
Breaking and Building of Group Inside Signature

S. Sree Vivek�, S. Sharmila Deva Selvi, S. Gopi Nath, and C. Pandu Rangan�

Indian Institute of Technology Madras,
Theoretical Computer Science Laboratory,

Department of Computer Science and Engineering,
Chennai, India

{svivek,sharmila,gopinath,prangan}@cse.iitm.ac.in

Abstract. Group Inside Signature (GIS) is a signature scheme that al-
lows the signer to designate his signature to be verified by a group of
people. Members other than the designated group cannot verify the sig-
nature generated by the signer. In Broadcast Group Oriented Signature
(BGOS), a user from one group can designate his signature to be verified
by members of another group. An Adaptable Designated Group Signa-
ture (ADGS), is one in which an user can designate his signature to be
verified by a selected set of members who are from different groups. The
two GIS schemes [5], [6] and the BGOS scheme [7], we consider are cer-
tificateless schemes and the ADGS scheme [8] which we consider here is
an identity based scheme. In this paper, we present the cryptanalysis of
all the four schemes that appeared in [5], [6], [7] and [8]. We also present
a new identity based ADGS (N-ADGS) scheme and prove its security in
the random oracle model. The existing model described in [8] for ADGS
did not consider unlinkability which is one of the key properties required
for ADGS. We provide the security model for unlinkability and also prove
our scheme is unlinkable.

Keywords: Cryptanalysis, Group Inside Signature, Broadcast Group
Oriented Signature, Adaptable Designated Group Signature, Provable
Security, Random Oracle model.

1 Introduction

In general, digital signatures are publicly verifiable. Jackbson et.al (1996) [4]
proposed the concept of Designated Verifier Signatures (DVS) and strong DVS
(SDVS). In DVS, only a designated person can verify the signature, which is
signed by a signer. DVS achieves this property by providing an ability called
Simulatability to the designated verifier, which allows him to simulate the actual
signers signature. In SDVS, any third party cannot verify the validity of the
signature unless the private key of the designated verifier or the actual signer is
exposed.
� Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation sponsored by Department of Information
Technology, Government of India.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 330–339, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Breaking and Building of Group Inside Signature 331

Extending a single party verification scheme to a designated group verifica-
tion scheme is a challenging problem. In practice, there may be different group
models. First, in networks like Local Area Networks, all group members reside
in a single network and no member of the group may hang outside network. Cer-
tificateless GIS schemes [5] and [6] provide solutions for designating a signature
to be verified inside such a group. Secondly, in distributed networks, the users of
different companies or institutions naturally come under different work groups. If
a member of one group wants to send a signed document to members of another
group, BGOS [7] can be used. Moreover the signer wants to prevent the mem-
bers outside the designated group from verifying the signature. The scheme in
[7] focuses on this problem. Finally, in distributed networks, a signer may want
several members to verify his signature, no matter whether those members are
in same or different groups. The signer wants to prevent the members outside
the defined group from verifying the signature. This model can be visualized as a
more generalized version of the previous two models. ADGS scheme in [8] focuses
on this problem. In fact even if a designated verifier vi belongs to a group say
G, while vi can verify the signature of the sender, other members of G cannot
verify the signature.

Suppose that a organization initiates a call for tender, asking for quotations
to some companies for a set of instruments and tasks to be accomplished. Here,
the requirement is that, the competing companies should not be able to verify
the quotations quoted by their counter parts. So each company will encrypt
and sign the quotation and send it to the organization. But nothing prevents
the organization from revealing the quoted values once decrypted, since the
organizations goal is to obtain quotations with low price. In this situation the
organization could show the signed offers to some other companies and influence
them to make better quotations. Here, we can use the ADGS scheme, because
the company which proposes the quotation can designate the signature to the
organization who has called for the tender and other companies can not verify
the validity unless the verifier uses the private key of the organization.

Simulatability vs Unlinkability. The notion ”Simulatability” in the context
of DVS ensures that the designated verifier has the ability to simulate the tran-
script as if it is generated by the actual signer i.e., we can say that the designated
verifier is also capable of generating the signature of the signer. Where as the
notion of ”Unlinkability” in the context of ADGS ensures that only the des-
ignated group members can verify the signature designated to them, members
other than the designated group can not verify the signature. Thus, Unlinkability
is different from Simulatability and should not be confused with each other.

Our Contribution. In this paper, we show that GIS in [5] and BGOS in [7]
are not secure against both Type-I and Type-II adversaries, and the GIS in [6] is
not secure against Type-I adversary. We also show that the basic ADGS scheme
[8] is universally forgeable. We also propose a new Adaptable Designated Group
Signature scheme (New-ADGS) and prove its security formally in the random
oracle model. Due to page limitation, we omit the reviews of the broken schemes

332 S.S. Vivek et al.

and the security proofs of the newly proposed ADGS scheme and is given in the
full version of this paper [10].

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2

be a multiplicative cyclic group of the same order q. A bilinear pairing is a map
ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈R G1 and a, b ∈R Z∗
q , ê(P + Q, R) = ê(P, R)

ê(Q, R), ê(P, Q + R) = ê(P, Q)ê(P, R) and ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) �= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

3 Cryptanalysis of Certificateless GIS and BGOS
Schemes

In this section we show the weaknesses in two certificateless GIS schemes [5], [6]
and a certificateless BGOS scheme [7].

3.1 Cryptanalysis of Certificateless GIS Scheme [5]

GIS scheme given in [5] allows the signer to designate his signature to be verified
by a group of people who belong to the signer’s group. Members other than the
designated group should not be able to verify the signature generated by him.
The scheme in [5] is not secure against Type-I and Type-II attacks.

Type-I Attack. On seeing a valid signature by an user on some message,
anyone can commit a forgery on any message. During the unforgeability game
between the challenger C and adversary AI , C gives AI the public parameters
params and AI gives to C a target identity ID∗. AI is supposed to generate a
valid forgery for the target identity ID∗ on some message and AI is not allowed
to query partial private key for the target identity ID∗. AI interacts with C
and access all the oracles with the restrictions given in the model. AI can query
signature on any message and user identity pair 〈m, ID〉. AI can replace the
public keys of suppose any user including user with identity ID∗. During the
training-phase AI receives a valid signature σ = 〈m, U, V 〉 on a message m with
target identity ID∗ using the Sign oracle. Now we show how AI can generate a
valid signature σ∗ on an arbitrary message m∗ for the target identity ID∗, such
that σ∗ is not the output of previous queries to Sign oracle. This can be shown
by the following computation done by AI

Breaking and Building of Group Inside Signature 333

– Computes U∗ = U + hPi1 - H0(ID∗), where h= H1(m, U) computed from
σ.

– Computes h∗ = H1(m∗, U∗)
– Replaces public keys of ID∗ as P ∗

i1 = 1
h∗ H0(ID∗) and P ∗

i2 = 1
h∗ P .

– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗, V ∗〉 is a valid signature on the message m∗

by the user with identity ID∗ (with respect to its newly replaced public key). C
can check the validity of the forged signature σ∗ as follows.

Correctness of public keys. It is clear that 〈P ∗
i1, P ∗

i2〉 satisfies the verification
e(P ∗

i1, P) ?= e(P ∗
i2, H0(IDi)).

Correctness of forged signature. Note that C will use the current public key of
ID∗ that was set by AI .
– C has to check whether e(V ∗, Pj1)

?= e(U∗, Dj1) e(h∗P ∗
i1, Dj1). In fact

R.H.S = e(U∗, Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(H0(ID∗), Dj1)
= e(U, Dj1) e(hPi1, Dj1).
= e(V, Pj1).
= e(V ∗, Pj1)
= L.H.S

Thus the forged signature σ∗ passes the verification successfully.

Type-II Attack. Type-II attack is also possible on the same scheme. During
the unforgeability game between the challenger C and adversary AII , AII can
interacts with C and access the Sign oracle with the restrictions given in the
model. AII can ask signature on any message and identity pair 〈m, ID〉. AII has
access to the master private key. So it can compute the private key of any user
from its public keys 〈Pi1Pi2〉 as Di = kPi1. Since the public key Pi1=xiH0(IDi),
so AII can generate signature on behalf of any user and AII can verify the
signature of any user. Here, we can visualize AII as the KGC because it knows
the master private key in the scheme.

3.2 Cryptanalysis of Another Certificateless GIS Scheme [6]

Chunbo Ma et al. have proposed another GIS [6] scheme. In this section, we
present Type-I forgery on the scheme [6]. Here adversary AI who considered
to be inside the group can sign on behalf of any user on any message. During
the unforgeability game between the challenger C and adversary AI , C gives AI

the public parameters params and a target identity IDA. AI is supposed to
generate a valid forgery for the target identity IDA on some message and it is
not allowed to query partial private key for the target identity IDA. AI interacts
with C and access all the oracles with the restrictions given in the model. AI

334 S.S. Vivek et al.

can query signature on any message and user identity pair 〈m, ID〉. AI can
replace the public keys of any user including user with identity IDA. During
the training-phase AI receives a valid signature σ = 〈m, U, V 〉 on a message m
with target identity IDA as the signer from the Sign oracle and also obtains
the private key of some other user say IDB from the Key Extract oracle. Now
AI can generate a valid signature σ∗ on a message m∗ for the target identity
IDA by using the private key of IDB, such that σ∗ is not the output of previous
queries to Sign oracle. This can be shown by the following computation done
by AI .First AI computes the value e(g, gk) even though AI may not know the
value e(g, gk) directly, it can compute e(g, gk) as follows.

e(DB, Ppub2)e(DB, (Ppub1)H1(IDB))= e(g
k2

k+H1(IDB) , g)e(g
kH1(IDB)

k+H1(IDB) , g)

= e(g
k2

k+H1(IDB) g
kH1(IDB)

k+H1(IDB) , g)
= e(g, gk)

Hence, e(g, gk) can be computed by AI and subsequently AI generates the
forgery by performing the following:

– Computes r∗ = e(g, gk)a∗
.

– Computes V ∗ = H0(m∗||r∗).
– Computes U∗ = SK

(a∗+v∗)
B .

– Replaces IDA’s public keys X∗
A = XA and Y ∗

A = X
(−H1(IDA))
A X

H1(IDB)
B YB .

– Broadcasts the signature σ∗ (m∗, U∗, V ∗, IDA).

Now challenger C can verify the validity of the signature using the private key
of any group member say C as follows:

Computes r
′
as

e(U∗,(X∗
A)H1(IDA).Y ∗

A)e(SC , X
H1(IDC)
C YC)−V ∗

=
=e(U∗, XH1(IDA)

A .X
−H1(IDA)
A X

H1(IDB)
B YB) e(SC , X

H1(IDC)
C .YC)−V ∗

=e(g, g)k(a∗+V ∗)e(g, g)−V ∗k.
=e(g, g)ka∗

=r′

Checks V ∗ ?= H0(m∗||r′
) if it holds σ∗ is a valid forgery other wise not.

Since σ∗ is a valid forgery which we showed now, we can claim that the scheme
given in [6] is having Type-I forgery.

3.3 Cryptanalysis of Broadcast Group Oriented Signature [7]

In BGOS, an user from one group can designate its signature to be verifiable by
members of other group. In this section we present the cryptanalysis of BGOS
scheme, which too has both Type-I and Type-II attacks.

Breaking and Building of Group Inside Signature 335

Type-I Attack on BGOS Scheme [7]. On seeing a valid signature by an
user on some message, anyone can commit a forgery on any message. During
the unforgeability game between the challenger C and adversary AI , C gives AI

the public parameters params and AI gives to C a target identity ID∗
bi. AI is

supposed to generate a valid forgery for the target identity ID∗
bi on some message

and it is not allowed to query partial private key for target identity ID∗
bi. AI

interacts with C and access all the oracles with the restrictions given in the
model. AI can query signature on any message and user identity pair 〈m, ID〉.
AI can replace the public keys of suppose any user including user with identity
ID∗

bi. During the training-phase AI receive a valid signature σ = 〈m, U1, U2, V 〉
on a message m with target identity ID∗

bi using the Sign oracle. Now we show
how AI can generate a valid signature σ∗ on an arbitrary message m∗ for the
target identity ID∗

bi, such that σ∗ is not the output of previous queries to Sign
oracle. This can be shown by the following computation done by AI

– Computes U∗
1 = U1 + hPbi-H0(ID∗

bi) and U∗
2 = U2 + hP

(2)
A - P .

– Computes h∗ = H1(m∗, U∗
1).

– Replaces ID∗
bi’s public keys as P ∗

bi = 1
h∗ H0(ID∗

bi) and Q∗
bi = 1

h∗ P .
– Replaces group A’s public keys as P

(2)∗
A = 1

h∗ P and Q
(2)∗
A = 1

h∗ H0(IDA).
– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗
1 , U∗

2 , V ∗〉 is a valid signature on the message m∗

by the user with identity ID∗. C can check the validity of the forged signature
σ∗ as follows.

Correctness of Public Keys: The replaced public keys of group A 〈P (2)∗
A , Q

(2)∗
A 〉

passes the verification

e(P (2)∗

A , H0(IDA)) ?= e(P, Q
(2)∗

A)

The replaced public keys of user bi 〈P ∗
bi,Q

∗
bi〉 also passes the following

verification:
e(P ∗

bi, P) ?= e(Q∗
bi, H0(IDbi))

Correctness of forged signature: Note that C will use the current public key of
ID∗ that was set by AI . C has to check e(V ∗, Pai)

?= e(h∗P ∗
bi + U∗

1 , D
(2)
aj)

e(h∗P (2)∗
A + U∗

2 , D
(1)
aj). Now,

R .H.S =
=e(h∗P ∗

bi + U∗
1 , D

(2)
aj)e(h∗P (2)∗

A + U∗
2 , D

(1)
aj)

=e(h∗P ∗
bi + U1 + hPbi − H0(ID∗

bi), D
(2)
aj)e(h∗P 2∗

A + U2 + hP
(2)
A − P, D

(1)
aj)

=e(hPbi + U1, D
(2)
aj)e(hP

(2)
A + U2, D

(1)
aj)

=e(V, Pai)
=e(V ∗, Pai)
=L.H.S

Thus the forged signature σ∗ passes the verification successfully.

336 S.S. Vivek et al.

Type-II Attack on BGOS Scheme [7]. Type-II attack is also possible on
BGOS [7] scheme. During the Unforgeability game between the challenger C
and adversary AII , AII can interact with C and can access Sign oracle with
the restrictions given in the model. AII can ask signature on any message and
identity pair 〈m, ID〉. The adversary AII can access the master private key. So,
AII can compute the full private key of any user from group A using the public
keys 〈Pai, Qai〉 as 〈{D(1)

ai , D
(2)
ai }〉 = 〈sPai, tPai〉 and any user from group B with

public keys 〈Pbi, Qbi〉 as 〈{D(1)
bi , D

(2)
bi }〉 = 〈sPbi, tPbi〉 . As a result the KGC can

generate signature on behalf of any user and also verify the signature of any user
in any group, which contradicts the statement of the authors.

4 Cryptanalysis of Identity Based ADGS Scheme [8]

In this section, we present the cryptanalysis of an identity based ADGS scheme
[8]. We show that the ADGS scheme in [8], is universally forgeable by demon-
strating two different ways to proceed with the attack.

Universal Forgery Without Having Access to Any Previous Signature.
The scheme ADGS described above is universally forgeable. The adversary A
can forge the signature of any user without seeing any valid signature previously
signed by any user. A selects r∗, k∗, t∗ ∈R Z∗

q , computes T ∗
i = k∗Qi for(i = 1

to n ai ∈ U). and then computes the following values.

– V ∗
0 = t∗s∗P .

– V ∗
1 = t∗k∗P .

– V ∗
2 = r∗k∗P .

– h∗ = H1(m∗).
– T ∗

0 = 1
h∗ k∗P .

– V ∗ = r∗P + Ppub.
A produces σ∗ = (m∗, V ∗, V ∗

0 , V ∗
1 , V ∗

2 , T ∗
0 , ..., T ∗

n) as a valid signature on
message m∗.

Now the correctness of the forged signature σ∗ can be shown as follows:

Correctness: The L.H.S is

e(V ∗, T ∗
i) = e(r∗P + Ppub, k

∗Qi)
= e(r∗P, k∗Qi)e(Ppub, k

∗Qi)
= e(r∗k∗P, Qi)e(k∗P, sQi)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Thus, we show that A is capable of generating a valid ADGS on behalf of user
with out knowing users secret key.

Breaking and Building of Group Inside Signature 337

Universal Forgery on Seeing a Signature of an User. On seeing a valid
signature by an user on some message, anyone can commit a forgery on any
message. During the unforgeability game between the challenger C and adversary
A, C gives A the public parameters params and a target identity ID∗. A is
supposed to generate a valid forgery for the target identity ID∗ on some message
and it is restricted to query private key for the target identity ID∗. A interacts
with C and accesses all the oracles with the restrictions given in the model.
A can query signature on any message and user identity pair 〈m, ID〉. A can
replace the public keys of any user including user with identity ID∗. During the
training-phase on receiving a valid signature σ = 〈m, V, V0, V1, V2, T0, ..., Tn〉 on
a message m with target identity ID∗ from the Sign oracle, A can generate a
valid signature σ∗ on a message m∗ for the target identity ID∗, such that σ∗

is not the output of previous queries to Sign oracle. This can be shown by the
following computation done by A
– Dividing V by h. 1

hV = (r
h + 1)D0 where h = H1(m).

– Computes h∗ = H1(m∗).
– V ∗

0 = V0 and V ∗
1 = V1.

– V ∗
2 = h∗

h V2.
– The remaining parameters T0, ..., Tn, V0 and V1 are same as that of original

signature.
– V ∗ = h∗ V

h .

Now σ∗ = σ∗ (m∗, V ∗, V0, V1, V
∗
2 , T0, ..., Tn) is a valid signature on the message

by the user with identity ID∗. C can check the validity of the forged signature
σ∗ as follows.

Correctness: The L.H.S is

e(V ∗, Ti) = e((h∗
h r + h∗)D0, k

∗Qi)
= e(h∗

h rD0, kQi)e(h∗D0, kQi)
= e(h∗

h rkD0, Qi)e(h∗kQ0, Di)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Now, it is clear that the forged signature σ∗ passes the verification successfully.

5 New ADGS Scheme(N-ADGS)

In this section we present a new identity based ADGS scheme. Assume that
a signer a0 has to designate his signature to be verified by n users namely
{a1, ..., an}. All the n users may be from different groups and are selected by a0.
The signer a0 forms the set U = {a1, ..., an} to generate the signature. In our
scheme designated members of the group cannot simulate the signers signature.

– N-ADGS Initialize:
The PKG initializes the system by executing this algorithm. This algorithm
takes the security parameter 1k as input and produces two groups G1 and

338 S.S. Vivek et al.

G2 of prime order q, where |q| = k, a generator P of G1, a bilinear map e :
G1×G1 → G2 and two cryptographic hash functions H1 :{0, 1}∗ × G2 × G1

× G1 × G1 → Z∗
q and H2 :{0, 1}∗ → G1. The master private key is s ∈R Z∗

q

and the master public key is set to be Ppub = sP . Sets θ = e(Ppub, R) where
R ∈R G1. The public parameters are 〈G1, G2, e, P, Ppub, Ppub, H1, H2, θ, R〉.

– N-ADGS Key Generation/Extract: This algorithm is executed by the
PKG and on input of identity IDi, PKG computes Qi = H2(IDi) and sets
the private key as Di = sQi. Now, Di is sent to the user in a secure way.

– N-ADGS Sign: To sign a message m for a designated group of users U =
(a1, ..., an) with identities (ID1, ..., IDn) the user with identity ID0, private
key D0 and public key Q0 performs the following steps:
• Chooses r,k,t ∈R Z∗

q and computes Ti = 〈Ti1, Ti2〉 as 〈t(Qi + R), kQi〉
for(i = 1 to n).

• Computes U1 = rQ0, U2 = rkP and U3 = tP .
• Computes ω = e(D0, U3) and Computes W = θtω.
• Computes h = H1(m, ω, U1, U2, U3) and V = rPpub + hD0.

Now σ = (m, V, W, U1, U2, U3, T1, ..., Tn, U) is a valid signature on mes-
sage m by ID0, with the user group U as designated verifiers.

– N-ADGS Verify: Verification is a two step process. First step is to verify
whether the verifier belongs to the group U and second step is to verify the
validity of the signature.
• Judge Verifier: Using the value Ti2 = kQi, the verifier checks whether

e(Ti2, Q0)
?= e(Qi, U1). If the verification holds then user with public key

Qi will do the next step in verification.
• Verify Signature: Each designated verifier ai ∈ U can verify the signature

by performing the following steps.
∗ Computes ω

′
= We(Di, U3)e(Ppub, Ti1)−1.

∗ Computes h
′
= H1(m, ω

′
, U1, U2, U3).

∗ Checks whether e(V, Ti2)
?= e(h

′
U1, Di)e(U2, Di).

If the above check hold then the signature is valid. Otherwise the signa-
ture is invalid.

5.1 Security Proof for N-ADGS

Unforgeability Proof

Theorem 1. Our N-ADGS scheme is existentially unforgeable under chosen
message and identity attack if CDHP (Computational Diffie Hellman Problem)
is hard in G1.

This proof appears in the full version of the paper [10].

Unlinkability Proof

Theorem 2. Our N-ADGS scheme is unlinkable in the sense that members out-
side the group cannot verify the signature if DBDHP (Decisional Bilinear Diffie
Hellman Problem) is hard in (G1, G1, ê).

This proof appears in the full version of the paper [10].

Breaking and Building of Group Inside Signature 339

6 Conclusion

In this paper, we have presented attacks on two certificateless GIS schemes [5],
[6], a certificateless BGOS scheme [7] and an identity based ADGS [8] scheme.
We have proposed a new identity-based ADGS scheme. We leave as an open
problem to construct efficient identity based ADGS with constant size signature
independent of the number of designated verifiers. Our scheme is secure against
existential forgery on adaptively chosen message and ID attack under the CDH
assumption in the random oracle model and is unlinkable under the DBDH
assumption.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

3. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Key replacement attack against a
generic construction of certificateless signature. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 235–246. Springer, Heidelberg (2006)

4. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

5. Ma, C., Ao, F., He, D.: Certificateless group inside signature. In: Proceedings, April
2005, pp. 194–200 (2005)

6. Ma, C., Ao, J.: Certificateless group oriented signature secure against key replace-
ment attack. Cryptology ePrint Archive, Report 2009/139 (2009),
http://eprint.iacr.org/

7. Ma, C., He, D., Ao, J.: Broadcast group oriented signature. In: 2005 Fifth Inter-
national Conference on Information, Communications and Signal Processing, pp.
454–458 (2005)

8. Ma, C., Li, J.: Adaptable designated group signature. In: Huang, D.-S., Li, K., Ir-
win, G.W. (eds.) ICIC 2006. LNCS, vol. 4113, pp. 1053–1061. Springer, Heidelberg
(2006)

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

10. Sree Vivek, S., Sharmila Deva Selvi, S., Gopinath, S., Pandu Rangan, C.: Breaking
and building of group inside signature. Cryptology ePrint Archive, Report 2009/188
(2009), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

	Breaking and Building of Group Inside Signature
	Introduction
	Preliminaries
	Bilinear Pairing

	Cryptanalysis of Certificateless GIS and BGOS Schemes
	Cryptanalysis of Certificateless GIS Scheme [5]
	Cryptanalysis of Another Certificateless GIS Scheme [6]
	Cryptanalysis of Broadcast Group Oriented Signature [7]

	Cryptanalysis of Identity Based ADGS Scheme [8]
	New ADGS Scheme(N-ADGS)
	Security Proof for N-ADGS

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

