
Hierarchical Self-healing Key Distribution for

Heterogeneous Wireless Sensor Networks

Yanjiang Yang1, Jianying Zhou1, Robert H. Deng2, and Feng Bao1

1 Institute for Infocomm Research, Singapore
{yyang,jyzhou,baofeng}@i2r.a-star.edu.sg

2 School of Information Systems, Singapore Management University
robertdeng@smu.edu.sg

Abstract. Self-healing group key distribution aims to achieve robust
key distribution over lossy channels in wireless sensor networks (WSNs).
However, all existing self-healing group key distribution schemes in the
literature consider homogenous WSNs which are known to be unscalable.
Heterogeneous WSNs have better scalability and performance than ho-
mogenous ones. We are thus motivated to study hierarchial self-healing
group key distribution, tailored to the heterogeneous WSN architecture.
In particular, we revisit and adapt Dutta et al.’s model to the setting of
hierarchical self-healing group key distribution, and propose a concrete
scheme that achieves computational security and high efficiency.

Keywords: Wireless sensor network, self-healing group key distribution,
wireless sensor network security.

1 Introduction

A wireless sensor network (WSN) consists of a large number of sensor nodes
collecting and reporting the environmental data to a base station. A sensor
node is a small sensing device capable of wireless communications through radio
signals. Due to the low cost requirement, sensor nodes are extremely constrained
in hardware, having limited computation capability, storage capacity, and radio
transmission range. Worse yet, sensor nodes are usually powered by batteries,
hence restricted power supply is yet another major limitation of WSNs.

WSNs are easily susceptible to adversaries who can intercept or interrupt the
wireless communications. It is thus crucial to ensure secure communication when
WSNs are deployed for mission-critical applications. A fundamental service to
achieve secure communication is key distribution, whereby sensor nodes establish
(secret) keys. Unfortunately, it is commonly acknowledged that key distribution
in WSNs is not trivial, considering the resource-constrained nature of sensor
nodes. Hence lots of efforts have been dedicated to the study of key manage-
ment and distribution in WSNs [3,4,6,5,7,8,9,10,11,12,13,15]. These methods are
categorized into group key distribution [3,6,8,10,11] and pairwise key distribution
[4,5,7,9,12,15].

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 285–295, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

286 Y. Yang et al.

Among the existing group key distribution schemes, self-healing group key
distribution [6,11,13] particularly suits WSNs. A prominent property of this type
of group key distribution is self-healing, which allows group members to recover
lost group keys of previous sessions based solely on the key update message of
the current session. This makes group key distribution resilient to lossy wireless
communication of WSNs.

All the self-healing group key distribution schemes in the literature considered
homogeneous WSNs where all sensor nodes are assumed to be the same. However,
homogeneous WSNs are not scalable. We are thus motivated to study self-healing
group key distribution in heterogenous WSNs. A heterogenous WSN is composed
of not only resource constrained sensor nodes, but also a number of more powerful
high-end devices. Specifically, a WSN is partitioned into a number of groups, and
a high-end device is placed into each group, acting as the group manager. A group
manager is more powerful, and thus does not suffer from the resource scarceness
problem as much as a sensor node does.

Our Contributions. Tailored to the heterogeneous WSN architecture, we pro-
pose the concept of hierarchical self-healing group key distribution. In particular,
we formulate a security model for hierarchical self-healing group key distribution
by revisiting and adapting Dutta et al.’s model [6]. We then propose a concrete
scheme, proven secure under the model. Our scheme is “authenticated”, com-
pared to Dutta et al.’s schemes, in the sense that every non-revoked sensor node
can ascertain the validity of the group keys it generated from the key update
messages, without involving any extra communication overhead. As communi-
cation is more energy consuming than computation in WSNs, this property is
important to prevent sensor nodes communicating using invalid group keys.

2 Related Work

Public key cryptosystems are in general too expensive for WSNs, so symmetric
key primitives such as secret key encryption or cryptographic hash function
are often preferred. As such, key management and distribution in WSNs boils
down to sharing of secret keys among sensor nodes. To achieve this objective,
a commonly used approach is to pre-load a set of secrets inside sensor nodes
before their deployment. These pre-loaded secrets are then used either directly
as pair-wise keys between a pair of neighboring sensor nodes, i.e., pair-wise key
distribution [4,5,7,9,10,12,15], or as a basis to establish new common keys shared
by a group of sensor nodes, i.e., group key distribution [3,6,8,10,11].

Among the existing group key distribution schemes, self-healing group key
distribution is particularly suitable for WSNs, because of its self-healing and
membership revocation properties. Staddon et al. [13] first proposed the concept
and a concrete construction of self-healing group key distribution based on se-
cret sharing of two dimensional polynomials. Their construction, however, is not
efficient, suffering from high communication and storage overhead. Liu et al. [11]
then generalized the security notions in [13], and presented a new scheme with
better efficiency by combining personal secret distribution with the self-healing

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 287

technique of [13]. Blundo et al. [1] analyzed the security definitions in [11,13]
and concluded that it is impossible for any scheme to achieve all of the security
requirements formulated in [11,13]. They then formulated a new definition for
self-healing group key distribution and came up with a new scheme [2].

All the above self-healing group key distribution schemes are intended to
achieve information theoretic security. In [6], Dutta et al. proposed a novel com-
putationally secure scheme, based on a combination of a reverse one-way hash
chain and a forward one-way hash chain. Their idea in achieving self-healing is
that along the reverse hash chain, the hash value of hj(.) (associated with an
earlier session) can be computed from any pre-image hi(.) (associated with a
later session), where i < j and hi(.) = h(h(· · ·h(.)))

︸ ︷︷ ︸

i times

. While Dutta et al.’s model

is weaker, their schemes tremendously improve the efficiency of the information
theoretically secure schemes. Our proposed scheme is based on Dutta et al.’s
idea of a combination of reverse and forward one-way hash chains, but we rec-
tify the vulnerability of their construction (it can be shown that their schemes
cannot achieve t-Revocation). The main differences between our scheme and
Dutta et al.’s schemes are twofold. First, our scheme is hierarchical, tailored to
the heterogeneous WSNs. Second, our scheme achieves authenticated group key
distribution, allowing every non-revoked sensor node to verify whether or not its
generated group keys are valid, without requiring any extra communications.

3 Heterogeneous WSN Architecture

We partition a WSN into a number of groups. A high-end device is placed into
each group, acting as the group manager. In contrast to sensor nodes, the high-
end group managers have relatively higher computation capability, larger storage
size, and longer radio range. They also have longer power supply, and can even be
line-powered in some circumstances, e.g., when a WSN is deployed to monitor
a building, the group managers can easily tap on the electricity lines to get
power supply. Therefore unlike sensor nodes, group managers do not suffer too
much from the resource scarceness problem. The introduction of high-end group
managers into a WSN makes the once homogeneous network heterogeneous, as
depicted in Figure 1.

In this architecture, downlink messages broadcast by the base station directly
reach sensor nodes, whereas uplink messages sent by a sensor node to the base
stattion is forwarded via its group manager, which acts as an intermediary be-
tween the base station and the sensor nodes within its jurisdiction. A sensor node
may reach the group manager directly, or by traversing a short multi-hop path.
Since group managers are not severely constrained by resources, communication
at the level of group managers (including the base station) does not suffer from
the limits upon sensor nodes.

Intuitively, the inclusion of powerful group managers provides shortcuts for
data delivered from the sensor nodes to the base station, so the overall sys-
tem performance and in turn the lifetime of the network are expected to be

288 Y. Yang et al.

Sensor
Nodes

Group
Managers

Base
Station Level 2root key

Level 1
manager key

Level 0
group key

Fig. 1. Heterogeneous Wireless Sensor Network

greatly improved. Indeed, the effect of adding powerful nodes to WSNs has been
analyzed in [14]: only a modest number of reliable, long-range backhaul links
and line-powered nodes are required to have a significant effect, and if properly
deployed, heterogeneity can triple the average delivery rate and yield a 5-fold
increase in the lifetime of a large battery-powered sensor networks.

4 Model and Definition

System Model. Three types of entities are involved in our hierarchical group
key distribution system: the base station, group managers, and a large number
of sensor nodes. The sensor nodes are partitioned into a number of nG groups,
and each group has a group manager. A group has a unique group ID, and we
use Gν to denote the ID of group ν ∈ {1, · · · , nG}. Each sensor node in a group
is uniquely identified by an ID number i, where i ∈ I ⊆ {1, · · · , n}, and I is the
set of all node ID numbers of that group and n is the largest possible ID# in
the system.

In correspondence to the heterogenous architecture, the keys held by the en-
tities form a hierarchy, as shown in Figure 1: the base station holds a root key
at level 2, each group manager has a distinct manager key at level 1, and sen-
sor nodes in every group hold a common group key during each session at level
0. Traffic generated at lower level can be decrypted or authenticated using the
keys at higher levels, but not the other way around. This key hierarchy helps to
implement “separation of duty” within the system, e.g., it is not necessary for
the sensor nodes to process the control messages broadcast by the base station
to the group managers.

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 289

A group manager takes charge of distribution of group keys within its group.
A group key is associated with each session. To distribute a group key for a new
session, the group manager broadcasts a key update message to all its sensor
nodes. The group key is then computed by a sensor node based on the received
key update message and its preloaded personal secret. Denote the personal secret
of sensor node i as Si, which is a vector of m elements where m is the maximum
number of sessions supported by the WSN. Each element in Si corresponds to a
session and we use Si[j] to denote the element corresponding to the jth session,
j ∈ {1, · · · , m}. Si[j] becomes obsolete once the group key for the jth session
is established; otherwise Si[j] is fresh. A sensor node can be revoked or non-
revoked. Only non-revoked sensor nodes are able to compute the group keys.
To be resilient to the lossy channel of WSNs, the generation of group keys is
self-healing in the sense that a non-revoked sensor node can recover group keys
of all previous sessions as long as it successfully receives the key update message
of the current session.

Adversary Model. We assume that the base station and the group managers
are trusted, as we mainly concern with the distribution of group keys among
sensor nodes. An adversary is able to passively eavesdrop on, or actively inter-
cept, modify, insert, or drop key update messages from a group manager to all
its sensor nodes. We also allow the adversary to compromise up to t sensor nodes
in a group, where t is a system parameter.

Definition. We formally define the concept and security requirements of hi-
erarchical self-healing group key distribution, by revisiting and extending the
definition in [6].

Definition 1. (Hierarchical Self-healing Group Key Distribution with t-
Revocation) Let n, m, t be system parameters. D is hierarchical self-healing group
key distribution with t-revocation, if the following holds:

a. (Key Hierarchy) The manager keys held by the group managers are derived
from the root key of the base station, but it is computationally infeasible to
compute the root key from the manager keys. The same relationship should
hold between group keys and the corresponding manager key.

b. (Secrecy of Personal Secret) For any U ⊂ {1, · · · , n}, |U | ≤ t, it is com-
putationally infeasible for the nodes in U to collectively determine the fresh
elements of Si for any i /∈ U .

c. (Authenticated Generation of Group Key) Let gKj be the group key for ses-
sion j, and Bj be the broadcast key update message from the group manager,
where j ∈ {1, · · · , m}. For any non-revoked sensor node in the group, gKj is
efficiently computed from Bj and Si[j] in an authenticated manner. On the
contrary, it is computationally infeasible to compute the group session key
from the key update message or a personal secret alone.

d. (t-Revocation) For any session j, let Rj be the set of revoked nodes at the
start of session j, where |R| ≤ t, it is computationally infeasible to compute
gKj from the broadcast message Bj and {Si}i∈Rj .

290 Y. Yang et al.

e. (t-wise Forward Secrecy) Let U ⊆ {1, · · · , n} denote the sensor nodes which
joined the group after session j. Given that |U | ≤ t, it is computationally
infeasible for all members in U to collectively compute gK1, · · · , gKj, even
with the knowledge of gKj+1, · · · , gKm.

f. (Self-healing) A non-revoked sensor node between sessions j1 and j2, 1 ≤
j1 < j2 ≤ m, can efficiently compute any gKj, j1 ≤ j ≤ j2, from Bj2 and
its personal secret.

5 Our Construction

5.1 Scheme Details

We suppose that the set of revoked users is monotonic, i.e., a revoked user never
rejoins the network. Let Fq be a finite field, where q is a large prime number.
All arithmetic operations are performed in Fq. Let h, hR, hF : {0, 1}∗ → Fq be
cryptographic hash functions, and nG, n, m, t be system parameters.

– System Initialization. The base station chooses a root key rK = [rk1, rk2],
where rk1 and rk2 are random numbers of appropriate length. For each group
Gν , ν = 1, 2, · · · , nG, the base station computes a manager key as mKGν =
[mk1, mk2], where mk1 = h(Gν , rk1) and mk2 = h(Gν , rk2). Clearly, it is
computationally infeasible to compute one manager key from another without
knowing the root key. Then the base station securely passes the manager keys
to the corresponding group managers. We do not specify how this can be done,
but it often suffices by using some out-of-band channel. Upon receipt of the
manager keys, the group managers begin the preparation for setting up group
keys. Without loss of generality, let’s consider a particular group Gν whose
manager key is mKGν . The group manager sets mk1 to be the seed sR for a
one-way hash chain of length m + 1, i.e.,

kj
R = hR(kj−1

R)

= hR(hR(kj−2
R)) = · · · = hj

R(sR), 1 ≤ j ≤ m + 1 (1)

and sets mk2 to be the seed sF for another hash chain of length m, i.e.,

kj
F = hF (kj−1

F)

= hF (hF (kj−2
F)) = · · · = hj

F (sF), 1 ≤ j ≤ m (2)

The group key gKj for session j ∈ {1, · · · , m} is defined to be:

gKj = km−j+1
R + kj

F

= hm−j+1
R (sR) + hj

F (sF) (3)

We can see that the hash chain associating with hR() is used in the re-
verse order thus called the reverse hash chain, and that associated with

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 291

hF () called the forward hash chain. The group manager then selects m ran-
dom t-degree polynomials f1(x), · · · , fm(x) ∈ Fq[x], each corresponding to
a session. The personal secret for the member sensor node i is defined to
be Si = [f1(i), · · · , fm(i)]. The group manager sends Si together with km+1

R

and sF to each node i in a secure manner. Note that km+1
R will be used

as the initial authenticator (denoted as Auth) in the process of group key
generation.

– Broadcast. At the start of each session, the group manager broadcasts a
key update message to enable sensor nodes to generate a new group key. Let
Rj = {i1, ..., iw} be the set of revoked sensor nodes upon the start of session
j ∈ {1, · · · , m} and |Rj | = w ≤ t. The group manager chooses a random set
R′

j = {i′t, · · · , i′w+1} ⊂ {1, · · · , n} \ I, where I is the set of all node IDs of
that group. That is, the group manager chooses t − w random IDs that are
not in that group. Next, the group manager computes km−j+1

R from sR by
Equation (1), and then computes the following polynomials:

rj(x) = (x − i1) · · · (x − iw)(x − i′w+1) · · · (x − i′t)

bj(x) = km−j+1
R .rj(x) + fj(x)

We call rj(x) the revocation polynomial and fj(x) the masking polynomial.
Finally, the group manager broadcasts the key update message Bj to the
sensor nodes in its group, where

Bj = Rj ∪ R′
j ∪ {bj(x)}

– Session Key Generation. Upon receipt of Bj , if node i is not revoked, it
is able to compute km−j+1

R = bj(i)−fj(i)
rj(i)

. Then it can validate km−j+1
R using

the authenticator Auth. For example, if Auth = km+1
R , then the validation

is to test Auth
?= hj

R(km−j+1
R). If the validation fails, the node aborts the

key generation. Otherwise, it continues to compute kj
F = hj

F (sF) using sF

(Equation (2)), and in turn the group key gKj = km−j+1
R + kj

F . The node
also updates Auth by setting Auth = km−j+1

R . For efficiency reason, the node
can also choose to keep kj

F instead of sF for future sessions.
– Addition of New Group Member. A newly added member in session j

is not allowed to compute group keys of previous sessions. To add a new
member with ID α ∈ {1, · · · , n} starting from session j, the group manager
computes and gives Sα = {fj(α), fj+1(α), · · · , fm(α)} and kj

F = hj
F (sF) to

the node.

5.2 Efficiency

Our scheme is highly efficient in terms of storage, communication, and computa-
tion overhead. For storage, the personal secret together with the authenticator
accounts for (m + 1) log q bits storage in each sensor node (compared to Dutta
et al.’s scheme, ours only needs log q-bit more storage for the authenticator).

292 Y. Yang et al.

For communications, our scheme generates t(log q + log n) ≈ t log q bits key up-
date message (since n 	 q), which is almost the same as the bit length of the
key update message in Dutta et al.’s scheme. For computation, no costly public
key primitive is involved in our scheme, and the computation overhead inflicted
upon sensor nodes includes only cryptographic hash function and polynomial
operations.

5.3 Security Analysis

Theorem 1. The above construction is a hierarchical self-healing group key dis-
tribution scheme with respect to Definition 1.

Proof. It is not difficult to check that our scheme meets the properties of key
hierarchy, authenticated computation of group key, and self-healing. We thus, in
what follows, focus on showing that our scheme satisfies other security require-
ments.

♦ Secrecy of Personal Secret. Personal secrets are computed from t-degree poly-
nomials. For any t-degree polynomial corresponding to a session, a set U of
sensor nodes, where |U | = τ ≤ t, contributes τ points over the polynomial. It is
thus impossible (in an information theoretic sense) for τ nodes to determine the
polynomial solely from the personal secrets they have, and in turn any other
value of the polynomial. It remains to check whether the broadcast key update
messages reveal information on personal secrets. Let us consider a particular
non-revoked node i in session j. From the broadcast message Bj , node i cal-
culates km−j+1

R = bj(i)−fj(i)
rj(i)

. Then with km−j+1
R , node i can actually compute

any f(i′), i′ �= i, as f(i′) = bj(i′) − km−j+1
R .rj(i′). This suggests that once a

group session key is established, the element of a sensor node’s personal secret
corresponding to that session is revealed to all other non-revoked nodes. This
is exactly the reason why we distinguish between obsolete and fresh elements
within a personal secret. We stress that the fresh elements of a personal secret
remain secret, since they are computed from different polynomials.

♦ t-Revocation. Without loss of generality, let’s consider the last session m, and
assume the set of t revoked nodes Rm = {1, 2, · · · , t}, the maximum number of
allowed revoked nodes, at the start of the session. Our goal is to show that these
t revoked nodes cannot compute gKm from the broadcast key update message
Bm and their personal secrets. We model the coalition of the t revoked nodes as
a polynomial-time algorithm A, which takes View of the protocol as input and
outputs a guessed group key gK ′

m for session m. We say A breaks t-revocation
if gK ′

m is authenticated with respect to the group keys of previous sessions (or
the authenticator). We prove, by contradiction, that if A breaks t-revocation,
then we can construct a polynomial-time algorithm B for inverting one-way
hash function hR(.), using A. In particular, given y = hR(x), B computes x by
invoking A as follows.

B sets k2
R = y while leaves k1

R undefined (k1
R should be x by definition),

and then computes k3
R = hR(y), k4

R = hR(k3
R) = h2

R(y), · · · , km+1
R = hR(km

R).

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 293

B continues to select a random sF and compute the forward hash chain kj
F =

hF (kj−1
F) = hF (hF (kj−2

F)) = · · · = hj
F (sF), 1 ≤ j ≤ m. B sets the j-th group

session key as gKj = km−j+1
R + kj

F , 1 ≤ j ≤ m − 1, and leaves gKm undefined
(gKm should be x + hm

F (sF) by definition). B selects m random polynomials
f1(x), · · · , fm(x) ∈ Fq[x], each of degree t. For each node i ∈ {1, 2, · · · , t}, B
computes the personal secret Si = {f1(i), · · · , fm(i)}. For each session 1 ≤
j ≤ m − 1, B computes the broadcast key update message Bj = Rj ∪ R′

j ∪
{bj(x)}, where Rj ⊆ Rm, and bj(x) = km−j+1

R .rj(x) + fj(x), with R′
j and rj(x)

being constructed in exactly the same manner as in our scheme. To compute
the broadcast key update message for session m, B selects a random k1

R ∈ Fq,
and computes Bm = Rm ∪ {bm(x)}, where bm(x) = k1

R.rm(x) + fm(x), with
rm(x) = (x − 1)(x − 2) · · · (x − t). Then B sets View of the protocol as

View =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

km+1
R

sF

{fj(1), fj(2), · · · , fj(t)}, j = 1, · · · , m

Bj , j = 1, · · · , m

gK1, · · · , gKm−1

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

Finally, B gives View to A, which in turn outputs gK ′
m, its guess for the actual

group session key gKm. B outputs gK ′
m − hm

F (sF). It is easy to see that for any
session j, 1 ≤ j ≤ m−1, the simulation by B in constructing View is perfect with
respect to the original scheme. We next show that the simulation for session m
(where a random k1

R is used) is also perfect to A. To see this, A has bm(x) (from
Bm) and {fm(1), · · · , fm(t)} at its disposal. First, from fm(1), · · · , fm(t), A can-
not determine fm(.) as it only has t points over the t-degree polynomial which
has t+1 unknown coefficients, thus A cannot compute any fm(i), i /∈ {1, · · · , t}.
Here, we need to stress that bm(x) does not help A to determine fm(x). The
reason is that bm(x) at the points of {1, · · · , t} equals fm(1), · · · , fm(t), respec-
tively, thereby revealing no more information on fm(x). Second, on bm(x), there
are two cases to be considered.

1. i ∈ {1, · · · t}: from bm(x), A can evaluate bm(i) which equates fm(i) regard-
less of k1

R. A thus can check against fm(i) which is already at its disposal.
The simulation is perfect to A.

2. i /∈ {1, · · · , t}: from A’s point of view, bm(i) = k1
R.rm(i) + fm(i) is random,

because in each bm(i) there are two unknown variables k1
R and fm(i); for

every value of k1
R, there is a corresponding value fm(i). Hence the adversary

A who cannot break the polynomial fm(.) has no way to distinguish whether
or not the genuine k1

R is used in bm(i). The simulation is thus again perfect
to A.

Combining together the above arguments, we conclude that B inverts hR with
the same advantage as A breaks t-revocation.

♦ t-wise Forward Secrecy. An intuition on t-wise forward secrecy is that if a set of
nodes U join the system in session j, they are given kj

F = hj
F (sF). To compute

294 Y. Yang et al.

the group key for an earlier session j′ < j, they need kj′
F . In our scheme, the only

information relates to kj′
F are kj

F , kj+1
F , · · · , km

F . Computing kj′
F from these group

keys of later sessions clearly involves inverting the one-way cryptographic hash
function hF (.). As it is straightforward to construct an adversary B for inverting
hF (.), based on an adversary A that breaks t-wise forward secrecy (similar to the
above proof), we omit the details of the proof. �

6 Conclusion

We studied hierarchical self-healing group key distribution for heterogenous
WSNs. In particular, we formulated a model for hierarchical self-healing group
key distribution, and proposed concrete schemes that achieve provably compu-
tational security and high efficiency.

Acknowledgement

This work is supported by A*STAR project SEDS-0721330047.

References

1. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Definitions and Bounds for Self-
healing Key Distribution. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 234–245. Springer, Heidelberg (2004)

2. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Design of Self-healing Key Distribu-
tion Schemes. Designs, Codes and Cryptography 32(1-3), 15–44 (2004)

3. Blundo, C., Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-
secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)

4. Chan, H., Perrig, A., Song, D.: Random Key Pre-distribution Schemes for Sensor
Networks. In: IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

5. Du, W.L., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In: ACM Conference on Computer and Com-
munication Security, CCS 2003, pp. 42–51 (2003)

6. Dutta, R., Change, E.C., Mukhopadhyay, S.: Efficient Self-healing Key Distribution
with Revocation for Wireless Sensor Networks Using One Way Key Chains. In:
Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer,
Heidelberg (2007)

7. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: ACM Conference on Computer and Communication Security, CCS
2002 (2002)

8. Huang, D., Mehta, M., Medhi, D., Harn, L.: Location-aware key management
scheme for wireless sensor networks. In: 2nd ACM workshop on Security of Ad
Hoc and Sensor Networks

9. Liu, D., Ning, P.: Improving Key Pre-distribution wih Deployment Knowledge in
Static Sensor Networks. ACM Transactions on Sensor Networks (2005)

10. Liu, D., Ning, P., Du, W.L.: Group-based Key Pre-distribution in Wireless Sensor
Networks. In: ACM Workshop on Wireless Security (2005)

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 295

11. Liu, D., Ning, P., Sun, K.: Efficient Self-Healing Group Key Distribution with revo-
cation Capability. In: ACM Conference on Computer and Communication Security,
CCS 2003 (2003)

12. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Pro-
tocols for Sensor Networks. Wireless Networks Journal (WINE) (September 2002)

13. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing
Key Distribution with Revocation. In: IEEE Symposium on Security and Privacy,
S&P 2002, pp. 241–257 (2002)

14. Yarvis, M., et al.: Exploiting Heterogeneity in Sensor Networks. In: IEEE INFO-
COM 2005 (2005)

15. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-scale
Distributed Sensor Networks. In: ACM Conferenc on Computer and Communica-
tion Security, CCS 2003, pp. 62–72 (2003)

	Hierarchical Self-healing Key Distribution for Heterogeneous Wireless Sensor Networks
	Introduction
	Related Work
	Heterogeneous WSN Architecture
	Model and Definition
	Our Construction
	Scheme Details
	Efficiency
	Security Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

