished=true) 2’.7T" retrieves hp
3. T —A: hp,hl

ELSE 22. T — A: Sr(Pcancelled’, ha)
R Stores cancelled=true

In the cancel sub-protocol, the TTP will verify the correctness of the information
given by A. If it is not the case, the TTP will send an error message to A. Otherwise, it
will proceed in one of two possible ways. If the variable finished is true, it means that B
had previously contacted with the TTP (see paragraph below), and the TTP had given
the NR token to B, AC K. Now it has to give the NR token to A. So, it retrieves this
stored NR token, hp, and sends it to A, and a token to prove its intervention, th. But
if B had not previously contacted with the TTP, the TTP will send a message to A to
cancel the transaction, and it will store this information (cancelled = true) in order to
satisfy future petitions from B. Whatever case, now, we are again in a fair situation.

Table 4. Finish sub-protocol

2. B—T: H(M), ha,hg, hsr

IF (can- 3. T — B: Sr("cancelled’, hp)
celled=true)
ELSE 3. T —B: ACKr

4. T stores finished=true and hp

If B ”says” that he has not received message 3, B may initiate the finish sub-protocol
(Table 4). In the finish sub-protocol, the TTP will verify the correctness of the informa-
tion given by B. If it is not the case the TTP will send an error message to B. Otherwise,
it will proceed in one of two possible ways. If the variable cancelled is true, it means
that A had previously contacted with the TTP (see paragraph above). The TTP had given
a message to A to cancel the transaction, and now it has to send a similar message to
B. Otherways, the TTP will send the NR token, AC' K7, to B. In this case the TTP will
store the NR token, h g, and will assign the value frue to the finished variable, in order
to satisfy future petitions from A. Again, whatever case, now, we are in a fair situation.

As a conclusion, the protocol is fair and we have not made timing assumptions (the
protocol is asynchronous).

2.3 Informal Analysis of Fairness and Non-repudiation of FPH Protocol

After a protocol run is completed (with or without the participation of the TTP), dis-
putes can arise between participants. We can face with two possible types of disputes:
repudiation of A (B claims that the contract is signed) and repudiation of B (A claims
that the contract is signed).

An external arbiter (not part of the protocol) has to evaluate the evidence held and
brought by the parties to resolve these two types of disputes. As a result, the arbiter will

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 105

determine who says the truth. The arbiter has to know who is the originator and who is
the recipient; remember that the contract, M, contains this information.

In case of repudiation of A, B is claiming that he received the signature on the con-
tract M from A. He has to provide the following information to an arbiter: M, h 4
and ACK 4 or ACKp. The arbiter will check if h4 is A’s signature on M, and if it
is positive the arbiter will assume that A had sent her signature to B. Then, the ar-
biter will check if ACK 4 is A’s signature on hpg, or it will check if AC K is TTP’s
signature on hp. If this verification is positive, the arbiter will assume that either A
or the TTP had sent an acknowledgement to B. Therefore, the arbiter will side with
B. Otherwise, if one or both of the previous checks fails, the arbiter will reject B’s
demand. If the evidence held by B proves he is right, and A holds a message like
PRp[H(”cancelled”, h 4)], it means that the TTP or A had acted improperly.

In case of repudiation of B, A is claiming that B had signed the contract M. She has
to provide the following information to an arbiter: M and hp. The arbiter will check if
hpis B’s signature on M, and if it is positive the arbiter will assume that B had received
M and h 4, and that he is committed to obtain the acknowledgement, AC K 4 or AC K.
If the previous verification fails, the arbiter will reject A’s demand. If the verification is
positive, the arbiter should interrogate B. If B contributes a cancel message, it means
that B contacted with the TTP, and the TTP observed that A had already executed the
cancel sub-protocol. For this reason the TTP sent the cancel message to B. Now it is
demonstrated that A has tried to cheat. Therefore, the arbiter will reject A’s demand,
and the arbiter will side with B. If B cannot contribute the cancel message, the arbiter
will side with A.

As a conclusion, the protocol meets the non-repudiation requirement. Moreover, the
protocol also fulfils the property of verifiability of the TTP [2]. This informal analysis
doesn’t cover all the possible situations derived of the execution of the protocol. It will
be completed with a formal verification of the protocol (included in Section 4) resulting
from the use of the model based on Petri Nets described in Section 3.

3 Description of the Model Used for the Formal Analysis of Fair
Exchange Protocols

3.1 Colored Petri Nets

CPN (Colored Petri Nets) is a discrete-event modeling language combining Petri Nets
with a programming language called standard ML [10]. Petri Nets are capable to pro-
vide the interaction between processes and the programming language is used for the
definition and manipulation of the data types. So, CPN can be used as a formal method
to analyze distributed systems and communication protocols. A CPN model is an exe-
cutable model representing the states of the system and the transitions that can cause a
change of the state of the system. CPN contains four kinds of components:

— Places. They represent the system state at a given time. The places change from the
activation of the transitions.

— Transitions. They are the actions which implies a state change.

— Arcs. They are the links between places and transitions.

106 M. Payeras-Capella et al.

— Color sets. The tokens that move through the states and transitions have a value,
called color.

The global system state, after firing an event, is called marking. So, a marking is like a
photo of the state of the system after each event. One of the tools that implement CPN is
CPNTools [10]. This is the tool we have used in this work. When the model is designed,
we can submit a simulation process in order to generate the state space. The state space
is the set of markings between initial and final event. Therefore, we extract a complete
definition of the system behavior along its execution.

3.2 General Assumptions and Methodology

In order to use Petri Nets to model the protocol, a number of general assumptions are
made:

Each party in the model has a unique identifier.

Each party already knows the public keys of the others.

Cryptographic algorithms used in the model are secure.

The messages sent between the TTP and any party will always be delivered to the
intended destination without modification (resilient channel).

The methodology followed to analyze the fairness of the protocol is:

Build the model
— Declare color sets (colsets) to represent messages and elements in the protocol.
Create top-level net to model the parties.
Create entity-level net to model the behavior of each party.
Create process-level net for each entity-level.
Declare functions and variables that will be used in the model.
Generate the state space
— Set up initial marking for each party.
— Generate the state space of the model using CPNTools.
Create query functions to search for attack states.
Extract attack scenarios using paths between states if attacks are found.

3.3 Description of the Model

In our model, based on Sornkhom and Permpoontanalarp’s model [5], we have four
key parties: Alice (A), Bob (B), Intruder (I) and TTP. While the TTP is strictly honest,
the other parties can take the role of a malicious party. A and B, in their malicious
role (A, and B,,, respectively), can stop the exchange or they can contact to the TTP in
many different steps and this way, they could try to cheat the other party. / is a malicious
party who can acts as an observer, like a man in the middle, and moreover he can deploy
many other tasks: drop, store, forward or modify messages in transit sent by any party
involved in the exchange.

In order to model the drop and stop events made by malicious parties (e.g. A, B,
or I), the model has a mechanism to inform about these events to the other involved

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 107

parties. When an event occurs, a message is immediately sent by the party who drops
the message or stops the exchange to the other parties involved. This assumption helps
us to avoid the use of a timeout on each party. When an event message is received, the
party could act contacting the TTP or maybe stopping the exchange depending of which
is the current protocol step.

Another important consideration is: messages between the TTP and any other
party of the model will always be delivered to the intended destination without any
modification.

With the provided data, we are able to build an scenario that can be used to model the
protocol using different attack sessions, where each session can involve an initiator (e.g.
Aor A,,) and a responder (e.g. B or B,;,). Note that I and TTP are implicitly present
in every session trace. So, we can deploy four sessions: (A, B), (A, B), (4, B,,) and
(A, Bi), where (X, Y) denotes which party is the initiator (X) and the responder
(Y). In this paper, we won’t consider parallel session attacks where malicious parties
can be involved in multiple and concurrent sessions, and this task will be deployed in
further works.

The architecture of the model can be divided into three big blocks, using a top-
down technique: top, entity and process levels. All messages sent by any party are a
combination of source, destination and a protocol message as a payload.

The top level scheme (Fig. 1) shows basic interaction with all parties involved in
the protocol and the message flow between these parties. In the top level we can see
the contents of each party’s database, which contains the protocol messages sent and
received by each party. Finally, we can see and control the content of the session. The

1°dId(B)++
1°dId(A)++1" dId(B)++ 1" dSK(SKb)++
*dC(A,B,M1)++1" dSK(SKa) 1°dId(1)++1" dSK(SKI) 1 dC(AB,M1

1
1 dId(A)++ 1°dId(B)++

° 1 d1d(e) D ramme] 085 (3|1 ask(sKo)++

DBA DB [1° dSK(SKa)++ DB |1 dSK(SKi)| DB [17dC((A,B,M1))

1°dc((A,B.MD))|

1 dId(Am)++1° dId(B) 4+ R
17dC(A,B,M1)++1" dSK(SKa) ,—>®_> 4@—> 1°dC(A,B,M2)
T NET NET B"qmb D (o
[DBAm} \m)++ m| 1" dSK(SKb)++
DB |1 dSK(SKay+ + P8 |1 ac(ca8,12))

1°dC((A,B,M1))|

alice 4@—> intruder bob

(A,Bm)

(Csse R

sse

PROTOCOL SIGNATURA
CONTRACTES 2 PARTS

17 dSK(SKt)++

1" dCanceled(false) ++
1" dFinished(false)++
GHACT

1" dSK(SKO++

B
9 1" dCanceled(false) ++

DB|1" dFinished(false) ++

1°dHB(™)

Fig. 1. Top level scheme

108 M. Payeras-Capella et al.

variable controls that will be used to distinguish the roles of the parties involved in the
protocol execution (e.g. honest or malicious role). Moreover, in Fig. 1 we can see as the
messages always are intercepted by [in their transit between parties.

The entity level shows us a more detailed model of the protocol and denotes all the
steps each party can execute. In Fig. 2 we can see the entity level of A and her two
roles. Transitions 7'A; to T'A4 are the transitions corresponding to her honest role, and
T Amq to T Amy are the transitions of the malicious role. The first transitions of A, T'A;
and T'Amy, are to generate the first protocol message and send it to B. The transitions
T Ay and T'Ams are to receive and verify the second message sent by B and send to B
the third message. 7' A3 and T'Amg have the responsibility to contact the TTP using the
cancellation sub-protocol, and the last transitions T'A4 and T'Am, are to receive the
response from the TTP. Note that the selection of the transitions that will be executed is
done by the session configuration which tells if the party is honest or malicious.

B’s entity level, as it is shown in Fig. 3, like A’s entity level, implements the honest
(T'B; to T'B3) and malicious (T'Bmy to T'Bmg) roles of B. T'By and T'Bm; are to
receive and verify the first message of the protocol and they also send the second mes-
sage, while 7' By and T'Bmy are to receive and verify the third protocol message and, if
it is needed, these transitions are able to contact the TTP. At last, T'B3 and 1'Bmg are
to receive the response from the TTP.

The process level implements all the actions deployed by the users and specifies
how the relations between the entities are. The actions deployed by each process are
atomic, e.g. only one process can be executed at the same time. This can be done by a
unique token, which is shared between all parties of the model. It is captured by each
party when a process starts, and it will be released when the process ends. Moreover,
each process level is controlled by a session flow control mechanism. This mechanism

LA adA) T+

++
1'dd1 qid(sy++ PK(SKa)
e 1" dSK(SKa)++ g
DA 1'dC((A,B,M1))] [Out} NE

DB

=

]

=4
>
=4

T

E4 > TA2 =
Out
NET [TA2 NET
TA3 » c1
A3 — NET

Ee
H
kS

z
m
jul
=
N
=]

TAm1

=
>
3

*dld(Am)++1°dId(B)++ TAm2
“d1 dId(B)++ HSK(SKa)

1 dId(Am)++
1 dSK(SKa)++
B |1 dC((A,B,M1))

=
>
3

~

TAm3

=
>

m3

TAm4

=

Ama

Fig. 2. A’s entity level

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 109

1" dId(B)++
1:dSK(SKb)++

LI atd(B)r+
9 1" dSK(SKb)++
g LIdC(AB)

E2 TB1 > E3

> C)
NET T NET

)

=
3

1'dId(Bm)++
1°dSK(SKb)++
L ata(Bm)++
9 1° dSK(SKb) ++
oo L dC((ABM2)

Fig. 3. B’s entity level

is defined like a token which passes through parties and at every step, they change it
contents. This token controls the order in that actions will be done. For example, it
controls that a message generation should be executed after the verification step.

3.4 Query Functions

In order to extract attack scenarios from state spaces we have developed a set of query
functions, such that of Fig. 4 to find special contents in each party database. The main
function is SearchCommitsTerminalNodes(ack,id), where ack is the element or commit
we would like to search in the database of the id party. This function returns a list of
markings which fulfill some conditions. The function is build around the use of stan-
dard query function PredNodes(p1,p2,p3). The first parameter is another custom query
function named SearchCommits(ack,id), where ack and id have the same use as in the
previous query. This function is capable to take up the contents of the desired database
id and tell us if the ack is in the database. The second parameter is to choose only mark-
ings which are leaf markings, e.g. terminal markings, which are markings that contain a
complete execution of the protocol. The last parameter, NoLimit, tells the query should
walk all markings and return all results.

The main query can be used to analyze the fairness property. In order to do this,
we apply the query function against the parties involved in the exchange, depending
of the session, to search the desired commit. The function will return a list of terminal
markings. The analysis of this list will tell us if the exchange is fair or not.

110 M. Payeras-Capella et al.

fun SearchCommits({ ack:DB, id:1d) : Node list
= PredAllNodes(
fnn=>x>
let
val dba = Mark.Top'DBa 1 n
val dbb = Mark.Top'DBb 1 n
val dbi = Mark.Top'DBi 1 n
val dbam = Mark.Top'DBma 1 n
val dbbm = Mark.Top'DBmb 1 n
if (id=A) then
cf{ ack, dba) >0
else if (id=B) then
cf{ack ,dbb) >0
else if (id=Am) then
cf{ ack, dbam) = 0
else if (id=Bm) then
cf{ ack, dbbm) > 0
else (* id=1*)
cfl ack ,dbi) >0
end
3
fun SearchCommitsTerminalNodes{ ack:DB, id:Id) : Node list
= PredModes { (SearchCommits{ack,id)) ,
fn n => (Terminal n) andalso (FullyProcessed n),
MoLimit}

Fig. 4. Search query functions developed in order to search commits into the party’s databases

4 Formal Analysis of FPH Contract Signing Protocol

4.1 Evaluation of the Vulnerability to Previously Defined Attacks

Until today, several attacks to contract signing protocols have been described. Bao et
Al [4] found three attacks to Micali’s ECS1 protocol (Table 5). Later Sornkhom and
Permpoontanalarp [5] found two new attacks to the same protocol. The consequence
of these attacks is the loss of fairness. For this reason, we have used the model based
on CPN described in last section to evaluate the resistance of FPH protocol to all these
attacks.

Micali’s ECS1 protocol (Table 5) and FPH protocol are similar, so we will use the
same notation to describe them. Moreover, we will use Ex (Y") to denote the encryption
using the public key of X of the message Y. A is committed to the contract, C, as an
initiator if B has both S4 (C, Z) and M where Z = Errp(A, B, M) and M is arandom.
On the other hand, B is committed to C as a responder if A has both Sp(C, Z) and
Sp(Z).

Now we are going to describe the five attacks to Micali’s protocol and apply them to
FPH protocol, then we will use the model to prove both the fairness and its resistance
to these attacks.

Table 5. Micali’s ECS1 protocol definition

A — B: Sa(C,Z)
B — A: Se(C,Z),SB(Z)

IF (Both signatures are valid) A — B: M
IF (B receives valid M such that Z = Errp(A, B, M)) The exchange is completed
ELSE B—TTP: A,B,Z,Ss(C,Z),SB(Z)

TTP — A: SB(C,Z), Sp(Z)
TTP — B: M

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 111

Bao’s First Attack. A is a malicious initiator and sends a false element in step
1. In Micali’s protocol this attack (Table 6) can be done if A sends a false Z where
Z = Eppp(A, B, M). In this case, A can always obtain B’s commitment but B will
not have A’s commitment. This attack is possible because B cannot verify the elements
received in step 1.

Table 6. Bao’s First Attack Trace

A — B: Sa(C,Z)where Z = Errp(A,B, M)
B — A: Se(C,Z2),S8(Z)
A — B: Nothing

B — TTP: A,B,Z,55(C,Z),SB(Z)
TTP — A: Nothing
TTP — B: Nothing

In order to detect the attack on the model, we have generated a session with A,, (A
acting maliciously) and B, as we can see on Fig. 5. In this attack, A,, builds a false
contract My and she sets an arbitrary initiator (X) and arbitrary responder (Y). The
first query searches h 4 element in A,,’s database, finding four cases, corresponding to
markings 20, 21, 22 and 37. The second query searches the same element, h 4, in B’s
database and as we can see, B never has this element. This is because the verification
stage fails and B never stores the received message. The two last queries search the
response of the TTP into A,,,’s database, and we can see that A,,, only receives a cancel
message (marking 37) and she never obtains the NR evidence from the TTP.

Then, FPH protocol is not vulnerable against Bao’s first attack, because B verifies
the elements received in step 1 and in case of attack I he doesn’t send the message of
step 2. Then A will not send message 3. If A tries to contact the TTP, the TTP will send
a cancellation proof and stores cancelled=true. B will not contact the TTP because he
doesn’t have any valid element from A.

SearchCommitsTe rmina Mo de s{dS CAI[X, V. M2),5Ka). Am) 1'd1d [‘_E"'“}"""I “dId{B)++
wal it = [20.21.22.37] : Mode list L' dC(X.Y.M2)++ 1" d 5K[SKa)

1°dId(B
SearchCommitsTe rminallodes{dSCB{(X, V.MZ),5Kb).B) ; DEma :4 1°d1d EAEI':]-:‘*‘
valit=[]: Made list DB 1 dSK{SKa)++ |
17 dC[H Y.M2]]
SearchCommitsTerminalMades(d SO5([[¥.¥.M2],5Ka), SKt) ,Am)
wal it =[] Mode list
(A, B)
SearchCommitsTerminallModes{ d SMT{[cancel, (X ¥V.M2),5Ka]]. 5Kt). Am) 55e (1 1 (Am.B)
wal it = [37] : Mode list [session] s5e

Fig. 5. First attack query results, A,, database contents and session configuration

112 M. Payeras-Capella et al.

Bao’s Second Attack. A conspires with another initiator A’ and changes her iden-
tity in step 1. In Micali’s protocol this attack (Table 7) can be done if A conspires
with A’ and sends a false Z where Z = Eppp(A’, B, M). In this case, malicious A
can always obtain B’s commitment on a contract between B and A’, but B will not have
anything. This attack is possible because B cannot verify the identity of A in the element
received in step 1.

Table 7. Bao’s Second Attack Trace

A — B: Sa(C, Z) where Z = Errp(A’, B,M)
B— A: SB(C,Z),SB(Z)
A — B: Nothing

B—TTP: A,B,Z Sg(C,2),Ss(Z)
TTP — A: Nothing
TTP — B: Nothing

The second attack can be detected in the model using the same session configuration
(A, B) as the first attack, but using a different contract. In this case, we have built a
false contract with a confabulated initiator (X), the initial receiver (B) and the previously
accorded plain contract (M;). As we can see in Fig. 6, the query results are the same as
in the first attack, the second function never returns any result because B never builds
message 2. Then, if we search the TTP’s response on A,,’s database, we can see A,
never obtains the NR and she only could have a cancellation proof.

So, FPH protocol is not vulnerable against this attack. B verifies the elements re-
ceived in step 1 and in case of atfack 2 he doesn’t send the message of step 2, as in
attack 1. Then A will not send message 3 and the exchange will be stopped and A will
not obtain B’s commitment. If A tries to conclude the exchange contacting the TTP, she
will receive a cancellation proof. On the other side, B will not contact the TTP because
he doesn’t want to finish the exchange because he knows that the element sent in step 1
is false and, moreover, he hasn’t sent any element.

SearchCommitsTerminalModes{dSCA{(X B, M1),5Ka), &m) i ﬂg[ﬁ;);aij]d&a;;;y ,
wval it=[20.21.22.37] : Made list . 1_dSK[SKa

E CBma (40 1 dId[B]++
) . . 17 d1d (Am)++
SealchCnmmn:sTermlf‘uaINndes(dEClB{{K-E-.MI)JSF’b]-B) [CEZm] DB 1" dSK(SKa)++

walit=[]: Mode list 1 dC[PLB. MLY)
SearchCommitsTerminalModes{ dSOS([[XB.M1]),5Ka). SKL) ,Am)

val it=[]: Made list (Am,B)

55e 10 17 (Am.B)

SearchCoemmitsTerminalMades(d SMT{[cancel,((X. B.M1),5Ka)).5KE),Am] [EEszon 5Se

val it = [37] 1 Mode list

Fig. 6. Second attack query results, A, database contents and session configuration

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 113

Table 8. Bao’s Third Attack Trace

A — B: Sa(C, Z) where Z = Errp(A’, B, M)
B—TTP: Z,Sp(C’,Z),Sp(Z) for afalse contract C”
TTP — A: SB(C/,Z),SB(Z)

TTP—-B: M
SearchCommitsTe rmina Mo des(dSCB((AB. M2),5Kb), &) SearchCommitsTerminalModes({ dS0S(((AB,M2),5Khb), SKa], Bm)
val it = [63] : Hode list waliw=[]: Mode list

SearchCommitsTarmina Mo des(d 5OS(((AB.M2),5Kb), SKt) ,Bm)

SearchCommitsTerminalMades(d 5O5(((AB.M2),SKB), SKa). A) " o
wal it =[] Mode list

val it = [| Moda list
SearchCommitsTerminalllades(d SMT{[cancel, ((A B,M2),5K b)), 5Kt), Bm]
SearchCommitsTerminalModes(d 5O5{ [[AB.MZ),5Kb), SKt) ,A) val it = [545,549] : Mode list
val it = [|: Made list

Se archCommitsTe rminallades{dE(errar).Bm)
SearchCommitsTerminalldo des(d SMT{{cancel,((A B,M2).5K a)), SKt),4) wval it = [299,211,318,325,332 543,544,546,547,548] : lHode list

val it =[]+ Nade list
17 dId [Bm)++
SearchCommitsTe rminallades(dE(errar), &) 1" dSK(SKb)++
walit=[]: Mode list 1" dC{AR, M2)
CEmE 30 1 g1 (amie+
SearchCommitsTe rminalia des(dSCB((AB, M2),5Kb], Bm) De 1 dSK(Skh)++
alEE 1 dE({AR, M2])
[123,160,250,311,218,325,332,379,413,414,447,544,545,546,547,548,549,63]
i Made list (ABm)
55e () L (ABm)

S5e

Fig.7. Third attack query results, B,, database contents and session configuration

Bao’s Third Attack. Malicious B contacts the TTP and requests the resolution
with a false contract. In Micali’s protocol this attack (Table 8) can be done if B,
after the reception of a valid message in step 1, contacts the TTP to start the resolution
of the exchange. In this request B includes a fake contract. In this case, malicious B
always gets A’s commitment on the original contract, but A obtains B’s commitment
on the false contract (selected by B). This attack is possible because A cannot request
the resolution of the exchange and obtains from the TTP the elements resulting of the
resolution started by B.

The third attack can be verified with the model using a session configuration where
A is the honest initiator and B,, is the malicious responder, e.g. (A, B,,). B,, builds a
contract containing a false plain text (M2) but using the real initiator and responder. As
we can see in Fig. 7, when B,, receives the first message, he changes its contents by
setting a different plain contract (M>). Then, we have searched if a false 1’5 sent by B,,
is into A’s database and, effectively, it is in marking 63. Although A stores the message,
she verifies it and she decides it is wrong and she doesn’t generate the third message.
Then A can contact the TTP, but she would ask for the original real contract using the
cancellation sub-protocol and the TTP will send a cancellation proof to A. Finally, we
can search the TTP’s responses in B,,’s database and we can see that he never obtains
the alternative proof. Moreover, he can only obtain the cancellation proof and an error
message because the TTP’s verification fails.

In FPH protocol, however, when A receives a false hjg = Sp(M’, A, B) in step 2,
she detects the attack, stops the exchange and contacts the TTP. If B has contacted the
TTP in first place and the request contained a false h 5, the TPP has been able to detect

114 M. Payeras-Capella et al.

that h 4 and hp are not related with the same contract. Then, when A sends a resolution
request, the TTP will send her a cancellation proof, so the contract will not be signed.
If A contacts the TTP in first place, she will obtain a cancellation proof.

Fourth Attack. An Attacker eavesdrops B’s commitment. The fourth attack was
described in [5] and it is possible because Micali’s protocol has an incomplete definition
on B’s commitment. The message (Sg(C, Z), Sp(Z)) is the evidence to prove that B
has committed himself to contract C with any initiator. The evidence is not linked to the
initiator, so anybody who has it can claim to be an initiator of the contract committed
by B.

The fourth attack can be detected using a session between two honest parties, A and
B. As we can see in Fig. 8, the databases of A and B contain the previously committed
contract. In this case, we would search states where an intruder, /, eavesdrops messages.
So, in the first query we will find one state where I changes the initiator of the contract.
This message is found on B’s database and finally, using the third query, we can prove
how B never builds his commit, h g, over the wrong contract with 7 as initiator.

SearchCommitsTerminallle des(dSC(({LB,M1),5Ki).I) 17dId (A)++1"dId(B]+ +
val it = [21] : Hode list 1" dC{AR ML)++1 dSK(SKa)
17 dId [&)++
DBa JH% 1 d1d(a)++
SearchCommitsTerminalModes(dSCA[{L B,M1),5K]).B) op 1 dSK(SKa)++
val it = [21] : Mode list 17 di{A B M1))
1" dId(B)++
)) 1" dSk(SKh)++
SearchCnmmrtsTermllnall la des(dEKlIE.{{]- B.M1),SKB),B) 1" dC(A B M1)
val it =[] i Made list Db 1" d1d [B)++

17 dsSK(SKh)++
De 1 dC{{ABR M1Y)

17 dId(I++1" dSK{SKi) (AB)
DBi |2 (D er S5e i 1 (AB)
pe 1 dsk(ski) BN 55e

Fig. 8. Fourth attack query results, parties’ database contents and session configuration

In contrast to Micali’s protocol, FPH protocol has linked B’s commitment to the
contract. The evidence is the message hp = Sp(M), however holding this evidence is
not enough for anyone to prove that B has committed himself to contract C. Because
FPH protocol specifies that M contains the contract to be signed, C, and it indicates who
is the originator, A, and who is the recipient, B. Thus, FPH protocol is resistant to this
attack.

Fifth Attack. Swapping the initiator and the responder role. In the fifth attack
(Table 9) described in [5] a malicious A can get B’s commitment on a contract be-
tween B as an initiator and any conspired party A, as a responder. But B will not get
anything. In order to perform the attack, A involves B in the protocol so as to exchange
the commitments on a contract. But A build a fake item Z with the identity of B as the
initiator and a conspiring party A, as the responder: Z = Eppp(B, A,, M). Finally
A will give Sp(C, Z) and M to A,.. The TTP can’t send anything to A and B because
item Z doesn’t fulfill the protocol specifications. Now, A, can successfully claim B’s
commitment on the contract as an initiator and B doesn’t have any kind of evidence.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 115

Table 9. Fifth Attack Trace

A — B: Sa(C,Z)where Z = Errp(B, A, M)
B — A: Se(C,Z),S8(Z)
A — B: Nothing

B — TTP: A,B,Z,55(C,Z),SB(Z)
TTP — A: Nothing
TTP — B: Nothing

The last attack reconstruction (Fig. 9) uses a session composed by A,, and B. In
this case, A, changes the contents of the contract, swapping party’s roles but she uses
the previously committed contract (/7). The application of the query functions against
the model (Fig. 9) is the same as in the first and second attacks. The step 1 searches
in A,,’s database the first element 7’y and then the second query searches the second
message into B’s database. As it is shown, B does not build it. Finally, the third and
fourth queries try to search responses sent by the TTP into A,,, database. As we can
see, she will only obtain a cancellation proof (marking 37).

However, in FPH protocol, as we have already explained, B verifies the item received
at the step 1 of the protocol. Thus, if A has made improper changes in the message, B
will detect it. Then, he will not continue and he will not send the message of step 2.
Therefore, the attack described here will not be successful.

SearchCommitsTerminalllodes{dSCA{B, A ML),5Ka), Am) L d1d (Am)++1 ‘dlfi (B)++
val it = [20,21,22,37] : Mode list L dC(B.AML)++1"dBK(SKa)

DBm: (4 1 dld(B)++
SearchCommitsTerminallle des{dSCR{{B, A ML), 5Kb], B) 1" did (Am)++

val it =[] : Made list DB 17 dsK(Ska]++
1" dc([B.AMIL])

SearchCommitsTerminalModes(d50O5([[B.AMI1),5Ka), SEt) .Am)
valit=[]: Made list (Am.B)

S5e (1 1 (Am,B)

=1 hiC tsTerminaldad d5 (B, A M1).5Ka)), SKt), Am
earchCommitsTerminallMades{ d SMT{{ca ncel, (] 1.5Ka))) Am)

val it = [37] : Hode list SSe

Fig. 9. Fifth attack query results, A,, database contents and session configuration

4.2 Fairness Analysis

In this section we will describe some conflicting situations in FPH protocol where the
signers have contradictory evidences (see Section 2.3). The evidences generated by this
protocol are not transferable, and an arbiter must contact both signers to solve a dispute,
know the final state of the exchange and guarantee non repudiation. This property has
been described in [11] and is called weak fairness. In this formal analysis of the fairness
of the protocol we will prove that the arbiter can solve all kinds of conflicting situations
derived from the execution of the protocol.

In [2], we described a conflicting situation where A can obtain NR evidence from B
(hp) and a cancel message from T, while B obtain NR evidence from A (h 4, ACK 4).
A can do it, for instance, invoking the cancel sub-protocol after the end of the exchange

116 M. Payeras-Capella et al.

sub-protocol. It seems that A can affirm that the contract is signed or is not signed (can-
celled), depending on her usefulness, while B possesses NR evidence that will prove
that the contract is signed. We have detected this situation in the formal analysis and we
have called it case 1.

Moreover, thanks to our model we have discovered two more conflicting situations.
The first one (we will call it case 2) is produced when a malicious A invokes the cancel
sub-protocol after the end of the exchange sub-protocol (as in case I) and then a mali-
cious B executes it, too. It seems that A and B can state that the contract is signed or is
not signed (cancelled), depending on her usefulness.

The last conflicting case we have detected (case 3) is achieved when the exchange
is stopped after the step 2. In this case A has the NR evidence from B while B does not
have the NR evidence from A. Both parties can contact the TTP. If B contacts in first
place the TTP will send him the NR evidence and the contract will be signed. Instead,
if A contacts in first place, the TTP will cancel the exchange and then A would have
NR evidence from B (hg) and a cancel message from 7, while B obtains the cancel
message.

The three conflicting situations are found in the model deploying a session composed
by a malicious initiator or both a malicious initiator and a malicious responder, e. g.
(A, By,). This way, all possible behaviors of both parties are contemplated. Using
the already known query functions, as shown in Fig. 10, we have searched into each
party’s database the desired commits. In this case, we have searched the second and
third messages of the exchange sub-protocol and all the responses received from the
TTP.

If we study the list of markings obtained from each query, we can build Table 10
with the three cases previously described. For each case, we denote the state of the
contract (signed as S and cancelled as C) and either if A,, or B,, have contacted,

SearchCommitsTermina Mo des{ d5OS(((AB.M1],5Kb), SKa], Am)
wval it = [211,467,488,506,607,610,613,614,615,616] : Hade list

SearchCommitsTerminalMades(d505([[AB.M1).5Kb). SKt) ,.Am)
wval it = [535,538.610,614,616] : Mode list

SearchCommitsTerminalModes(d SMT{[cancel,((A B,M1),5Ka)), SKt), &m)
wal it = [488,536,537.607,612,615,84] : Made list

SearchCommitsTerminalModes{ d5S05(((AB,M1),5Kb). 5¥a], Bm)
val it = [211,488 506,615,616 : Made list

SearchCommitsTerminalModes(d SO5(([AB.M1),5Kb}), SKt) ,Bm)
val it = [467,506,535.538,610,614,616] : Hede list

SearchCommitsTerminalModes(d SMT{[cancel,((A B M1).SKbB)), SKt).Bm)]
val it = [536,537,607.613,615] : Hade list

Fig. 10. Query functions results over the model with (A,,, B;,) session

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 117

Table 10. List of the markings corresponding to the three cases with contradictory evidences

Case Marking A, has NR B, has NR A, contacts TTP B,, contacts TTP
1 488 S&C S Yes (M) No

2 615 S&C S&C Yes (M) Yes (M)

3 607 S&C C Yes (M) Yes (H)

3 613 S&C C Yes (M) Yes (H)

Table 11. Scenarios without contradictory evidences

Marking A,, has NR B,, has NR A, contacts TTP B,, contacts TTP
84 C Nothing Yes (H) No

211 S S No No

467 S S No Yes
506 S S & S (by TTP) No Yes

535 S (by TTP) S (by TTP) Yes (H) Yes (H)
536 C C Yes (H) Yes (H)
537 C C Yes (H) Yes (H)
538 S (by TTP) S (by TTP) Yes (H) Yes (H)
610 S&S(byTTP) S (by TTP) Yes (M) Yes (H)
614 S&S(byTTP) S (by TTP) Yes (M) Yes (H)
616 S & S (by TTP) S & S (by TTP) Yes (M) Yes (M)

maliciously (M) or honestly (H), the TTP. As shown in Table 10, using the model we
have located the three cases where A,,, and B,,, have contradictory evidences although
we have detected four possible scenarios, because case 3 could appear twice.

As we can see, case I happens on marking 488, when A,,, obtains the NR evidence
from B,, (so A has evidence that the contract is signed), but she contacts the TTP
in order to cancel the exchange. This is a malicious behavior, because A,,, shouldn’t
contact the TTP to cancel an exchange that is already finished. The TTP sends A, the
cancel message and then, A,,, could affirm that the contract is signed or cancelled. B,
receives the NR from A,,, and he doesn’t need to contact the TTP.

In case 2, corresponding to marking 615, the exchange sub-protocol ends success-
fully for each party, but A,, contacts the TTP, after the transfer of NR evidence to B,,,
in order to obtain a cancel message. Once B,, receives the NR evidence from A,,,
she also contacts the TTP and he obtains a cancel message. So, A,, and B,, have a
malicious behavior because they contact the TTP when they shouldn’t.

Case 3 is detected twice on the model. In both scenarios, A,,, obtains the NR from
B, but B, never receives the third message. In each scenario, A,, executes mali-
ciously the cancellation sub-protocol and she receives a cancel message from the TTP.
In the first scenario, corresponding to marking 607, A,,, decides to maliciously stop the
exchange and she doesn’t send the third message to B,,. In the other hand, marking
613 is the result of a drop event of the third message by an intruder, /. From the point
of view of B,,,, both scenarios are the same, and he will contact to the TTP in order to
resolve the situation obtaining a cancel message for each scenario.

118 M. Payeras-Capella et al.

In addition to the conflicting cases, there are other cases detected by the model where
there aren’t contradictory evidences but, in some cases, each party could have repeated
proofs because they may contact the TTP when the protocol is successfully ended. Table
11 displays the scenarios without contradictory evidences.

The most interesting cases displayed on Table 11 are markings 84 and 616. In mark-
ing 84, B,, has nothing from A,,, because an intruder / has executed a drop event on
the first message. B,,, cannot execute the finalization sub-protocol because he doesn’t
have any valid element from A,,. In the other hand, A,,, resolves the contract executing
the cancellation sub-protocol obtaining a cancel message from the TTP. The second
marking, 616, is the case where A,,, and B,,, act maliciously contacting the TTP when
the exchange sub-protocol ends successfully. It is similar to case 615, but this time, B,,
contacts in first place the TTP, obtaining the corresponding NR evidence. Then, if A,,
tries to cancel, the TTP sends a NR evidence that states that the contract is signed.

In order to solve these conflicting situations an arbiter must always contact both
parties, and in case of contradictory evidences, we have established that he must act as
follows:

— Case I: A can state that the contract is signed or cancelled, but B possesses NR
evidence that will prove that the contract is signed. If A tries to use the cancel
message she will be proving she is a cheating party, so the arbiter will side with B.

— Case 2: As in case 1, an arbiter will contact both parties in case of contradictory
evidences. If B shows NR evidence that will prove that the contract is signed, the
arbiter can state that the contract is signed, and if B shows that the contract is
cancelled the arbiter will state that the contract is cancelled. This way, due to the
fact that A is always the first cheating party, if the arbiter sides always with B, the
protocol will discourage A to act fraudulently.

— Case 3: Once again, A has acted fraudulently, and if the arbiter sides with B he will
state that the contract is cancelled.

As a conclusion, we have detected the previously defined conflicting situation and we
have discovered two additional cases. All the cases are due to the fraudulent behavior of
A. To solve these situations, an arbiter must contact both parties and in case of conflict
he must always side with B. This way, the protocol will be fair in all cases and moreover
the fraudulent behavior of the parties is discouraged.

5 Conclusions and Future Work

In this paper we have formally analyzed, using a formal method (Petri Nets), an efficient
contract signing protocol, FPH protocol [2], known as one of the solutions involving
only three messages, as Micali’s protocol. But, while Micali’s protocol has been flawed
(three attacks were found by Bao et.al. and two more attacks were found by Sornkhom
and Perpoomtanalarp), FPH protocol is not vulnerable to any of these attacks due to
its features. We have evaluated FPH protocol using a model that assumes that all the
signers can be dishonest and an intruder can also attack the exchange, and we have
proven the resistance to all these attacks using the model.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 119

We have evaluated all the possible situations involving malicious users and intruders,
and in all cases the exchange ends in a fair situation. Moreover, we have also detected
that there are three cases in where, although the exchange is fair, one of the signers (or
both) can have contradictory evidences. For these reason, although the exchange is fair,
we cannot say that the proofs generated by the protocol are transferable, because both
parties have to be interrogated by an arbiter to know the final state of the exchange.
Finally, we have created a set of rules to determine the role of the arbiter in order to
achieve fairness even when contradictory evidences are presented.

With the model created to evaluate the vulnerability of the protocol to previously
described attacks and prove the fairness of the protocol we will be able, in a near future,
to formally analyze other properties of the protocol, such as the verifiability of the TTP
and also try to model more complex protocols such as a multiparty contract signing
protocol. Moreover, we will adapt the model to work with new attack scenarios, like
confabulated attacks using data from two different signature sessions. In parallel, we
will work in the improvement of the model in order to include more control over the
intruder’s behavior and some other enhancements.

Acknowledgement

This work is partially supported by MEC and FEDER under projects: ”Seguridad en
la Contratacién Electronica basada en Servicios Web” (CICYT TSI2007-62986) and
ARES ”Grupo de Investigacion Avanzada en Seguridad y Privacidad de la Informacién”
(Consolider - Ingenio CSD2007-004). We would like to thank Yongyuth Permpoon-
tanalarp for his useful comments and support during the development of this work.

References

1. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In: Proceed-
ings of 21st Symposium on Principles of Distributed Computing, pp. 12-19 (2003)

2. Ferrer-Gomila, J., Payeras-Capella, M., Huguet-Rotger, L.: Efficient Optimistic N-Party
Contract Signing Protocol. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200,
pp. 394-407. Springer, Heidelberg (2001)

3. Asokan, N., Shunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: 4th ACM
Conference on Computer and Communications Security, pp. 7-17 (1997)

4. Bao, F., Wang, G., Zhou, J., Zhu, Z.: Analysis and Improvement of Micali’s Fair Contract
Signing Protocol. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 176-187. Springer, Heidelberg (2004)

5. Sornkhom, P., Permpoontanalarp, Y.: Security analysis of micali’s fair contract signing pro-
tocol by using coloured petri nets. In: 9th ACIS Int. Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 329-334 (2008)

6. Ferrer-Gomila, J.L., Payeras-Capella, M.M., Huguet-Rotger, L.: Optimality in asynchronous
contract signing protocols. In: Katsikas, S.K., Lépez, J., Pernul, G. (eds.) TrustBus 2004.
LNCS, vol. 3184, pp. 200-208. Springer, Heidelberg (2004)

7. Asokan, N., Shoup, V., Waidner, M.: Asynchronous Protocols for Optimistic Fair Exchange.
In: IEEE Symposium on Research in Security and Privacy, pp. 8699 (1998)

8. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 449. Springer, Heidelberg (1999)

120

9.

10.

11.

M. Payeras-Capella et al.

Zhou, J., Deng, R., Bao, F.: Some remarks on a fair exchange protocol. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 46-57. Springer, Heidelberg (2000)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. Intenationals Journal on Software Tools for Technol-
ogy Transfer, 213-254 (2007)

Kremer, S., Markowitch, O., Zhou, J.: An Intensive Survey of Fair Non-Repudiation Proto-
cols. Computer Communications 25, 16061621 (2002)

	Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets
	Introduction
	FPH Contract Signing Protocol
	Ideal Features of a Contract Signing Protocol
	Description of FPH Contract Signing Protocol
	Informal Analysis of Fairness and Non-repudiation of FPH Protocol

	Description of the Model Used for the Formal Analysis of Fair Exchange Protocols
	Colored Petri Nets
	General Assumptions and Methodology
	Description of the Model
	Query Functions

	Formal Analysis of FPH Contract Signing Protocol
	Evaluation of the Vulnerability to Previously Defined Attacks
	Fairness Analysis

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

