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Abstract. Attacks on wireless networks can be classified into two categories: ex-
ternal wireless and internal wired. In external wireless attacks, an attacker uses a 
wireless device to target the access point (AP), other wireless nodes or the com-
munications on the network. In internal wired attacks, an attacker or authorized 
insider inserts an unauthorized (or rogue) AP into the wired backbone for mali-
cious activity or misfeasance. This paper addresses detecting the internal wired 
attack of inserting rogue APs (RAPs) in a network by monitoring on the wired-
side for characteristics of wireless traffic. We focus on two 802.11 medium ac-
cess control (MAC) layer features as a means of fingerprinting wireless traffic in 
a wired network. In particular, we study the effect of the Distributed Coordina-
tion Function (DCF) and rate adaptation specifications on wireless traffic by ob-
serving their influence on arrival delays. By focusing on fundamental traits of 
wireless communications, unlike existing techniques, we demonstrate that it is 
possible to extract wireless components from a flow without having to train our 
system with network-specific wired and wireless traces. Unlike some existing 
anomaly based detection schemes, our approach is generic as it does not assume 
that the wired network is inherently faster than the wireless network, is effective 
for networks that do not have sample wireless traffic, and is independent of net-
work speed/type/protocol. We evaluate our approach using experiments and 
simulations. Using a Bayesian classifier we show that we can correctly identify 
wireless traffic on a wired link with 86-90% accuracy. This coupled with an ap-
propriate switch port policy allows the identification of RAPs. 

Keywords: Rogue Access Point Detection, 802.11 MAC Protocol, Rate Adap-
tation, Distributed Coordination Function. 

1   Introduction 

A dangerous insider attack is one where cheaply available APs are illicitly plugged 
into the network with the motivation of extending connectivity. Like other insider 
attacks, the AP stays invisible to a firewall as it is actually behind it, thus making it 
difficult to detect. Hence, the AP creates a back door for attackers, obviating the need 
to go through the firewall. This paper presents a practical solution for this attack 
which can happen in one of two scenarios - wired networks with or without existing 
legitimate APs. 

The core of our detection scheme is an agent sitting atop a switch, or a separate 
monitoring device that is connected to the mirror port of a switch, that passively sniffs 
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passing traffic streams on the wired-side. Using inherent differences in wireless char-
acteristics as compared to wired traffic, this agent is able to deem the originating link 
as being wired or wireless. This inference is then followed up with a switch port AP 
authorization policy to differentiate between rogue and legitimate APs. 

Though some of the existing methods work with proven efficacy, they do not try to 
exploit the underlying facets of the wireless MAC protocol to detect RAPs, but in-
stead attempt to classify wireless traffic based on the greater delay observed in net-
work statistics (e.g., round-trip-time (RTT), inter-packet arrival time (IAT)). This is 
based on an assumption that the wireless link capacity will never reach that of wired. 
A more general solution is needed as this may not always be the case. Also, since 
many of the previous algorithms need to be trained on both wired and wireless traffic 
for a given network, they cannot be used in networks without existing APs as there 
would be no prior wireless trace available. 

As in other wired-side detection approaches from academia1, in our method we study 
the arrival pattern of upstream traffic towards the gateway router (and possibly the 
Internet) for traces of the 802.11 MAC protocol. Though downstream TCP flows are 
likely to occupy a significant portion of traffic on the link, our approach is not limited in 
scope. This is because, as will be shown in Section 4.3, our classifier can work with a 
minimal input trace. It works with an accuracy ranging from 87% to 91% for upstream 
data inputs of size ranging from 250 packets to 1000 packets respectively2. At any given 
time, there may be various activities that the RAP is used for in a corporate network, 
such as, web browsing, email, document uploads to file servers, etc. Web browsing 
contributes varying levels of upstream data - mostly in the form of HTTP requests - 
depending on the content and the load of requests. When a web site is crawled by visit-
ing, say five URLs recursively, the amount of upstream data generated varies from 75 
data packets (for primarily text based web pages like www.craigslist.com) up to 400 
packets (for relatively graphic intensive web pages like www.facebook.com). Further, it 
takes about 500 packets to deliver an email of size 750Kb and about 1000 packets to 
upload a file of 1.5Mb (e.g., saving a file to the company file server). Thus, upstream 
monitoring is a viable option. 

Our first approach exploits the collision avoidance process of the DCF in the 
802.11 MAC. To avoid collisions while transmitting, a wireless node has to sense the 
channel prior to an attempt at sending. Once the channel is clear, the node will wait 
for a random time period (chosen from 0 time units to a fixed upper bound) before 
attempting to transmit. If the node senses that the channel is occupied, or in case of a 
collision, the node has to back-off exponentially before retransmitting (i.e., the fixed 
upper bound increases exponentially, increasing the probability of choosing a higher 
back-off value). This procedure, carrier sense multiple access with collision avoid-
ance (CSMA/CA), of the DCF has both fixed components and bounded random com-
ponents that can be artificially produced and used as a signature for wireless traffic. 

The second approach exploits the process of rate adaptation in the 802.11 MAC. 
Rate adaptation algorithms allow wireless hosts to alter their encoding scheme 
(transmission rate) to account for channel interference during transmission. When 
interference is detected, the node adapts its rate and transmits at a slower rate in an 

                                                           
1 The wired-side approaches will be discussed in Section 2. 
2 Refer to Figure 8, the details of which will be discussed in Section 4.4. 
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attempt at reducing packet loss. As the rate adjusts (lower or higher), there are notice-
able and unique ‘jumps’ in the packet IAT. These ‘jumps’ can be artificially produced 
and used as a signature for wireless traffic. 

For both of the above techniques, we show that the signature created stays intact 
and can be detected on the wired-side allowing us to deem specific traffic as originat-
ing from a wireless node. 

Each of the two approaches work best in specific cases. The first approach works 
best when there is little interference and the transmission rate essentially stays con-
stant. Intuitively, the second approach works best when the network is more volatile 
as more ‘jumps’ are produced during that period. Since network stability is unpredict-
able, we combine the two schemes and present a solution that accounts for realistic, 
unpredictable network conditions. 

The remainder of this paper is organized as follows. Section 2 outlines previous 
work in RAP detection. In Section 3 we briefly illustrate why magnitude-based ap-
proaches are not optimal. An introduction to the 802.11 MAC protocol collision 
avoidance mechanism and a breakdown of the delay induced by it on wireless traffic 
is presented in Section 4. A mathematical representation is derived from its inherent 
mechanism following which we validate the model using a Bayesian classifier. A 
similar pattern of presentation is taken in Section 5 as in Section 4, where we perform 
an analysis of the manner in which rate adaptation occurs, followed by accuracy 
measures of our model. In Section 6, we perform a comparative study of the two 
techniques in an attempt to come up with a bridged solution. We present the scalabil-
ity of our techniques in Section 7 and conclude in Section 8. 

2   Related Work 

Current work on RAP detection can be classified into three categories. The first two 
categories contain techniques that use the magnitude of statistics (mean, median, 
entropy, etc.) of IATs and RTTs as the primary metrics for classification respectively. 
The third category contains industry work that primarily make use of radio frequency 
scanning to discover wireless activity within a network. 

References [1-6] fall in the first category. Beyah R., et al., [1] were among the ear-
liest to suggest the possibility of using temporal characteristics, such as IATs, for 
RAP detection. They used the IATs of data packets and TCP ACK packets to identify 
the type of traffic flow. The authors in [2] take a similar approach as that taken in [1] 
but extend the work by creating an automated classifier. Wei W., et al., in [3-4] pre-
sent two similar proposals that examine IATs of TCP ACK pairs to identify the type 
of traffic flow. However, the use of ACK pairs limits this technique to TCP traffic. A 
noteworthy effort in the area of traffic classification is [5] which attempts to catego-
rize different types of access links using median and entropy of packet IATs. The 
approach is however not applicable to detecting RAPs because it is active (requires 
probing) and requires cooperation (probe responses) from malicious nodes. In [6], the 
authors create a spectral profile for WLANs based on the entropy of IATs. They as-
sume link quality and unpredictability of the wireless medium as the cause for greater 
wireless 'uncertainty' and do not study the effect of the DCF. 



 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 397 

 

In the second category, [7-9] make use of RTT as a metric for classification. Since 
these methods rely on RTT, they cannot accommodate traffic streams other than TCP. 
Though [7] briefly mentions the effect of the DCF, it does not go into detail to study 
its mechanics. Reference [8] uses a distinctive approach for segregating network 
types, complete with traffic conditioning to eliminate noise. However, it demarcates 
wired and wireless traffic with the help of mean and deviation of the RTT dataset 
which is not advisable as these parameters differ with varying types, speeds, and con-
gestion levels of networks. Their approach is claimed to be non-intrusive. However, 
since it involves conditioning of traffic it is still, at minimum, pseudo-active. In [9], 
although for a disparate motive and in a dissimilar context, Cheng L., et al., were 
among the first to work on identifying wireless traffic for the purpose of access link 
type recognition. However, their model employs a probing process to gain informa-
tion about nodes in the network and thus not likely to be of assistance in the RAP 
problem space for the same reason that [5], as mentioned above, falls short. 

The third category includes several industry solutions [10-17], many of which exhibit 
non-scalability and limited effectiveness because of the use of either radio frequency 
(RF) scanning and/or MAC address based authentication. The use of RF scanning is not 
practical as the malicious user can use directional antennas, can adjust the power of the 
AP as to not be detected, and in large networks it becomes analogous to finding a needle 
in a haystack. The use of the MAC address as a parameter for authentication is not  
appropriate because of the ease of spoofing. 

Outside of the three categories, [18-20] propose hybrid frameworks consolidating 
the above mentioned wired and wireless-side detection models and inherit the flaws 
from each type. 

As previous schemes primarily compare the relative behavior of traffic on each 
link, they require traces of each class of network traffic for their scheme to be effec-
tive. This approach is limiting, as a network without existing legitimate APs (e.g., 
government labs) would not be able to easily provide a wireless trace. Further, be-
cause many use threshold-based separation metrics, another limiting assumption made 
is that wireless networks will always be slower than their wired counterparts. As will 
be shown in subsequent sections, our method is free of each of the aforementioned 
assumptions. 

3   Problem with Magnitude-Based Classification 

As mentioned in the previous section, many of the existing works focus on the differ-
ence, in some form, of the magnitude of the IAT or RTT to differentiate wireless from 
wired traffic. In this section, we illustrate, via simulation, the challenge with these 
approaches as wireless speeds begin to approach that of wired traffic. 

Simulations were performed using ns2 [24]. The cumulative distribution functions 
(CDFs) of the IAT and RTT values are shown in Figures (1a, 1b) and (2a, 2b) respec-
tively. Figures 1a and 2a illustrate why the magnitude-based approaches work when 
the assumption is that WLANs are slower than LANs ( {IATwl, RTTwl} > {IATwd, 
RTTwd} ). However, as shown in Figures 1b and 2b, these schemes will breakdown if 
the WLAN speed reaches that of the LAN ( {IATwl, RTTwl} ≃ {IATwd, RTTwd} ). 
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Fig. 1. IAT distribution for (a) slower WLAN, (b) faster WLAN 
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Fig. 2. RTT distribution for (a) slower WLAN, (b) faster WLAN 

The results shown in Figures 1 and 2 were obtained from within single trials each of 
1000 packets of upstream data for various network type/speeds (LAN - 10Mbps, 
100Mbps; WLAN - 11Mbps, 24Mbps). Ethernet and wireless senders were made to 
send FTP data to a server one hop away on the wired-side. Simulations were performed 
on a setup similar to the experimental setup that will be described in Section 4.3. 

Partially motivated by this argument against threshold based detection, we propose 
an adaptable solution that makes no assumption about the link speed. In the next  
section, we introduce our first scheme beginning with an introductory analysis. 

4   Scheme I – DCF Based Detection 

A wireless node’s packet transmission mechanism is regulated by the specifications of 
the 802.11 MAC layer protocol, the Distributed Coordination Function (DCF). The 
DCF employs a CSMA/CA distributed algorithm for collision avoidance. In this 
method, a node that wants to transmit data on a wireless link has to wait for a fixed 
duration, namely Distributed Inter Frame Space (DIFS) and a bounded random 
amount of time, called back-off (σ), before using the channel. Upon receiving the 
data, the node at the other end waits for a fixed period, called the Short Inter Frame 
Space (SIFS), before answering with a MAC-level acknowledgment (MAC-ACK), 
and the cycle follows thereon. Further, if the channel is sensed busy or if a collision is 
detected the originating node backs-off before trying again. The bounded random 
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delay - Contention window (CW) has an exponentially increasing upper bound to 
reduce the chances of collisions.  

Accordingly, the DCF has both fixed components and bounded random compo-
nents that can be artificially produced and used as a signature for wireless traffic. The 
process employed for transmission in a wireless medium and the delay between 
packet arrivals (IATwl) as observed at the receiver are shown in Figure 3. 

 

Fig. 3. Illustration of the DCF in 802.11 networks 

Drawing from the DCF’s basic mode of operation, we deduce a pattern unique to 
wireless streams that allows one to anticipate packet arrivals at known intervals. This 
property enables us to artificially construct packet arrival time series that represent 
wireless traffic. 

4.1   Analysis 

First, in order to demonstrate the effect of the DCF on the delay, we arrive at repre-
sentations for the IATs of wired and wireless networks (IATwd and IATwl). 

In Equations 1 and 2, dtrans, dprop and dqueue are the transmission, propagation 
and queuing delays for a network respectively. Since dtrans >> dprop, the propaga-
tion delay is neglected in our analysis. The queuing delay dqueue plays an important 
part in determining the efficacy of wired-side detection. This will be discussed with 
experimental results in Section 4.3. 

wdwdwdwd dqueue +dprop +dtrans = IAT  (1)

wlwlwlwl dqueue +dprop +dtrans = IAT  (2)

wdoverheaddtrans +framedtrans = wddtrans  (3)

randomconstant

wloverheadframewl

DCF +DCF +

dtrans +dtrans =dtrans
 (4)

In Equations 3 and 4, dtransframe is the transmission time per frame; dtransoverhead is the 
overhead incurred in transmitting the packet header in the wired case, and transmit-
ting the packet header and MAC-ACK in the wireless case. 

ACK-MACoverhead +pktoverhead =
wloverheaddtrans   (5)
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Note that dtranswl additionally comprises of the waiting time incurred because of the 
DCF, the constituents of which are shown in Equations 6 and 7. 

 SIFS+ DIFS =constantDCF   (6)

σ=randomDCF   (7)

The fixed delay element within the DCF contributed delay is a combination of the 
DIFS and SIFS periods. 

The back-off (σ) is the random period for which the sender has to wait in addition 
to the DIFS. This is repeated for each unsuccessful transmission attempt. The back-
off for the ith retransmission (σi) is randomly chosen from within the CWi which is an 
increasing function of the number of retransmission attempts and the number of times 
the channel was sensed as busy by the sender. The DCF uses an exponential algo-
rithm, where for each retry, the CW size is doubled starting at a lower bound (CWmin) 
until a maximum value (CWmax) is reached. 

( )iCWiσ 0,∈   (8)

[ ] [ ]maxmin
i

maxii CW,CWmin=CW,min=CW 22CW 1−   (9)

minii CWCWσ ∝∝   (10)

Hence, arrival times can be predicted as a function of CWmin in the form of a finite 
random variable. This is an important result which shows that the DCF provides us 

with an increasing trend for wireless links, one whose base frequency (θ) is given in 
Equation 11. 

[ ]⎟
⎠
⎞⎜

⎝
⎛

minCW+constantDCF +framedtrans=θ 0,/1  (11)

Equation 11 forms the basis for our scheme. Specifically, we seek to discover a wire-
less segment by extracting a basic recurring pattern that exists in all wireless streams. 
Further, a wireless series can be generated synthetically which spares us from having 
to train a classifier with real traces. 

Since the RAP environment would likely involve a single client node (the mali-
cious intruder), our primary focus is the case where there are minimal collisions as a 
result of competing traffic in the network, and thus assume that σ varies between 0 
and CWmin. We plan to address the scenario where multiple users access the RAP in 
the future. 

This wireless time series is not uniform for different traffic types. In light of Equa-
tion 4, it is important to consider two transport protocols - TCP and UDP. Figures 4 
and 5 show how the IAT distribution would look for the two different classes. 

The frame transmission time for each case would differ as shown in Hypothesis 4.1. 
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Fig. 4. Packet arrival pattern - UDP 

 

Fig. 5. Packet arrival pattern - TCP 

Hypothesis 4.1 
1:  if trafficUDP then 
2:     dtransframe = dtransdata 

3:  else if trafficTCP then 
4:     dtransframe = dtransdata + dtranstcpACK 

5:  end if 

 
Because of the difference in characteristics, considering an 802.11b network as an 

example, the transmission delay for the two classes would follow from the informa-
tion in Table 1 (taken from [21]) as shown in Equations 12 and 13. 

This difference must be factored in when modeling the traffic behavior. 

σ+=

+++σ+=
wloverheaddtrans+datadtrans+randomDCF+constantDCF=
wloverheaddtrans+framedtrans+randomDCF+constantDCF=

UDPwldtrans
UDPwlIAT

1303

10215101860

≅

  
(12)

( )
2σ1618

1021523010182σ120

2dtrans

2DCF2DCF

2dtrans2DCF2DCF

+=

+++++=
wloverhead+

tcpACKdtrans+datadtrans+random+constant=
wloverhead+framedtrans+random+constant=

TCPwldtrans
TCPwlIAT ≅

 (13)

Note that TCP does not always have to wait for an ACK before transmitting the next 
packet. In fact, when a node is transmitting TCP traffic with a congestion window 
size W greater than one (that is, W>1), it is likely to exhibit UDP-like behavior (in the 
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form of multiple sequential packets) except for the time when it is waiting for ACKs. 
In fact, in the case of upstream TCP traffic to the Internet, a node is highly likely to 
transmit in bursts. Thus, TCP’s IAT distribution would resemble that of UDP for the 
most part. Hence, having taken into account the frequency of packet arrivals for both 
UDP in Equation 12 and the extreme-case TCP (that is, W = 1) in Equation 13, our 
model is scalable for all traffic types. 

As part of our groundwork, we used the expression from Equation 4 - which re-
peats with the frequency shown in Equation 11, combined with the expected values 
for each type of WLAN (for example, the data from Table 1 was imported for a 
802.11b WLAN) to artificially build a profile set. We used values for DCFconstant from 
the 802.11 standard. Also, we used a pseudo random number generator to emulate 
DCFrandom, where random values were generated from within a range equivalent to the 
initial CW, that is, (0,CWmin). 

Table 1. 802.11b MAC Transmission Overhead 

Variable Parameter Time    
(µs) 

Formula 

DCFconstant 

DIFS 
SIFS 

50 
10 

2 * slot time + SIFS = 50 
SIFS 

DCFrandom Average σ 310 
 (# of slots * slot time)/2 = (31 * 20)/2 = 

310 

dtransframe 

dtransdata 

dtransTCP-ACK 

1018 
30 

Packet size/data rate = (1400 * 8)/11 = 
1018 

TCP-ACK/data rate = (40 * 8)/11 = 30 

dtransoverhead 

overheadpkt 

overheadMAC-ACK 

215 

10 

(Preamble + PLCP hdr.)/data rate + MAC 
hdr./data rate + MAC CRC bits/data rate 
= (144 + 48)/1 + (30 * 8)/11 + (4 * 8)/11 

= 192 + 21 + 2 = 215 
MAC-ACK/data rate = (14 * 8)/11 = 10 

 
Figures 6a and 6b display the CDF of the IAT of TCP and UDP flows generated 

via experimentation and simulation, as well as those constructed artificially using 
Equations 12 and 13. The figures illustrate how closely the experimental and simu-
lated delay distributions follow the ones artificially created. 
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Fig. 6. (a) CDF of IAT for UDP. (b) CDF of IAT for TCP. 
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Also from Figure 6b, while more than 90% of the sample set follows a uniform 
random dispersal over the window size, a fraction of the flow tends to deviate out of 
bounds. We attribute this to the overhead in the network caused by dpropwl, possible 
link-layer retransmissions and packet collisions during transmission. 

To arrive at the results in Figure 6, separate TCP and UDP experiments and simu-
lations were performed individually for the 802.11b and 802.11g configurations. For 
each transport protocol and each WLAN speed setting, 1000 data packets were sent 
from the wireless client using a socket program to the wired-side server and the IATs 
were recorded on the wired-side. Correspondingly, the artificial profiles each com-
prise of 1000 IAT values. 

The experiments that produced part of the results in Figure 6 were performed in  
a lab testbed that will be discussed in Section 4.3. The simulations associated with 
Figure 6 were performed in a similar setup as the lab testbed using ns2. 

In this sub-section, we showed that it is possible to independently conjecture how a 
wireless stream would behave in different types of networks. To demonstrate the 
accuracy of the technique, a Bayesian classifier is used to compare incoming streams' 
IAT distributions with the training IAT profile set. The foundation for this classifica-
tion is presented in the next sub-section. 

4.2   Classification Scheme 

We use a Naïve Bayes classifier which bins the IAT datasets (the artificial profiles 
and experimental/simulation traces used for the purpose of testing the system), calcu-
lates for each dataset the number of occurrences in each bin, compares the bin fre-
quencies of each profile with those of the trace and predicts the trace as being akin to 
the profile whose frequency distribution closest resembles that of the trace. The Chi-
square Goodness of Fit test is employed to determine the fit between each profile and 
the unknown trace.  

The inputs are binned into ‘b’ number of bins, where b depends on the bin width 
and input data size. For both the bin width and input data size, different values are 
tried with the goal of optimizing 'b' to furnish maximum accuracy. Details about these 
experiments will be discussed in Section 4.4. 

Profiles fi are compared with an unknown sample fx based on the frequency of oc-
currences in each bin. The Bayes theorem is based on the conditional probability 
model, where the posterior probability is a function of the prior probability and the 
likelihood. 

Because the nature of incoming traffic cannot be predicted, prior probability is un-
known and is assumed equally distributed over the n profiles. 

( ) n=ifPbilityPriorProba /1   (14)

Likelihood (measure of how similar the unknown trace is to a given profile) is calcu-
lated for each profile using a two-sample Chi-square test which is run independently 
on all sample-profile bin frequency pairs. 

ifxfPLikelihood  (15)
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Posterior probability (measure of how likely a profile is the closest match for the 
unknown) is calculated as follows: 

( )ifPifxfxfifProbabilityPosteriorP .P =  (16)

Since fx is a random variable {x1,x2,…xd}, 

( ) ( )ifPifdx,2x,xP=xfifP ....1  (17)

( ) ifkx
d

=k
PifP=xfifP ∏
1

.   (18)

Since the prior probability is constant, the posterior probability essentially depends on 
the likelihood measures. It is derived by aggregating the Likelihood measures, each of 
which is calculated using the Pearson's Chi-square test. This test estimates the prob-
ability that an unknown distribution fits a Chi-square distribution given a null hy-
pothesis. This null hypothesis is rejected (or accepted) based on the probability of the 
unknown trace's fit to the Chi-square distribution. This probability is determined as a 
function of the Chi-square statistic which is obtained as follows: 

( )∑ ⎟
⎠
⎞⎜

⎝
⎛ −

k

=i
iPiPiX=

1
/22χ   (19)

Xi and Pi are the bin frequencies of bin i of the two samples to be compared - the 
unknown and a profile. Note that the profile P is the null hypothesis. In our case, P is 
the synthetically created wireless profile. The Chi-square statistic is calculated over 
the bin frequencies of k bins. 

4.3   Experimental Setup and Validation of Wired-Side Approach 

In this sub-section, we discuss: (i) preliminary experiments that were performed to 
validate the general idea behind our wired-side approach and (ii) the outline of the 
experimental test plan we used to evaluate the system's accuracy.  
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Fig. 7. Packet arrival times on wired and wireless sides 
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An experimental testbed was built using three Lenovo laptops, three Dell desktops, 
a Netgear 10/100 Mbps Fast Ethernet switch and a Linksys 2.4Ghz 802.11b-g AP. 
The laptops were made to connect to a server on the wired-side through the AP and 
switch. A desktop was set up as a sink server to receive data from both LAN and 
WLAN senders. The classifier resides on a desktop connected to the switch immedi-
ately linking the AP to the LAN. 

To ensure that our technique for wired-side detection is viable, we first determined 
whether the temporal characteristics of the IAT observed on the wireless link were 
intact on the wired-side. It is important to check if the DCF induced delay is carried 
over to the Ethernet backbone with minimal additional overhead delay added to it. In 
a single hop scenario, the overhead is primarily a function of the router queuing delay 
and processing delay. 

The results shown in Figure 7 are a representative sample of the arrival times of 
about 200 packets extracted from a trace of a total of 10,000 packets of upstream TCP 
data sent from a wireless-side sender using a socket program to the wired-side server. 
The arrival times on the wired-side were recorded at the receiver node. On the wire-
less side, a laptop acting as a sniffer was used in promiscuous mode to capture traffic 
from the wireless sender. We observed that the arrival rates were retained albeit with 
a uniformly witnessed lag (as a result of router queuing) as shown in Figure 7. 

Given the simple one-hop path from the WLAN to the classifier on the wired-side, 
a switch with minimal traffic load exhibits a nearly constant queuing delay (dqueue)3 
which is illustrated by the nearly fixed distance between the lines in Figure 7. In  
Section 7, we discuss how the model scales to networks where the classifier is placed 
several hops away from the AP. 

4.4   Accuracy Measures 

Having visually shown why it is likely that the packet IAT from the wireless side is 
carried over to the wired-side, we evaluate the scheme's accuracy in extracting the 
DCF imposed delay to determine the packet's originating link. 

First, we tuned the bin width and input data size to find the optimal pair - one that 
maximizes True Positive Rate (TPR) and minimizes False Positive Rate (FPR). This 
is followed by additional testing with the chosen optimal parameters to obtain the 
system accuracy. 

The classifier was tested on traces from both wired and wireless TCP/UDP data 
transfers. Sample trials on the LAN were used to measure the FPR and trials on the 
WLAN to measure the TPR. Trials were performed on the WLAN for both 802.11b 
and 802.11g specifications by configuring the AP to operate in the required mode. For 
each network type (WLAN/LAN) and protocol (TCP/UDP), 50 sets of data were fed 
into the classifier. The detections from the 50 trials were used in determining 
TPR/FPR measures for the classifier. This process was repeated for different bin 
width and input data size combinations. The results shown in Figure 8 are an average 
of the results from the TCP and UDP trials. 

An optimal bin width of 500µs and input size of 1000 packets were chosen, as the 
pair gives the minimum FPR of 2% and maximum TPR of 91%. On testing the system 

                                                           
3 Refer to Equations 1and 2 for the definition and Section IV.A for a discussion on dqueue. 
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with the chosen parameters (Bin width = 500us, Input size = 1000 packets, and FPR = 
2%) for a total of 10 additional trials, it was observed that the technique is accurate in 
detection approximately 92% of the time for UDP and 89% of the time for TCP traffic, 
as can be seen from Figure 9. 

In the RAP attack scenario, the attacker would likely often hop on the connection 
for short bursts of time to avoid detection. Given the attacker's short-lived stay online, 
it is important that the classifier be able to work on a minimum amount of data. Also, 
considering the relatively negligible portion of WLAN traffic occupied by upstream 
data (in comparison with TCP downstream data), the classifier might not have much 
to work with and hence, must be trained accordingly. 
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Fig. 8. Parameter tuning Fig. 9. TPR for chosen bin width and FPR 

Each input data size may correspond to different application data on the RAP be-
cause each application (e.g., web browsing, email, file upload) contributes different 
amounts of upstream traffic to the classifier. Accordingly, the results shown in Figure 8 
provide a sample of the system's accuracy for different classes of applications - each 
pertaining to a different input size. For a bin width of 500us, the system exhibits 
maximum accuracy that ranges from 87% to 91% for input sizes varying from 250 
packets to 1000 packets. As a result, the attacker is slightly more likely to be detected 
if he were uploading a file of 1Mb than if he were reading the news at say, 
www.cnn.com, because the former would contribute the sufficient amount of data 
faster than the latter. 

In this section, we discussed our first scheme of detection. In this method, our clas-
sifier is trained artificially on IAT signatures individually for different network speeds 
and different transport protocols for both the LAN and WLAN. We also showed the 
accuracy measures from lab experiments. This scheme is optimal when there is no 
interference on the channel and the link is stable. As will be shown in Section 6, its 
performance degrades as rate adaptation occurs in response to poor link quality. 
Therefore, in the next section we present a scheme that thrives during rate adaptation. 

5   Scheme II – Rate Adaptation Based Detection 

The 802.11 MAC protocol provides wireless entities with the ability to change their 
encoding scheme (data transmission rate) when the need arises. Using automatic rate 
fallback (ARF), when a node reaches a threshold of not receiving MAC-layer ACKs, 
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it reduces its rate to one that corresponds to a stronger encoding algorithm in order to 
ensure more robust transmission. 

As shown in [21], rate adaptation occurs regularly in WLANs because signal and 
link-layer interference are common phenomena. Given that rate adaptation occurs regu-
larly, we seek to exploit this property that is specific to wireless streams to distinguish 
them from their wired counterparts. Particularly, the switching of the physical-layer data 
rate creates a variation in throughput and packet delay in a wireless transmission that is 
rarely found in wired traffic. We exploit the unique behavioral characteristics at the time 
of rate switching to identify wireless traffic. 

In this section, we first examine the behavior of the IAT during switches in data  
rate. Based on this, we derive an artificial profile for the IATs during such shifts in data 
rate. The artificial profiles are incorporated into a classifier, which is then evaluated for 
accuracy. 

5.1   Analysis 

In this sub-section, we illustrate the effect of rate adaptation on a series of packets. 
Specifically, we show that there exists an IAT pattern that is exhibited only during 
rate adaptation and not when a pair of successively transmitted packets is sent at a 
constant physical layer data rate. 

First, we visually illustrate how rate adaptation alters the arrival periods of packets 
transmitted at different data rates. Figure 10 is an example representation of the ex-
pected packet arrival sequence for a sample wireless transfer. In Figure 10, note that 
the IATs vary for each rate Ri because slower rates trigger greater packet delays. 

 

Fig. 10. Packet arrivals during rate adaptation 

The probability Pi of the event Ri occurring depends on what we call the channel 

interference index (Ω) which has a range {0↔1}. 

iP
i

iIAT=wlIAT ∑  (20)

( )
( ) kPiPΩk<iIf

kPiPΩk<iIf

≥→∧

≤→∧

1

0
  (21)

In other words, the probability of occurrence of a lower transmission rate (in Equation 
21, rate i is lower than rate k) is inversely proportional to signal interference and colli-

sions. Our model safely assumes that the measure of interference Ω is not known 
prior and hence Pi is unknown. 

This being the case, unlike Scheme I which assumes minimal to no rate adaptation, 
we choose to focus not on sets of IATi (that is, the IAT of two packets transferred at 
same rate) but instead on IATj (that is, the IAT of two packets transferred at different 
rates). 
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Having abstractly shown the influence of rate adaptation on the IATs and having 
settled on the idea that the inference model should be based on the IAT behavior dur-
ing the transition in data rate (IATj), we proceed to study IATj.  

 

Fig. 11. IAT pattern during a rate switch 

As shown in Figure 11, IATj is the delay during the ‘jump’ from one rate to the 
next. Note that in Figure 11, IATj is of a different magnitude than IATi, where IATi is 
the IAT during rate Ri and i = {1,2}. Accordingly, in our classifier, we associate IATwl 

with IATj. To determine which link type the test data (that exhibits IATx) belongs to, 
we use the basic premise given in Hypothesis 5.1. 

To illustrate the behavior of the jumps, an initial set of experiments were performed 
on an 802.11b WLAN; IATs for packet pairs transmitted at the same rate as well as 
different rates were extracted. In the absence of notable real channel interference, to 
stimulate rate adaptation in a simple lab testbed, the experiments were performed in the 
presence of a running microwave. A laptop was used as a sniffer on the wireless-side to 
collect the data rates corresponding to the packets within a transmission. 

A sample of the IATs from a two minute upstream data transfer is shown in Figure 12. 
Although the interference resulting from the microwave usage was strong enough to 
invoke rate switches down to 2Mbps and sometimes 1Mbps, for the purpose of the 
current argument, the aggregated IATs of packets transmitted at 11Mbps, 5Mbps and  

 
Hypothesis 5.1 

1: if IATx ≈ IATj then 
2: Report Wireless 
3: else  
4: Report Wired 

5: end if 
 

Hypothesis 5.2 

1: if Ri < Ri+1 then 
2: IATi > IATj > IATi+1 
3: else  
4: IATi < IATj < IATi+1 
5: end if 
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Fig. 12. IAT behavior during a rate switch – TCP Fig. 13. TCP Analytical vs. Experimental 
Signatures – 802.11g WLAN 
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packets transmitted immediately after changes in data rate both ways are the only 
IATs shown in Figure 12. 

It can be seen in Figure 12 that the IAT distributions of the jumps fall in between 
those of the stable rate phases before and after. This leaves us with Hypothesis 5.2. 

The rationale behind this (as shown in Figure 14) is that during the transition from 
R1 to R2, the MAC-level ACK is transmitted at R1 and the subsequent data frame at R2. 
That is, a node which decides to reduce its data rate transmits the next data packet at 
the new rate but the MAC ACK for the previous data packet would still be sent from 
the AP at the old rate. Also, as can be seen from Figure 12, because of the difference 
in frame and MAC ACK sizes, the IAT distribution during the jump (IATj) is biased 
towards that corresponding to the rate following the jump. That is, since the frame 
size >> MAC ACK size and because the data frame is sent at the new rate, IATj is 
closer to the IAT associated with the new rate. 

 

Fig. 14. DCF behavior during a rate switch 

This difference in behavior during a rate switch can be exploited by studying how it 
reflects on individual delay components of the corresponding IATs, as shown below: 
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−
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Using Equation 23 as the base for our synthetic profiles, substituting jump-specific 
dtransframe and dtransoverhead values, our classifier can be trained as shown in Figure 13. 
Similar to the synthetic IAT profiles shown for the (36Mbps, 54Mbps) pair in Figure 
13, multiple such jump signatures were constructed for different data rate pairs as 
training sets for the classifier. Additionally, the training sets included IAT signatures 
for 10Mbps and 100Mbps LANs. 

5.2   Classification Scheme 

The classifier used for this method is similar to the one explained in Section 4.2, with 
appropriate changes made to incorporate the fact that only the IAT values during 
jumps in rates are considered for training and testing as opposed to the values during a 
stable rate period. In the Bayesian classifier, instead of comparing the entire trace  
of IAT readings with the profiles, individual values are inspected for possible jumps. 
That is, a comparison of two datasets (training and testing sets) is not required;  
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instead, it is sufficient to check individual incoming IAT values to see which IAT 
jump signatures they are closest to. 

5.3   Experimental Setup and Validation of Wired-Side Approach 

The experimental setup used to validate the scheme is similar to that used for Scheme 
I discussed in Section 4.3. As in [21], we use a synthetic means (microwave interfer-
ence) to force rate switching to investigate Scheme II. One of the laptops is used as a 
sniffer on the wireless side, while another laptop is used to transfer data to the wired-
side desktop sink server. 
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Fig. 15. Rate detection on wired and wireless sides 

To determine whether a node is switching rates when capturing packets on the 
wireless side is simple, as its physical layer header contains the actual transmission 
rate. However, the rate in the wireless frame is not carried over to the wired-side. 
Accordingly, on the wired-side, we have to infer the rate by observing the packets’ 
IAT pattern. We verified that this approach is viable by capturing traffic both on the 
wireless-side and the wired-side, and comparing the data rate observations made on 
the wireless-side with the data rate predictions made by the classifier on the wired-
side. We observed packets that switch rates on the wireless side with a laptop acting 
as a sniffer capturing promiscuously (by looking at the radiotap header in the wireless 
frame) and concurrently on the wired-side by feeding captured IATs of the same 
packets into the classifier. From this, we were able to determine that specific IAT 
values on the wired-side correlated to confirmed rate adaptations on the wireless side. 

Figure 15 gives a representative sample of the rates of the packets extracted on the 
wireless side and the rates inferred by the classifier on the wired-side, illustrating the 
correlation of rates of the same packets observed at both points. A total of 6000 up-
stream TCP data packets were transmitted with 81% of the rates predicted correctly. It 
is important to note that though the accuracy of classification of the data rates on the 
wired-side was 81%, the classifier is accurate in access link type classification up to 
an average TPR of 97% for UDP and 91% for TCP (refer to Figure 18). This is be-
cause even the IATs corresponding to the incorrectly inferred rates are closer to the 
synthetic jump IAT profiles that the classifier was trained on as opposed to the 
Ethernet IAT signatures. 

The accuracy measures of the classifier used to test Scheme II are shown in the 
next sub-section. 
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5.4   Accuracy Measures 

As in Scheme I, to validate the system, the bin width used in the Bayesian binning 
approach was first tuned to determine an optimum value for the classifier. Note that 
Scheme II operates independent of the input size as it does not compare the dataset as 
a whole with the profiles and instead studies the input trace a packet at a time. 

For each bin width, ten trials were performed, in each of which the classifier was 
tested on TCP/UDP data packet pairs of upstream Ethernet and WLAN traffic. 
TPR/FPR were generated as a function of the fraction of the input trace accurately 
classified each time (Figure 16). 
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Fig. 16. Bin width tuning Fig. 17. TPR for chosen bin width and FPR 

In order to optimize the effectiveness of this technique, we calculate what we call 
the Effective Accuracy and find the optimum value that maximizes this difference 
between TPR and FPR in an attempt to make a balanced trade-off between the two 
metrics. For the chosen parameters (Bin width = 20µs and FPR = 14%), 12 additional 
trials are run to observe the TPR distribution (Figure 17). 

Note that the accuracy measures shown in Figure 17 hold for WLANs with consid-
erable rate adaptation. As will be shown in the next section, the accuracy of this 
scheme increases as a function of the amount of interference on the network and thus 
the method is not suitable for networks with minimal rate adaptation. In the next sec-
tion, we propose a technique that bridges the strengths of the two schemes discussed 
so far in an effort to arrive at a comprehensive solution for normal networks (i.e., 
networks with varying levels of interference). 

6   Consolidated Model 

While Scheme I compares input sample traces as a whole with each of the profiles, 
Scheme II checks individual packet pairs within a trace for a switch in data rate. This 
implies that since the input sample trace to be compared may encompass several rates, 
Scheme I’s accuracy is likely to subside with increased rate adaptation. Conversely, 
Scheme II will not accurately classify wireless traffic in the absence of a minimum 
degree of rate adaptation. 
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6.1   Analysis 

In an effort to present a general solution that works both when the link is stable as 

well as when rate adaptation occurs, we revisit the channel interference index (Ω)4 
defining it as follows: 

SchemeIAccuracy
SchemeIIAccuracy

Ω ∝   (24)

Equation 24 essentially captures the inverse relationship between Schemes I and II. 
Scheme I works better when there is little to no interference, while Scheme II works 
better during interference. Thus, it is important to consolidate the pros of the two ap-
proaches in a way that the resulting system is effective regardless of the link stability. 

6.2   Classification Scheme 

To combine the two schemes, we partition the input data set into blocks of a constant 
size with the expectation that each block will be comprised of data at a specific rate. 
Of course this need not be the case. So, in addition to this, we exploit the fact that 
Scheme I detects the access link types of stable rate periods well and Scheme II de-
tects the jumps well. For the combined solution, the input trace is fed into the classi-
fier one block at a time. Scheme I contributes the network type/speed observation for 
each of the partitions and Scheme II points out where two stable rate periods intersect 
(that is, the jumps in data rate), the aggregation of which gives us the temporal distri-
bution of rates for a series of packet pairs. This technique is illustrated in Figure 18, 
where x and y are the inferred data rates. Based on the inferred rates, the combined 
scheme determines the access link type of the individual partitions. The final access 
link type classification decision for the whole block of data is made as a function of 
the WLAN-to-Ethernet classification ratio of individual partitions. That is, the classi-
fier decides between WLAN and Ethernet based on which link type is classified in 
majority of the partitions. The general idea behind this unified model is that if one of 
the two schemes fail, a healthy net effect is maintained as the other scheme chips in.  

  

Fig. 18. Depiction of combined scheme 

6.3   Experimental Setup 

The experimental setup used to test the first two schemes is employed to validate the 
combined scheme. A block size of 250 packets is chosen. Accordingly, in our ex-
periments, each input trace of 1000 packets is partitioned into four blocks of 250 
packets each. 

                                                           
4 Note that this metric was previously introduced in Section V.A. 
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In the next section, we evaluate the accuracy of the combined scheme (in compari-

son with that of the first two schemes) as a function of Ω by testing against data sets 
that differ in the number of times rate adaptation is invoked. 

6.4   Accuracy Measures 

The accuracy measures of the consolidated system (in comparison with those of the 
other two schemes) are shown in Figures 19. 
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Fig. 19. Scheme accuracy comparison 

A total of 14 trials were performed to assess how the TPR varies with an increase 
in the degree of rate adaptation. This testing set comprised of 2 trials each for the 7 
different degrees of rate adaptation. The degree of rate adaptation is devised as a func-
tion of the number of switches in data rate invoked within the 1000 packet input data 
set. Figure 19 shows the results of such experiments performed individually for each 
of the three schemes. Results shown in Figure 19 are an average of the outcomes from 
separate TCP and UDP trials. Note that the combined scheme's accuracy is not as high 
as that of Scheme I. However, this technique is nonetheless effective and unlike the 
initial two schemes, the combined technique is realistic as it makes no assumption 
about the link quality. 

7   Measure of Robustness and Scalability 

In this section, we discuss how the system's performance scales to larger, more realis-
tic networks. We evaluate the system's scalability in two scenarios - (i) a network 
where the classifier is placed multiple hops away from the AP via simulation, and (ii) 
a real network (as opposed to a lab testbed). 

First, to test the combined scheme’s scalability as a function of the classifier's dis-
tance from the AP, simulations were performed where detection takes place several 
hops upstream instead of the switch immediately connecting the AP to the LAN. This is 
important because the AP to be detected may not always be one hop away from the 
classifier node. We consider the effect of different fixed access-link and bottleneck 
delays at each hop, including the best-case (1ms, 10ms, and 50ms) as well the worst-
case (300ms and 500ms) delays. The measurements observed indicate that despite a 
decrease in accuracy with an increase in the distance, the system averages a worst-case 
accuracy of above 60%, average-case accuracy of above 75% and best-case accuracy of 
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above 85% (Figure 20a). The results shown in Figure 20a were obtained from simula-
tions done using ns2 and varying the number of hops between the AP and the classifier 
node. The TPR measurements shown in the figure are an average of results from 10 
trials - each of 10,000 upstream data packets - performed separately for each delay value 
and tested individually for a given number of hops. The 10 trials comprised of 5 TCP 
and 5 UDP trials. The trace of 10,000 packets in each trial was fed into the classifier 
1000 packets at a time. 
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Fig. 20. Multi-hop accuracy: (a) Simulation, (b) Experiment 

Next, we conducted experiments on a real network to arrive at the accuracy meas-
ures of the classifier when tested with traces from a real environment. Trials were 
performed on a multi-hop fiber-optic university backbone. A wireless node was made 
to connect via an AP from a classroom building to the wired-side server three blocks 
away in the Computer Science Department. The accuracy of the combined scheme 
was measured over a total of 20 trials performed individually for TCP/UDP data 
transfers and for 802.11b/g network configurations. In each trial, the classifier was 
tested on a 10 minute long trace for TPR measures. As shown in Figure 20b, the clas-
sifier is accurate up to approximately 90% of the time for UDP and 85% of the time 
for TCP. 

8   Conclusion and Future Work 

The proposed method detects RAPs by extracting characteristics unique to a wireless 
stream from network traffic. It makes use of two 802.11 MAC specifications to finger-
print wireless attributes from the wired-side making the process simple and scalable. 

In this paper, we have studied the working and validated the accuracy of our detec-
tion techniques in several environments. This method is immediately deployable and 
is shown to scale well to realistic scenarios outside of a lab testbed. In the future, we 
will continue in this direction and further test the system for robustness to other use 
cases. 

We plan to extend this work by scaling it to networks of greater traffic density by 
taking into consideration the effect of collisions in the network as a result of multiple 
users on the RAP. To this end we will study various error models and incorporate the 
traffic behavior during each of these into our design. Further, we intend to study the 
effect of link delay on the accuracy of the system in an attempt to derive a metric that 
the classifier shall be tuned for when placed multiple hops away from the AP. Also, 
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we will test the system's robustness using different real network traces from publicly 
available archived sources (e.g., CRAWDAD). 

Further, looking ahead in RAP detection, we must assume that the misfeasor could 
be tech savvy and aware of RAP defenses. To this end, we will analyze possible op-
tions that an attacker has to evade detection by cleverly altering his transmission pat-
tern. Threat strategies that an attacker may employ include reducing or increasing his 
packet delay and interleaving his wireless transmissions with other types of traffic to 
bypass the classifier's signatures. Note that the DCF parameters can be manipulated in 
open source 802.11 drivers. 
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