
A Novel Architecture for Secure and Scalable

Multicast over IP Network

Yawen Wei, Zhen Yu, and Yong Guan

Department of Electrical and Computer Engineering,
Iowa State University, Ames IA 50011, USA
{weiyawen,yuzhen,yguan}@iastate.edu

Abstract. Currently, multicast services can be implemented at the IP
layer or the application layer. While IP multicast violates the stateless
paradigm of Internet and incurs great difficulties to congestion and flow
control, application-layer multicast is lack of scalability due to the un-
reliability and resource constraints of end-hosts. Moreover, security is
a main weakness in Internet-wide group communications. We propose
in this paper a novel architecture for secure and scalable multicast in
the Internet. In our architecture, a Multicast Agent in each Autonomous
System (AS) is responsible for delivering multicast packets at the AS-
level, relaying packets to end-hosts, and generating and updating keys
to secure group communications. The proposed membership manage-
ment protocol enables no-delay to membership updating; the proposed
inter-domain routing protocol reduces the worst-case link stress by one
magnitude compared to state-of-the-art protocols, and bounds the extra
bandwidth cost within one percent compared to traditional IP multicast.

Keywords: IP Multicast, Routing protocol, Security, Inter-domain,
Source-encoding.

1 Introduction

Multicast is an important and efficient mechanism to support many applica-
tions such as multimedia teleconferencing, news distribution, software updates
and network games. Previous research efforts have been devoted to implement-
ing multicast service either at the IP-layer or at the application-layer, however,
the protocols implemented at both layers have drawbacks and have never been
Internet-widely deployed.

In application-layer multicast protocols [5,6,7,8,11,13,14,16,20,22,27], end-
hosts are organized into tree-based or mesh-based overlays to forward packets.
Since end-hosts are limited in bandwidth and often experience abrupt crashes or
failures, the overlay they form always suffers from large end-to-end latency and
low data delivery rate. Meanwhile, since end-hosts need to periodically measure
link quality to add/drop certain overlay links to improve tree or mesh topol-
ogy, expensive operation overhead will be incurred, especially for large groups.
Therefore, application-layer protocols cannot become a practical solution for
large-scale group communications in the Internet.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 417–436, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

418 Y. Wei, Z. Yu, and Y. Guan

We thus pass the hope on network-layer protocols [3,4,9,10,12,15,17,21,24].
However, IP multicast also has some limitations and has not been deployed
through the Internet either. First, IP multicast requires routers to maintain per-
group state and violates the stateless paradigm of the Internet. Second, it raises
great difficulties in providing reliability, flow and congestion control at higher
layers. Finally, IP multicast lacks a strategic business model and a security ar-
chitecture. In the current open usage model, any host may send packets to an
existing multicast group. Besides, flooding and DoS attacks will render multi-
cast service unreliable or unavailable, and make the accounting for providing
multicast service infeasible.

In this paper, we propose a secure and scalable architecture for Internet-
wide multicast applications. In the proposed architecture, a border router called
Multicast Agent (MA) exists in each Autonomous System (AS). These MAes
are in charge of delivering multicast packets at the inter-domain level, relaying
multicast packets to end-hosts at the intra-domain level, and generating and
updating keys to secure group communications. The security are achieved in
a hierarchical manner: the packets delivered between MAes are encrypted by
a global key, and the packets delivered between end-hosts in a local domain is
encrypted using a local key.

In the proposed architecture, we first design a membership and key manage-
ment protocol. In our protocol, the membership information is explicitly dis-
tributed using augmented-packets, rather than using the traditional way that
membership information are periodically exchanged between neighboring do-
mains. By our design, not only bandwidth is saved from the exchanging traffic
but also the propagation latency is reduced.

To achieve efficient inter-domain routing, we design an inter-domain routing
protocol using the source-encoding technique. The MA at the source domain con-
structs and encodes dissemination tree information into each multicast packet.
The benefits of such source-encoding are as follows: (1) The source domain knows
all in-group domains, thus service fee can be properly charge by ISPs based on
the scalability of the multicast group. (2) The privilege of receiving/sending
packets is restricted only to in-group members, so a more secure usage model
can be enforced. (3) No state information needs to be maintained at intermediate
routers, i.e., the stateless nature of Internet is maintained. (4) Since the source
can specify the targeted recipients of each packet, hence, subgroup communica-
tions can be conveniently supported. The last feature is especially beneficial in
some applications where the participating members have heterogeneous inter-
ests. For example, in the Commercial Mobile Alert System (CMAS) [1], the text
alerts related to disaster, immanent and child abductions are required to send
to geographically targeted subgroups of people’s cell phones.

In our inter-domain routing protocol, instead of requiring all tree information
to be encoded into the packet header, we decompose in-tree nodes into two
hierarchical levels, and shim header and shim payload of a packet encodes the two
levels respectively. Such hierarchical design can effectively mitigate the packet
duplication problem. It is proved by simulations that our protocol can achieve

A Novel Architecture for Secure and Scalable Multicast 419

good scaling, e.g., the number of duplicated packets is around twenty on the
most stressful link.

The rest of this paper is organized as follows. Section 2 provides an overview of
our proposed multicast architecture. Section 3 describes the group membership
management protocol. Section 4 describes the key management issues. Section
5 proposes an inter-domain multicast routing protocol. Section 6 evaluates the
proposed multicast architecture through simulations and compares it with state-
of-the-art multicast protocols. We discuss the related work in Section 7 and
conclude the paper in Section 8.

2 Overview

In our proposed multicast architecture, we assume a border router called Mul-
ticast Agent (MA) exists in each AS. The MAes are in charge of delivering
multicast packets at the AS-level, relaying multicast packets to end-hosts that
are interested in sending/receiving these packets, and generating and updating
keys to secure group communications. All multicast traffic in and out of an AS
will be handled by the responsible MA (we will discuss multiple MAes within a
local domain in the Discussion Section 3.3).

At the source domain, when the MA receives a multicast packet from an
end-host, it first constructs an AS-level dissemination tree then inserts the tree
information into the multicast packet. The encoded tree information can lead
downstream MAs to correctly forward the packet. When a border router receives
the packet, it forwards it to the local MA. The MA checks if any end-hosts in its
domain are interested about this packet. If yes, it multicasts the packet within
the local domain; otherwise, it does not perform the intra-domain multicasting.
Then, the MA decodes the tree information in the packet and forwards the
packet to border routers in other domains. In our architecture, the security are
achieved in a hierarchical manner: the packets delivered at the inter-domain level
are encrypted using a global key shared by MAes, while the packets within a local
domain are encrypted using a local key shared by end-hosts and the local MA.

In the following, we will describe the group membership management protocol
in Section 3. We then discuss the key management issues in Section 4. In Section
5, we propose the inter-domain routing protocol which is used to construct,
decompose and encode/decode AS-level dissemination trees.

3 Group Membership Management

3.1 Intra-domain Management

To multicast a packet to end-hosts in a local domain, the MA should know which
end-hosts are group members. We do not specify any intra-domain multicast
protocols used in a local AS, because most existing protocols can scale well at
the domain level. Specifically, if PIM-SM or CBT protocol is used, then the
MA constructs a unicast tunnel to the local Rendezvous Point (RP) from which

420 Y. Wei, Z. Yu, and Y. Guan

it knows the membership information; it also relays multicast packets through
the tunnel to/from the RP. If PIM-DM or MOSPF protocol is used, then the
MA can participate as an active member and perform like a normal end-host to
multicast to the group.

3.2 Inter-domain Management

The inter-domain level group membership is managed by MAes. Since any in-
group MA may become the source of a multicast packet and need to know
destination domains to construct a dissemination tree, the membership informa-
tion should be available to every in-group MA. A simple approach to achieve
such group-wide awareness is maintaining membership information at a cen-
tral server. However, this will lead to large query traffic towards the server and
cause it overloaded or even out-of-service. Therefore, we suggest every in-group
MA keeps a copy of the member list and collaboratively updates the list when
membership changes.

In this subsection, by membership we refer to the membership at the domain-
level. In other words, only when the number of end-hosts in an AS domain
rises above zero or decreases to zero, the MA of this domain joins or leaves the
multicast group and becomes an in-group or out-group MA.

Augmented Packet. We first introduce the Augmented Packet which is a basic
technique used in our inter-domain membership management. The format of an
augmented packet is shown in Fig. 1 where a normal packet is augmented with
a membership payload. In this membership payload, a header contains 32 bits.
The first 8 bits (denoted by nj) indicate the number of newly-joined MAes; the
second 8 bits (denoted by nl) indicate the number of leaving MAes; the last 16
bits are the checksum computed over the entire membership payload to ensure
its integrity. Followed the header are the IDs of joining MAes then the IDs of
leaving MAes.

The reason for introducing such augmented packet is to avoid the extensive
traffic caused by sending a separate updating message for every member join or
leave, especially if we consider the fact that millions of multicast groups may
exist in the Internet simultaneously.

Now the question is which MA should be in charge of appending the member-
ship payload to its multicast packet? A reasonable answer is that the first MA

IP Header Data Payload Membership Payload

nj nl checksum
ID1 ID2
ID3 ID4
… … Padding

Fig. 1. Augmented packet format

A Novel Architecture for Secure and Scalable Multicast 421

that multicasts packet after membership changes should take the responsibility,
because the delay in membership updating can be minimized. However, the next
source MA is not directly available except for some application (for example,
in IPTV, all data are originated from a source domain where the TV station
resides). In our approach, we suggest MAes use self-learning algorithms to make
predictions based on historical records on previous source domains. They can use
those algorithms that are used to handle page replacements in virtual memory
management, or they can predict the next source domain as the one that most
recently or most frequently sends packets, or they can consider both frequency
and recentness and apply aging algorithm for the prediction.

Membership Updates upon Member Joins. The detailed process for MA
to join a multicast group is described in the following steps (Fig. 2).

– Step 0: If a MA (say, MA-1) wants to join a group, it should first con-
tact the group registry server and get bootstrapped with a list of in-group
MAes. (Here, we consider close usage model in which every member explicitly
goes through registration process to obtain the privilege of sending/receiving
packets from this group. Close usage model provides many benefits such as
better control, traffic engineering and accounting.) The list obtained in boot-
strap does not need to be complete, i.e., it may just contain several in-group
MAes.

– Step 1: The new member MA-1 randomly selects a MA (say, MA-2) from its
bootstrap list, and sends to it a join message.

– Step 2: MA-2 predicts the next source MA based on the record of source
domains during a past period of time, and transmits the AS number of this
MA (say, MA-3) together with a full list of all in-group MAes back to MA-1.

– Step 3: If MA-1 happens to have a multicast packet originated from its
domain at this moment, it directly multicasts an augmented packet with
its ID included in the membership payload, then goes to step 6. Otherwise,
MA-1 will solicit help from MA-3 by sending to it a request, asking MA-3
to send an augmented-packet with MA-1’s membership information.

MA-2 MA-1

1. join
2. full List, MA-3

MA-3
(predicted by MA-2)

3. request

5. request
4. data
6. stop

foster parent new member

MA-4
(predicted by MA-1)

Register Server

0. bootstrap

Fig. 2. A new MA joins a multicast group

422 Y. Wei, Z. Yu, and Y. Guan

– Step 4: Notice the next source prediction may not be accurate, i.e., MA-3
may not become the source during a period of time in the future. In this
case, MA-1 will not receive any data for this group during this time since
other in-group MAes are not aware of the existence of the new member.
To mitigate this problem, we designate MA-2 as the foster-parent of MA-1.
That is, when MA-2 receives any packet for this multicast group, it should
relay the packet to MA-1 through a unicast tunnel between them.

– Step 5: If after a certain period of time t after joining, MA-1 has not received
any packet containing its ID in the membership payload, it knows MA-3 has
not sent out any augmented-packet yet. Then MA-1 will predict another
MA (say, MA-4) based on its own historical record of the source domains,
and send to it a request message. MA-1 repeats this step by periodically
contacting different MAes until its membership can be group-widely noti-
fied. However, if more than a certain number of predications fail, MA-1 will
multicast a separate message by itself to announce its membership.

– Step 6: In the end, MA-1 informs its foster-parent to remove it from the
foster-children list.

Membership Updates upon Member Leaves. If an existing MA wants
to leave a multicast group, it either multicasts an augmented-packet itself, or
predicts the next source MA and informs it about its leaving. We notice that
before a leaving MA is finally removed from the member list, the MA may
continue receiving multicast packets, so it should perform as an in-group MA
for a period of time to guarantee correct data delivery.

3.3 Discussion

In this subsection, we would like to discuss the consistency issue and multiple
MAes issue associated with our inter-domain group membership management
protocol.

Consistency. We notice that there may be some timing and delay in commu-
nicating MA joins/leaves at the inter-domain level. Consider a scenario where
a users is channel surfing. The corresponding MA, MA-1, will first announce
join then announce leave. Assume MA-1 contacts a predicted source MA, MA-2,
and sends a join request to it. Later, MA-1 contacts another predicted source
MA, MA-3, and announces its leave. Due to the possible timing/delay, some
MAes may receive leave information by MA-3 prior to join information from
MA-2, which may create a situation where not all MAes have a consistent view
about MA-1’s membership. Our fix to this problem is to use sequence numbers
for each MA in sending out join/leave updates. Therefore, when in-group MAes
receive conflicting group membership information, they can ignore the obsolete
information and only keep the latest information to achieve consistency.

Multiple MAes. In our architecture, we assume one border router plays the
role as the local MA. The selection can be based on which border router is the

A Novel Architecture for Secure and Scalable Multicast 423

exit point to most other ASes, or which has the smallest IP address in the local
domain. However, the vulnerability and unreliability associated with a single MA
is present. First, when the current MA crashes or reboots, another border router
has to take over the responsibility and the handoff process will introduce some
delay. Second, since all group traffic in/out of the domain is through a single
MA, the traffic concentration problem is obvious given the inter-domain traffic
is high in the backbone. We are considering to allow multiple MAes to share
the workload of handling group traffic in a local domain. Some design challenges
exist to guarantee a consistent view among multiple MAes of both the intra- and
inter-domain membership, and achieve the smooth cooperations between them,
and these will be our interested research subjects in the future.

4 Group Key Management

Given that security is one of the main weaknesses of IP multicast, the need to
secure multicast packets is particularly apparent and crucial. Secure group com-
munication systems mostly rely on a group key, which is a secret only known
to group members and used to encrypt multicast messages. When group mem-
bership changes, a new group key should be established to guarantee forward
security and backward security, that is, members who have left the group cannot
decrypt messages in later sessions, and new members cannot decrypt messages in
previous sessions. The challenging problem is to design key management schemes
that can scale to large groups or groups with highly dynamic memberships. Pre-
vious key management schemes, including the key graph approach [25,26] and
its extensions, require at least O(logN) computation and communication per re-
keying operation, where N is the number of group members. In many Internet
multicast applications such as the massive multiplayer games, the value of N,
i.e. the number of participating players, can be several millions, which will make
rekeying overhead particularly huge.

Instead of requiring all end-hosts use a single group key to secure their com-
munications, in our architecture, we suggest to organize the end-hosts into a hi-
erarchy that is consistent to the Internet topology. Namely, the end-hosts within
an AS form a subgroup, and the domain’s MA is the subgroup head. Within
a local domain, multicast packets are encrypted using a local key shared by all
in-group end-hosts and the local MA; at the inter-domain level, packets are en-
crypted using a global key shared by all in-group MAes. Therefore, if an end-host
joins or leaves a group, only the local key needs to be changed, but the global
key is maintained the same, which can greatly mitigate the scalability problem.

When a multicast packet enters/leaves a domain, decryption and re-encryption
should be performed. Precisely, when a MA relays a multicast packet into its do-
main, it needs to decrypt the packet using the global key then re-encrypt it us-
ing the local key. To enhance the efficiency of the cryptographical operations, we
can adopt techniques suggested by previous works such as [18]. Such that the lo-
cal/global keys are not used to encrypt and decrypt a packet directly, instead,
they are used to encrypt and decrypt a random session key, and the session key is

424 Y. Wei, Z. Yu, and Y. Guan

the real key that encrypts the packet. In this way, decrypting and re-encrypting
a packet is reduced to decrypting and re-encrypting the session key.

In the following subsections, we discuss the key management at the intra- and
inter-domain level in more detail.

4.1 Local Key Management

The MA serves as key server within each domain. The MA is responsible to
distribute a local key for each group, and update the key whenever membership
changes. We emphasize that when an end-host leaves or a new end-host joins
the group, only the local key has to be updated, while the global key will remain
the same. The MA shares a pair-wise secret key with every end-host. (1) When
a new host joins, the MA generates a new local key, encrypts it using the shared
key with the new host and unicasts to the host. Meanwhile, it encrypts the
new local key using the old local key, and multicasts to previous hosts. (2)
When an existing host leaves, the MA also generates a new local key, encrypts it
using each of the shared keys with the remaining members, and multicasts one
message containing all the encrypted keys to them. The computation overhead
for member join and leave is O(1) and O(n) respectively, where n is the local
group size. Although scalability may not be a severe issue within a local domain
(compared to Internet-wide groups), we do not limit ourselves to adopt any key
management algorithms that have less computation, communication or storage
overhead.

4.2 Global Key Management

We assume each MA shares a pair-wise key with every other MA in the Internet.
Since it is not reasonable to assume a single Internet-wide key server for all
multicast groups, we require the global key for each group is maintained by
in-group MAes. Precisely, for a group, one in-group MA is selected as the key
server, and is responsible of distributing a new global key to the current in-group
MAes, whenever a new MA joins or an existing MA leaves the group. We can
adopt any re-keying algorithm for the key server to update the global key.

If the key server itself wishes to leave, it has the authority to designate another
in-group MA to be the key server. The designation can be based on reliability,
bandwidth, membership length and local group size. For instance, the MA with
the largest number of participating end-hosts is less possible than other MAes
to quit the group, thus it can be selected as the next key server. For a newly-
joined MA whose membership have not been notified to other in-group MAes
(thus not known to the key server either), the multicast packets relayed from its
foster-parent to the new member can be encrypted and decrypted using their
pair-wise key.

5 Inter-domain Multicast Protocol

In this section, we propose an efficient inter-domain multicast protocol. We first
discuss how a dissemination tree is constructed, decomposed and encoded at

A Novel Architecture for Secure and Scalable Multicast 425

AS Number AS Path Next Router Interface
4515 34225 41692 3491 4515 193.138.164.1 m0
6356 34225 1299 6830

22773 22318 6356
193.138.164.1 m1

… … … … … … … …

Fig. 3. Routing table at MA34225

the source MA, and then we describe how the tree information is decoded and
updated at downstream MAes.

5.1 Preliminary Work

Before we introduce our inter-domain routing protocol, we first take a look at a
previous work related to our protocol, i.e., the Free Riding Multicast (FRM) [21]
protocol. In FRM, the border router of a source AS computes a dissemination
tree from the union of unicast paths, then puts the tree information into the
fixed-size shim header of each multicast packet. If the tree is very large, then
multiple packets have to be transmitted to carry the encoded tree information.
The packet duplication problem can be very severe, e.g., it is reported that when
the dissemination tree spans on all AS domains in the Internet, the worst-case
physical link has to transmit about 150 duplicated packets.

Although two approximation methods were suggested to mitigate packet du-
plication problem associated with FRM, there are some practical issues with the
suggested methods. (1) The first method is to omit customer ASes at tree leaves
when encoding the dissemination tree. However, this requires the border router
at the source AS to know customer-provider relationships between other ASes.
Although some techniques [23] can help guess AS relationships by exploring the
AS graph, the guess cannot be validated because the customer information is
proprietary information of an ISP. Therefore, the guesses would be wrong and
packets would not be able to be delivered to some valid in-group members at
the leaves. (2) The second approximation method is to replace all the tree links
connecting a node by one aggregated link, if the number of tree edges from the
node is a large fraction of its total edges. It is claimed that an AS domain A
forwards packets to its neighbor B only when B-X (X is a neighbor of B) lies
on the path from A to some destination domain. However, this cannot ensure
A-B is an in-tree link because the path containing B-X do not necessarily pass
domain A. The consequence is that some packets will be sent on non-tree links.

In the following, we propose a novel inter-domain multicast protocol that can
effectively mitigate packet duplications and achieve efficient data delivery.

5.2 Construction of Hierarchical Dissemination Tree

For a multicast group, the source MA can learn all in-group MAes from the
membership management protocol we have described in Section 3. To construct
a dissemination tree, the source MA looks up its MA routing table to find out

426 Y. Wei, Z. Yu, and Y. Guan

A

JIHG

FED

CB

NMLK O

A

H

F
EB

NM

LK O

Level 0

Level 1

Level 2

Virtual Tree

Real Trees

B

H

G

D

LK

A

FE

C

B

F

J

O

Level 3

I

Out-group MA
In-group MA

Virtual Link
Real Link

Fig. 4. Decomposition of the flat tree

the unicast path leading to each in-group domain (an example is shown in
Fig. 3). The routing table is indexed by AS numbers and each entry provides
the AS paths, next-hop, interface, and other path attribute information. This
table can be easily constructed using BGP RIB and updated using BGP routing
updates. If multiple policy-permitted paths exist leading to a same AS, then
the best-quality path can be selected. For instance, the path with the smallest
AS-hops or the shortest geographical distance [19] can be selected.

After consulting this table, the source MA can construct a flat tree by the
union of unicast pathes leading to all destination domains. Then, it decomposes
the flat tree into one virtual tree and multiple real trees. Fig. 4 presents an ex-
ample of the decomposition. The virtual tree consists of virtual links connecting
in-group MAes, and the real trees consist of real links connecting out-group
MAes. The source MA puts the information about the virtual tree and the real
tree rooted at itself into the packet. The real tree information can guide out-
group MAes to forward the packet properly until it reaches in-group MAes at
level 1 in the virtual tree. Then, each level-1 MA replaces the real tree in the
packet with the one rooted at itself, which leads the packet to level-2 MAes, and
so forth. Finally, the packet will traverse through the whole tree and visit every
in-group MA.

5.3 Shim Header and Shim Payload

Now the problem is how the source MA encodes and attaches tree information
to each multicast packet. Since real-tree information is used by out-group MAes
and virtual-tree information is used by in-group MAes, we can encode them into
shim header and shim payload of a packet, respectively (Fig. 5).

We adopt the technique of bloom filter to encode tree information into shim
header and shim payload. Bloom filter is a space-efficient probabilistic data struc-
ture that can support membership queries. It uses k independent hash functions
to map every member to k different positions in a m-bit vector. When using

A Novel Architecture for Secure and Scalable Multicast 427

IP

Header
Shim

Header
Data

Payload
Shim

Payload
Membership

Payload

kv nv checksum

BF1 (length=20 Byte)

BF2 (length=20 Byte)

kr checksum
BF (length=8 Byte)

Fig. 5. Shim header and shim payload formats

bloom filter, false negative is guaranteed to be zero, but false positives is nonzero
and will increase with the number of members hashed into the filter. Given the
highest acceptable false positive, the maximum number of members one bloom
filter can afford can be determined. We assume all MAes in the Internet share
a same set of hash functions, therefore, an MA can use the set of functions to
decode the links from filters constructed by other MAes.

Fig. 5 shows the format of shim header and shim payload. Shim header consists
of 32 control bits and a 8-byte bloom filter to contain real tree links. The control
bits include 4 bits (denoted by kr) that indicate the number of hash functions,
16 bits checksum that are computed over the entire shim header to ensure the
integrity, and the remaining 12 bits for future use. Shim payload consists of 32
control bits and multiple fixed-length bloom filters (20 bytes in our design) .
The control bits include 4 bits (denoted by kv) that indicate the number of hash
functions, 12 bits (denoted by nv) that indicate the number of bloom filters, and
16 bits of checksum that are computed over the entire shim payload to ensure
its integrity.

5.4 Tree Encoding on Source MA

In this subsection, we give an example that illustrates the tree encoding process
at a source MA. As we can see in Fig. 6, source node A sends packet P1 to an
in-group node (node B) and packet P2 to an out-group node (node C). In packet
P1, the shim header contains link A:B, which is both a real link and a virtual
link, and the shim payload contains virtual links B:K, B:L and B:H. In packet
P2, the shim header contains links A:C, C:E and C:F, and the shim payload
contains two bloom filters corresponding to two subtrees, one with virtual link
F:O and the other with virtual links E:I, I:M and I:N. In this example, the
whole dissemination tree is first decomposed into one virtual tree and three real
trees, then the virtual tree is decomposed into three sub virtual trees. Given the
maximum number a bloom filter can afford, the decomposition of the virtual
tree is to ensure no bloom filter contain more links than the threshold.

5.5 Tree Decoding and Updating on Transit MAes

We now discuss the checking and updating process at downstream MAes. If the
MA is an out-group MA, it simply checks all its AS-neighbor-links to find out

428 Y. Wei, Z. Yu, and Y. Guan

A

JIHG

FED

CB

NMLK O

P1

Shim Header Shim Payload

P3

P2

P4

P1 IP
header B:K, B:L, B:HDataA:B

P2 IP
header A:C, C:E, C:F Data E:I, I:M,I:N

IP
header DataP3 F:J, J:O

P4 IP
header B:K, B:L, B:HB:D,D:H,D:G

G:K,G:L Data

F:OP2P2

F:O

Fig. 6. Example of tree encoding, decoding and updating

the present ones in the shim header, then forwards the packet accordingly. No
updating on the shim header or payload is needed. If the MA is an in-group
MA, it first checks the shim payload and decodes the present virtual links, then
it rewrites the shim head to encode the links of the real tree rooted at itself,
and removes some bloom filters in the shim payload. As the example shown in
Fig. 6, a transit MA node, node F, receives packet P2 and sends packet P3. It
rewrites the shim head to contain links F:J and J:O, then it removes the second
bloom filter in the shim payload, because none of the virtual links E:I, I:M and
I:N in that filter will be of future use as the packet traverses deeper into the tree
through node F.

When an in-group MA checks the bloom filters in the shim payload, it does
not need to check the virtual links connecting itself and every other in-group MA,
instead, it only needs to check those connecting itself and its children MAes in
the virtual tree rooted at itself. We can prove the correctness of such checking
by the following proposition.

Preposition 1. In a multicast group G, node i’s child in a virtual tree rooted
at node j (j �= i) must be i’s child in the virtual tree rooted at itself.

Proof. We prove by contradiction. We denote the virtual tree constructed for
multicast group G and rooted at node t by T G

t . Assume in the virtual tree T G
j ,

there exists a child k of node i, such that k is not i’s child in the virtual tree T G
i ,

which means another node s must lie on the shortest path from node i to node
k in T G

i , denoted by Lik. Since Lik must be a part of Ljk in T G
j (otherwise Ljk

will not be the shortest), node s will also lie between node i and k in the path
Ljk in T G

j , which implies that node k is not a child of i in T G
j . Contradicted.

5.6 Discussions

We now discuss some properties of our proposed inter-domain routing protocol.

IP Fragments. During the packet delivery process, IP fragmentation may take
place at an intermediate router. Our protocol deals with such situations by doing
the followings: first, both the IP header and the shim header from the original IP

A Novel Architecture for Secure and Scalable Multicast 429

datagram should be copied to new datagrams. Therefore, the shim header is per-
packet based, which enables out-group MAes to solely look at a packet’s shim
header to forward it correctly. Second, the shim payload should be fragmented
and inserted into multiple packets. Since in-group MAes are the destinations of
all the fragmented packets, IP reassembly will be performed at every in-group
MA and the shim payload will be recovered.

Bandwidth Consumption. The bandwidth consumption is minimized in our
protocol by adopting two important techniques.

First, the hierarchical decomposition effectively alleviates packet duplications.
In the basic source-encoding approaches, the entire flat tree is encoded into
the shim header of a packet. Since the shim header has very limited length
and cannot accommodate too many links, multiple shim headers have to be
constructed, which directly causes duplicated packets. In our protocol, the virtual
tree is inserted into a packet’s payload which can contain up to 65KB data. Only
a small real tree needs to be inserted into the shim header. Fig. 6 showcases the
benefits. The shim header of packet P2 only contains three links A:C, C:E and
C:F in our protocol; without tree decomposition, the shim header would have to
contain eight links A:C, C:E, C:F, E:I, I:M, I:N, F:J and J:O.

Second, we encode virtual links into multiple bloom filters instead of a single
large one, which further reduce bandwidth consumptions. As a packet traverse
deeper into the dissemination tree, in-group MAes can continuously remove some
“useless” filters that contain virtual links not present in its subtrees. Therefore,
packet size can be reduced and bandwidth can be saved. This advantage can be
seen clearly in Fig. 6, where node F removes the second bloom filter in the shim
payload, since none of the virtual links E:I, I:M and I:N will be of future use.

Processing Delay. In our protocol, there are three procedures where delay
may be introduced.

First, the processing delay can be introduced at the source MA by constructing
shim header and shim payload. However, we notice a MA can pre-construct the
dissemination tree and cache the shim header and payload information. For
example, a MA will cache for groups for which it has a large number of end-
host users, because it is very probable for it to become the source MA in the
future.

Second, since an out-group/in-group MA should check the shim header/
payload for present real/virtual links, there is a delay associated with the look-
ups in bloom filters. Fortunately, bloom filters can be implemented using very
efficient hardware like TCAM [28], such that the to-be-checked links can be
hashed into multiple rows and accessed in parallel to achieve high efficiency.

Third, delay may be incurred at an in-group MA by the rewriting operation of
the shim header of a packet. To mitigate this delay, a MA can pre-compute and
cache the bloom filter containing the real links associated with each virtual link,
then it can rapidly construct the shim header by simply XORing these filters. As
an example, node B in Fig. 6 can cache three bloom filters: filter-1 contains B:D
and D:H corresponding to the virtual link B:H, filter-2 contains B:D, D:G and

430 Y. Wei, Z. Yu, and Y. Guan

G:K corresponding to virtual link B:K, and filter-3 contains B:D, D:G and G:L
corresponding to the virtual link B:L. After receiving packet P1, node B checks
the presence of virtual link B:H, B:K and B:L. So it XORs filter-1, filter-2 and
filter-3 and inserts the result into the shim header of packet P4. Currently, less
than 30,000 AS domains exist in the Internet, which means the memory cost
for caching the bloom filters associated with virtual links will be no more than
240KB at all MAes.

6 Simulation Result

In this section, we conduct simulations to evaluate the performance of the pro-
posed multicast architecture. We mainly focus on the network cost of our inter-
domain multicast protocol and compare it with other state-of-the-art protocols.
The protocols we use to compare with our protocol include the followings. (1)
IP multicast: the dissemination tree is composed of shortest reverse paths from
the source AS to destination ASes. (2) Per-AS unicast: the source AS sends a
separate unicast packet to each destination AS. (3) FRM: the dissemination tree
is constructed by the union of unicast paths from the source AS to destination
ASes, and the whole tree is encoded into shim header of every packet. (4) AS-
level overlay: the dissemination tree is constructed using our proposed protocol,
but the packets are unicast between different MAes.

We use the following metrics to measure the network costs associated with
different multicast protocols. (1) Link stress is defined as the number of dupli-
cate packets transmitted on a physical link. By duplicate packets we mean the
packets that have identical application payload, though they may have different
protocol-related headers or payloads. Obviously, the stress on all physical links is
one in IP multicast. (2) Protocol overhead is defined as the extra bandwidth con-
sumed by the protocol-related data in the packets. In IP multicast and per-AS
unicast, the protocol overhead is zero; in FRM, AS-level overlay and our pro-
tocol, the protocol overhead is not zero because the tree information is present
in the packets’ headers/payloads. (3) Bandwidth cost : This metric evaluates the
total bandwidth consumption to multicast one packet to all receivers. Essen-
tially, this metric reflects the combined impacts of the link stresses and protocol
overheads.

Our simulations are conducted using real BGP data from RIS [2]. RIS is a
RIPE NCC project that collects and stores routing data from the Internet. We
download one day’s files of BGP data collected by the Remote Route Collec-
tors (RRCs) in MRT format. After removing the incomplete measurements and
IPv6 paths, we select twenty IPv4 full tables as the basis of our experiments.
The results are averaged over 200 runs using the 20 BGP tables with 10 runs
per table. In our further work, we will implement our protocol on real border
routers for better understanding of the protocol’s behavior in dynamic real-world
environments.

A Novel Architecture for Secure and Scalable Multicast 431

6.1 Link Stress

Fig. 7(a) compares the CDF of link stresses of our protocol and other multicast
protocols in a typical run when the multicast group consists of 10,000 in-group
domains. The per-AS unicast and AS-level overlay have very high link stresses,
with the worst-case link stress reaches four and three orders of magnitude re-
spectively. In FRM, about 99.6% links see one transmission, but the worst link
stress is over one hundred. Since the worst case always happens on links between
the root and its children domains in the dissemination tree, the congestion of
these links will impact many downstream members. Our protocol effectively re-
duces the stresses on all physical links: more than 99.9% links see exactly one
transmission, and the worst-case stress can be reduced to only 14.

Fig. 7(b) plots the worst link stress for our protocol and other multicast pro-
tocols for different group sizes. We select in-group AS domains randomly and
increase group size from 10 domains to 20,000 domains. In per-AS unicast pro-
tocol, the worst stress increases linearly with the group size. In AS-level overlay,
the worst link stress first increases then decreases to a few hundreds. This is
because the duplicate transmissions are incurred by the unicast between over-
lay nodes. As the group size increases, an overlay node will have more children,
resulting in more stresses on physical links leading to these children domains.
However, when the group gets even larger, in-group ASes get closer and the
unicast paths between them become shorter, thus, less links are shared between
the unicast paths and the link stresses drop accordingly. In FRM, the worst link
stress gradually increases with the group size, with the highest one around 100.
In our protocol, the max worst link stress is only 21 and happens when group
size is around 5,000. Since the duplicate packets are caused by multiple shim
headers that encode real tree links, hence, the fact that the size of real trees first
increases then decreases with the group sizes directly causes the same tendency
on link stresses.

99.6% 99.8% 100%
10

0

10
1

10
2

10
3

10
4

Physical links on tree

St
re

ss
es

 (
pe

r-
lin

k)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

(a) Stresses on physical links

0 5,000 10,000 15,000 20,000
10

0

10
1

10
2

10
3

10
4

Number of ASes

St
re

ss
 (

w
or

st
 li

nk
)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

(b) Worst stress vs. group size

Fig. 7. Link stress distribution and worst-case Links stress

432 Y. Wei, Z. Yu, and Y. Guan

6.2 Protocol Overhead

Fig. 8 plots the total protocol overhead involved in our protocol and FRM for
different group sizes. Since this metric measures overhead due to shim headers
and payloads, the overhead increases with the to-be-encoded tree size for both
schemes. However, the growing speed is quite different. In FRM, the protocol
overhead grows almost linearly with the group size, which is expected because
the shim header encodes all tree links. In our protocol, the protocol overhead
grows much more slowly, and when in-group domains is 20,000, a total of 0.5MB
bandwidth is consumed. We attribute the conservation on protocol overhead
when using our protocol by two major reasons: first, the tree decomposition hides
the real tree links from virtual tree, resulting in less information to be encoded
in shim headers; second, the shim payload updating at in-group domains enables
further reducing of shim payloads.

5,000 10,000 15,000 20,000
0

0.5M

1M

1.5M

2M

Number of ASes

Pr
ot

oc
ol

 o
ve

rh
ea

d
(t

ot
al

)

FRM
SIMP/AMP

Fig. 8. Protocol overhead vs. group size

6.3 Bandwidth Cost

Fig. 9 shows the bandwidth cost against group sizes. We use 1 KB as the size of
the data packet, and normalize the bandwidth costs of different multicast pro-
tocols with respect to IP multicast. We have repeated this study with different
packet sizes and observed similar ratios for all protocols, which implies that the
bandwidth consumption is largely due to packet duplications rather than the
protocol overheads. This also explains the similar shapes of the curves in this
figure compared to the curves in Fig. 7(b). The two upper curves correspond to
per-AS unicast and AS-level overlay, which show that they introduce at least
100% and 10% more bandwidth cost respectively. The other two curves corre-
spond to FRM and our protocol. We see our protocol performs the best again,
and incurs extra bandwidth cost no more than 1% in the worst case compared
to traditional IP multicast.

A Novel Architecture for Secure and Scalable Multicast 433

0 5,000 10,000 15,000 20,000
100.1%

101%

110%

200%

Number of ASes

B
an

dw
id

th
 c

os
t (

rp
t.

pa
ck

et
-s

iz
e)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

Fig. 9. Bandwidth cost vs. group size

7 Related Work

Numerous protocols have been proposed to provide multicast service at the net-
work layer. Intra-domain multicast protocols include DVMRP [24], PIM-DM
[3] and MOSPF [17], etc. Inter-domain multicast protocols include CBT [4],
PIM-SM [10], BGMP [15], PIM-SSM [12], etc. In DVMRP/PIM-DM [24,3], the
multicast data is first broadcast to all routers, then every router that receives
unwanted multicast data sends a pruning packet to its parent. MOSPF [17] pro-
tocol is an extension to OSPF protocol. Every router refers to the link state
database and the group membership knowledge, and constructs shortest-path
tree from any source to all receivers. CBT [4] and PIM-SM [10] constructs a
shared tree rooted at a group-specific Rendezvous Point (RP). BGMP [15] con-
structs bidirectional shared tree that is rooted at the home domain whose address
allocation includes the group’s address. However, all of above protocols cannot
become efficient solutions for Internet-wide multicast services because of their
scalability limitations. PIM-SSM [12] protocol bypasses the discovery of RP, and
constructs shortest path trees rooted at the single source domain. This protocol
can be used only for single-source multicast model.

FRM [21] uses the source-encoding forwarding technique, where the source
router forms the dissemination tree and inserts the tree information into the
header of multicast packet. Their protocol has severe packet duplications espe-
cially when the group size is large. While our protocol utilizes hierarchical de-
composition and shim payload (instead of shim header) to accommodate large
trees, we can effectively reduces the number of duplicated packets.

Many application-layer protocols have been proposed in recent years. They
can be classified as tree-based [5,11,13,20,27] or mesh-based [7,8,16] protocols,
depending on whether the dissemination tree is maintained directly, or a mesh
is maintained and the tree is constructed over the mesh on demand. The proxy
based overlays [6,14,22] can provide more reliable and efficient multicast service,

434 Y. Wei, Z. Yu, and Y. Guan

where the proxies are application servers deployed throughout the Internet. They
self-organize into overlays to disseminate multicasting packets, and relay packets
to attached end-hosts.

Our protocol can be viewed as a variant of proxy based overlay where the MA
in each domain plays the role of multicast proxy. However, both the membership
management and the routing method in our protocol are completely different
from those in traditional proxy overlays. (1) To manage membership informa-
tion, proxy overlays propagate updating information to all members through
periodically neighboring exchanging. We do not adopt such techniques in our
protocol because of the following reasons: first, MA servers are much more re-
liable than end-hosts, it is not worthwhile to detect the rare abrupt failures of
members using periodic refreshing messages at the expense of high bandwidth
consumptions. Second, the constraints on the exchange frequency between bor-
der routers introduce latency to the propagations of membership information.
In our protocol, we use foster-parent technique to reduce the join-delay, and use
augmented-packets to minimize the communication overhead. (2) For the routing
mechanisms, proxy overlays construct mesh and measure link qualities periodi-
cally, our protocol explores the knowledge about the domain-level unicast paths
available at BGP border routers, and constructs source-optimal dissemination
trees directly.

8 Conclusion

In this paper, we proposed a secure and scalable multicast architecture over IP
Network. In our architecture, the AS-level group membership are explicitly main-
tained by in-group Multicast Agents (MA), the inter-domain routing is based
on source-encoded information in multicast packet, and the multicast packets
are encrypted using two-level keys: a global key at the inter-domain level and a
local key at the intra-domain level. Our future work involves implementing the
proposed multicast architecture in real Internet environments.

Acknowledgments

This work was partially supported by NSF under grants No. CNS-0644238, CNS-
0626822, and CNS-0831470. We appreciate anonymous reviewers for their valu-
able suggestions and comments.

References

1. Rules for Delivery of CM Alerts to the Public During Emergencies (April 2008),
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-99A1.pdf

2. Routing Information Service (October 2007),
http://www.ripe.net/projects/ris/index.html

3. Adams, A., Nicholas, J., Siadak, W.: Protocol Independent Multicast - Dense Mode
(PIM-DM) Protocol specification (Revised). Internet Draft (October 2003)

http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-99A1.pdf
http://www.ripe.net/projects/ris/index.html

A Novel Architecture for Secure and Scalable Multicast 435

4. Ballardie, T., Francis, P., Crowcroft, J.: Core based trees (CBT) an architecture
for scalable inter-domain multicast routing. Technical report, San Francisco, CA
(September 1993)

5. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer mul-
ticast. In: Proceedings of ACM SIGCOMM (September 2002)

6. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construc-
tion of an efficient overlay multicast infrastructure for real-time applications. In:
Proceedings of IEEE INFOCOM (April 2003)

7. Chawathe, Y.: Scattercast: An Architecture for Internet Broadcast Distribution as
an Infrastructure Service, Ph.D. Thesis, University of California, Berkeley (Decem-
ber 2000)

8. Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proceedings
of ACM SIGMETRICS (June 2000)

9. Deering, S., Cheriton, D.: Multicast routing in datagram internetworks and ex-
tended LANs. ACM Transactions on Computer Systems 8(2), 85–110 (1990)

10. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Multi-
cast sparse mode (PIM-SM): Protocol specification (October 2003); Internet Draft

11. Francis, P.: Yoid: your own internet distribution (March 2001),
http://www.isi.edu/div7/yoid/

12. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Mul-
ticast - Sparse Mode (PIM-SM): Protocol Specification (Revised). Internet Draft
(March 2001)

13. Helder, D.A., Jamin, S.: End-host multicast communication using switch-tree pro-
tocols. In: Proceedings of the Workshop on Global and PeertoPeer Computing on
Large Scale Distributed Systems (GP2PC) (May 2002)

14. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., OToole, J.: Overcast: reli-
able multicasting with an overlay network. In: Proceedings of the Symposium on
Operating Systems Design and Implementation (October 2000)

15. Kumar, K., Radolavov, P., Thaler, D., Alaettinoglu, D., Estrin, D., Handley, M.:
The MASC/BGMP architecture for inter-domain multicast routing. In: Proceed-
ings of SIGCOMM, Vancouver, Canada (September 1998)

16. Liebeherr, J., Beam, T.: HyperCast: a protocol for maintaining multicast group
members in a logical hypercube topology. Networked Group Communication, 72–
89 (1999)

17. Moy, J.: RFC 1585: MOSPF. Analisys and Experience. Proteon Inc. (March 1994)
18. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: ACM SIG-

COMM, pp. 277–288 (1997)
19. Oliveira, R., Lad, M., Zhang, B., Zhang, L.: Geographically Informed Inter-domain

Routing. In: Proceeding of IEEE International Conference on Network Protocols
(ICNP) (October 2007)

20. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An Application Level
Multicast Infrastructure. In: Proceedings of 3rd Usenix Symposium on Internet
Technologies & Systems (USITS) (March 2001)

21. Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting IP Multicast. In: Proceed-
ing of SIGCOMM 2006, Pisa, Italy, September 2006, pp. 11–15 (2006)

22. Shi, S., Turner, J.: Routing in overlay multicast networks. In: Proceedings of IEEE
INFOCOM (June 2002)

23. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.H.: Characterizing the Internet
Hierarchy from Multiple Vantage Points. In: Proceedings of IEEE INFOCOM (June
2002)

http://www.isi.edu/div7/yoid/

436 Y. Wei, Z. Yu, and Y. Guan

24. Waitzman, D., Partridge, C., Deering, S.: Distance Vector Multicast Routing Proto-
col. ARPANETWorking Group Requests for Comment, DDN Network Information
Center (November 1988); RFC-1075

25. Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and ar-
chitectures. IETF Request For Comments, RFC 2627 (June 1999)

26. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. In: ACM SIGCOMM, pp. 68-79 (1998)

27. Zhang, B., Jamin, S., Zhang, L.: Universal IP multicast delivery. In: Proceedings of
the International Workshop on Networked Group Communication (NGC) (October
2002)

28. Content Addressable Memory Cypress Semiconductor, http://www.cypress.com

http://www.cypress.com

	A Novel Architecture for Secure and Scalable Multicast over IP Network
	Introduction
	Overview
	Group Membership Management
	Intra-domain Management
	Inter-domain Management
	Discussion

	Group Key Management
	Local Key Management
	Global Key Management

	Inter-domain Multicast Protocol
	Preliminary Work
	Construction of Hierarchical Dissemination Tree
	Shim Header and Shim Payload
	Tree Encoding on Source MA
	Tree Decoding and Updating on Transit MAes
	Discussions

	Simulation Result
	Link Stress
	Protocol Overhead
	Bandwidth Cost

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

