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Abstract. Aggregation is a very important issue to reduce the en-
ergy consumption in Wireless Sensors Networks (WSNs). There is cur-
rently a lack of cryptographic primitives for authentication of aggregated
data. The theoretical background for Aggregated Message Authentica-
tion Codes (AMACs) has been proposed by Chan and Castelluccia at
ISIT 08.

In this paper, we propose a MAC design based on universal hash
functions and more precisely on the Krawczyk’s constructions. We show
how those designs can be used for aggregation and how it can be easily
adapted for WSNs. Our two AMAC constructions offer a small memory
footprint and a signification speed to fit into a sensor. Moreover, when
compared with scenarios without aggregation, the method proposed here
induces a simulated energy gain between 3 and 9.
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1 Introduction

The purpose of wireless sensors networks (WSNs) is to collect data and then
transmit them at a gathering point. There are two classes of nodes in such a
network. Data nodes have limited resources (CPU, memory and energy) and
are on their own, i.e. the energy is the critical resource. Gathering nodes are
considered more powerful (base stations) and they have an access to a power
supply. We consider in this paper, an hop-by-hop scheme for the data forwarded
by the data nodes to a gathering node considering a fixed topology. In this model,
the most expensive operation is the data transmission. It is then highly valuable
to reduce the size and the number of the transmitted messages. The messages
aggregation has been used for this purpose. We apply a function over all the data
produced by the collection nodes instead of concatenating them. This function is
evaluated successively by each data gathering node resulting in a communication
scheme with a constant message size.

If aggregation is a very powerful technique to save energy, it has to be used
carefully. Sensors can be deployed at a large scale and over a large area. It is very
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likely that they get compromised or attacked and thus an attacker can influence
the result of the aggregation function [22]. Security is therefore a critical issue.
The confidentiality, the integrity and the origin of aggregated data must be
preserved. There exists several works concerning aggregated encryption [10,6,8]
or aggregated authentication [19,23,15]. Recently, several works [7,16,3] have
established the foundation for aggregated MACs. This work aims to fill the gap
between the theoretical results and practical design for aggregated MACs.

A MAC algorithm could be seen as a signature only valid between two users
that share the same secret key: a MAC allows to guarantee the integrity of the
transmitted message and to verify the identity of the sender for the user sharing
the symmetric key. A MAC is thus an algorithm that takes as input a message
m and a key K and that produces a fingerprint tag = MACK(m). The receiver
of the message m′||tag(m) verifies if tag′ = MACK(m′) is equal or not to tag.
In the case of a WSN, this verification must be performed at each stage of the
aggregation to establish a complete trust chain over all the results.

In this paper, we propose two AMAC constructions based on the well-known
universal hash functions, i.e. CRC Hash and LFSR hash proposed by Krawczyk
in [17].

Contributions of the paper are as follows:

• We show how to use existing universal hash functions to design an aggregated
MAC scheme and which level of security can be achieved.

• We identify the parameters of the functions suitable for the constraints of
sensors.

• We present a comparison of the performances of several aggregation
scenarios.

The simulations performed for different scenarios show that the gain in terms of
energy between our method and methods without aggregation varies between 3
and 9.

In Section 2, we give a reminder on aggregation and message authentica-
tion codes. We particularly focus on universal hash functions based MACs. We
present in Section 3 our new designs for aggregate MACs and we discuss the se-
curity issues. The performance of our schemes are evaluated in Section 4. Then,
we conclude.

2 Preliminaries

In this section, we first introduce a formal definition of message aggregation and
of AMAC as done in [7] and describe the relative constructions proposed in the
literature. Then, we introduce three particular MAC designs which are linear
and based upon universal hash functions.

2.1 Formal Definition of Aggregation and Related Work

The basic communication model in an hop-by-hop WSNs is the concatenation.
Let consider a WSN with n nodes sending message of � bits. Each node i concate-
nates its contribution xi to the result of the previous step. This model is easily
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implemented but it consumes a significant amount of bandwith and energy: the
last node in the protocol has for instance to transmit x1, x2, · · · , xi, · · · , xn−1, xn.
This overhead can be reduced by using the aggregation: given n messages
(x1, x2, · · · , xn) of length � sent by the n different nodes, the aggregated result
m of length � is defined by a function f :

f : m = f(x1, x2, · · · , xn).

Some examples of aggregation functions usually used are the median or the mean
as explained in [22]. The security of an aggregation scheme relies on encryption
and authentication. The properties of those two mechanisms are very specific in
the context of aggregation.

Encrypted and Aggregated Data. The confidentiality of the messages sent
in an aggregation scheme requires to perform the aggregation over the ciphertexts
rather than the plaintexts. This problem is usually solved with homomorphic ci-
phers. Many public-key cryptosystems, e.g. RSA or ElGamal, can be used for
this purpose but they are not generally suitable for sensors. A method of homo-
morphic ciphers based upon stream ciphers and suitable for WSNs applications
has been developed in [6]. Let consider a node i receiving an �-bit message pi−1.
The node i aggregates its contribution xi to the message pi−1 in the following
way:

pi = pi−1 + ci mod q

= pi−1 + xi + keystreami mod q

where q is a well chosen prime number and where keystreami is the keystream
produced by the node i with its secret key ki and a stream cipher.

Aggregated Authentication. The aim of aggregated authentication is to
provide a way to verify the aggregated result, i.e. f(x1, x2, · · · , xi, · · · ), rather
than each message xi individually. Different schemes have been proposed for
the aggregation of authentication. They used Merkle tree [19] or MACs algo-
rithms [23,3,15,7]. We especially focus on the solution proposed by A. Chan and
C. Castelluccia [7]. They have proposed a formalization of aggregate message au-
thentication code (AMAC) and they study its security. More formally, an AMAC
algorithm is defined as follows:

– Key Generation (KG). Let KG(1λ, n) → (k1, k2, ..., kn) be a probabilistic
algorithm. Then, ki (with 1 ≤ i ≤ n) is the secret key used to generate a
verification tag by node i. The gathering node also called the sink possesses
all ki’s used for tag verification.

– Tag Generation (MAC). MACki(xi) → tagi takes a secret key ki and a
message xi as input to generate a verification tag tagi for xi. The message
sent out from node i is a 3-tuple ({i}, xi, tagi).

– Tag Verification (Ver). Let m be an f -aggregate of messages x1, x2, · · · , xi, · · ·
and hdr be the set of all contributing identities. Then

Verk1,k2,··· ,ki,···(m, tag1, tag2, · · · , tagi, · · · ) → 0/1
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takes the aggregate m and the tag tagi and secret key ki for each i ∈ hdr
and outputs 1 if m is a correct aggregate (i.e. m = f(x1, x2, · · · , xi, · · · ))
and 0 otherwise.

Note that no aggregation algorithm is specified in AMAC; the aggregation is
done in plaintexts. When an aggregating node with identity k receives two
measurement values and their tags from downstream, say, ({i}, xi, tagi) and
({j}, xj, tagj), it would pass

({i, j, k}, f(xi, xj , xk), tagi, tagj, tagk)

as the aggregation result to its parent where xk is its own measurement.
Note also that aggregation of verification tags is not considered here. So all the

tags are needed in the verification: let m = f(x1, ..., xi, ...), then the correctness
requirement of AMAC is as follows:

Verk1,··· ,ki,···(m, MACk1(x1), ..., MACki(xi), ...) = 1.

here, the tags are not aggregated.
At this time, no instance of this scheme has been proposed. We propose

to use the universal hash functions defined by Carter and Wegman in [4] to
design a MAC corresponding to the requirements of [7] and where the tags
could also be aggregated leading to an AMAC scheme defined as follows: let
m = f(x1, · · · , xi, · · · ) and tag be the value g(MACk1(x1), ..., MACki(xi), ...)
be the tag aggregation considering that g is an aggregation functions that could
be (or not) equal to f , then the corresponding verification is thus:

Verk1,··· ,ki,···(m, tag) = 1.

2.2 MACs Based Upon Universal Hash Functions

In this section, we will first introduce the definition of an universal hash function
and the original MAC schemes proposed by Krawczyk based upon universal hash
functions and the one proposed by Sarkar.

Universal Hash Functions. A universal hash function is a family of functions
indexed by a parameter called the key and it must verify that the probability
over all keys that all distinct inputs collide is small. This notion was introduced
by Carter and Wegman in [4].

Definition 1. Let fk be a function of an (�, n)-family H from an �-bit set to
an n-bit set with the parameter k taken in a set K. The family H is ε-almost
universal if the probability of collisions for a random distribution of the value
k over the set K (i.e. Prk(fk(M) = fk(M ′)), ∀k ∈R K) is smaller than ε. We
also say that H is ε-almost XOR universal (ε-AXU) if the associated differential
probability for a random distribution of the value k over the set K is bounded by
ε, i.e. ∀(M, M ′, a), P rk(fk(M) − fk(M ′) = a) ≤ ε.
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Definition 2. We also say that a family of functions H is ⊕-linear if for all
M, M ′, we have fk(M ⊕ M ′) = fk(M) ⊕ fk(M ′) for all instance fk in H.

The Definition 2 is particularly important for aggregated authentication.
These functions can be used for message authentication if the output is pro-

cessed with another function. A MAC designs using the Definition 1 assumed
the following scenario: the parties have already exchanged their secret key k,
then to exchange a message M of length �, the sender sends M and the tag
tag = fk(M) ⊕ r. The shared secret key k is thus composed of a particular fk

function drawn randomly from an (�, n)-family of hash functions and a random
pad r. At reception, the receiver verifies the “tag” tag, corresponding with the
MAC will be recomputed and checked for consistency. In practice, the fingerprint
fk(M) will be encrypted with a stream cipher that will produce r.

Krawczyk has shown in [17] that the design of MAC of the above kind (i.e.
combined with a one-time pad) requires to have a family of functions that is
ε-almost XOR universal. Moreover, the family of functions can also be ⊕-linear.

Many universal hash families have been proposed in the literature to build
MACs. One of the first examples was the evaluation of a particular polynomial
in a particular point k as done in [2]. Let consider an �-bit message m split into t
blocks mi such that � = pt. In this case, the universal hash function fk is defined
as:

fk(m1, · · · , mt) =
t∑

i=1

mi · ki mod p.

This function is multi-linear and the base field could be Fp or F2n . In [21], V.
Shoup gave a classification of the universal hash functions that could be used
for MACs constructions in 3 categories: The first one is composed of the polyno-
mial evaluations over a prime field or a finite field; the second one is composed
of polynomial divisions over F2 described by Krawczyk in [17] and known as
cryptographic CRC and as “LFSR (Linear Feedback Shift Register) hash”; the
third category is composed of polynomial division over F2k . V. Shoup particu-
larly studied in his article the last class. The reader can find more details on
MAC algorithms based on universal hash functions in [18] and on their security
in [13].

Cryptographic CRC. As described in [21], the first scheme proposed by H.
Krawczyk in [17] is based upon modular division using an irreducible polynomial
over the field F2. It is a cryptographic variant of the well-known Cyclic Redun-
dancy Codes (CRC), standards for errors detection in networks. More precisely,
each message M is seen in its equivalent polynomial representation M(x) over
the field F2, the coefficients being the bits of M . Thus, for each irreducible poly-
nomial q(x) of degree n over F2, the associated family of universal hash functions
is hq(M) = M(x) · xn mod q(x). Notice here that it is necessary to multiply
M(x) by xn to ensure the security of the scheme for the notion of ε-AXU.

The (�, n) family of hash functions hq is the set of irreducible polynomials of
degree n and of the messages of size �. This family is ⊕-linear, ε-almost universal
(with ε ≤ n+�

2n−1 ) and ε-almost XOR universal (with ε ≤ n+�
2n−1 ).
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The hardware and software implementation of such mechanisms is really effi-
cient because the modular division for polynomials in F2 could be performed us-
ing a simple LFSR. The corresponding extension proposed by Shoup and proved
secure is the extension of this construction to the case where the base field is
F2k . In this case, the corresponding ε value is about �

2kn .

Linear Feedback Shift Register (LFSR) Hashing. In the same article,
Krawczyk introduced a second construction based upon random matrices. More
precisely, given A a boolean Toeplitz matrix of size n×� (i.e. each lower diagonal
is fixed, i.e. if k−i = l−j for all indices then Ai,j = Ak,l) and given a message M
of size �. The universal hash function hA(M) is then the binary multiplication
of the matrix A by the column vector composed of the bits of the message M :
hA(M) = A · M .

A simple method to build such matrices is the LFSR use: given q(x) an irre-
ducible polynomial of degree n over F2; given s0, s1, · · · the output sequence of
the bits generated by the LFSR defined according to q(x) and the initial state of
the LFSR s = (s0, s1, · · · , sn−1). For each irreducible polynomial q(x) and for
each non-zero initial state of the LFSR, we associate the hash function hq,s(M)
defined as the linear combination

⊕�−1
j=0 Mj · (sj , sj+1, · · · , sj+n−1) where Mj is

the bit number j of M . In other words, at each clock, the LFSR updates its internal
state taking into account each message bit. This hash functions family is ⊕-linear,
ε-almost universal (with ε ≤ n+�

2n−1 and ε-almost XOR universal (with ε ≤ �
2n−1 ).

Multi-linear Universal Hash Functions. In [20], P. Sarkar proposed the fol-
lowing evaluation: given a field Fp and an extension of this field Fpn with n ≥ 1;
given φ a linear transformation from Fpn into itself such as the minimal polynomial
of φ in Fp[x] be of degree n and be irreducible over Fp; the message to cipher M is
cut into l ≤ n elements (M1, · · ·Ml) over Fp. The hash functions family is:

GK(M) = M · (K, φ(K), · · · , φl−1(K))
= M1K + M2φ(K) + · · · + Mlφ

k−l(K)

where K belongs to Fpn .
The family GK is thus a linear combination of (M1, · · ·Ml) and of (K, φ(K), · · · ,

φl−1(K)), it is multi-linear (i.e. linear in each of its component), ε-almost universal
with ε ≤ 1/qn and also ε-almost XOR universal with the same ε value.

Sarkar also noted that φ could be easily implemented because it can be seen
as a LFSR over Fp. The author studied the particular p values allowing a fast
implementation in hardware and in software. The examples given are q = 2,
n = 128; q = 28 + 1, n = 16; q = 216 + 1, n = 8; q = 232 + 15, n = 4. He also
gave some examples of extensions over the field F2 that we will not detail here.

3 New Designs

We are going to present in this section the possible applications of the previous
functions in the case of a WSN. We simplify the study case for a better under-
standing and reduce the number of nodes to two nodes i and j depending on
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({i, j, k}, ci ⊕ cj ⊕ ck, tagi ⊕ tagj ⊕ tagk)

({j}, ci, tagi)

({i}, cj , tagj)

i

j

k

Fig. 1. XOR aggregation with three nodes: i, j and k

one aggregator node k as shown in Fig. 1. This last one is directly connected to
the sink. This simple scheme could be easily generalized.

3.1 XOR Aggregation: How to Adapt the Krawczyk’s Approaches
for WSNs

The first construction described by Krawczyk could be directly applied to the
MAC aggregation if the XOR operation is used. This approach could be directly
combined with the XOR data aggregation proposed in [6].

Suppose that a WSN is composed of N nodes i. Each node receives during
an initialization phase a cipher key KEi shared between the node and the base
station (the sink), an authentication key KAi also shared between the node and
the base station and a polynomial q(x) shared by all the nodes and the base
station. Suppose now that the simple network described in Fig. 1 describes a
tree with three nodes i, j and k directly rooted at the sink.

When the node i wants to send (on demand or at regular intervals) a message
mi, it ciphers this message using a pseudo-random stream generated using a
stream cipher algorithm E (for example RC4 or SNOW v2 [11]). The common
cipher key KEi and a common initial value IVi used once must be shared between
the node i and the base station for the correct use of the E stream cipher. Thus,
node i ciphers Ci = mi ⊕ ri where ri is the pseudo-random stream produced
by E(KEi, IVi). Note that as mentioned in [6] the node i must also transmit
to the base station its Id i and the unique value IVi that also plays the role
of a counter to discard replay attacks. We first propose that IVi be the only
transmitted value writing IVi = i||CTRi, i.e. as a concatenation between the
node Id and a counter CTRi incremented by 1 at each new sending. (Note also
that this value must be transmitted each time in case of the non-transmission
of a particular message).

The node i also produces the corresponding MAC of the message mi using the
Krawczyk’s construction: it computes tagi = (mi(x) · xn mod q(x)) ⊕ r′i where
r′i is the pseudo-random stream produced using E initialized with KAi and IVi.
Thus, node i transmits to its parent k the value: {hdr, data, tag} with hdr = IVi,
data = Ci, tag = tagi.

Suppose now that the node j wants to transmit the message mj to the ag-
gregator node k, then it sends to k {IVj , Cj , tagj}. The node k transmits to the
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base station (considering that it sends itself mk):

{IVi, IVj , IVk, Ci ⊕ Cj ⊕ Ck, tagi ⊕ tagj ⊕ tagk}.
The base station deciphers

Ci ⊕ Cj ⊕ Ck ⊕ ri ⊕ rj ⊕ rk = mi ⊕ mj ⊕ mk = M

using the knowledge of the different keys and of the different IV s. It verifies:

tagi ⊕ tagj ⊕ tagk ⊕ r′i ⊕ r′j ⊕ r′k
= mi · xn ⊕ mj · xn ⊕ mk · xn mod q(x)
= (mi ⊕ mj ⊕ mk) · xn mod q(x)
= M · xn mod q(x).

Thus, the base station could verify the aggregated tags according to the received
sum.

Examples of values sizes Concerning the key sizes, the minimal size is 128 bits.
The polynomial q(x) could be a primitive polynomial of size 64 bits. the IV
values could be of 48 bits length (24 bits for example for the node Id and 24
bits reserved for the counter1. The messages must have a 64 bits length (this
value could not be smaller than the degree of the polynomial q). In this case,
the final messages size is defined according the number of nodes N transmitting
an information: 48N + 64 + 64. Considering a 96 bits polynomial and a 96 bits
message to transmit, the total size of transmitted information becomes 48N +
96+96. The security bounds of the underlying universal hash functions are equal
to 2−56 (resp. 2−87). The induced overhead on the network clearly depends on
the header size and thus on the nodes number sending back an information.

The following on demand mechanism could reduce this overhead: when the
base station wants to receive values from the network, it broadcasts a unique
value IV of 24 bits. The nodes receiving it use the previous method to cipher
and to authenticate their data using the IV value IVi = i||IV . The header has
only to be constituted of the responding Id nodes and could thus be replaced
by a ciphered Bloom filter of size m as proposed in [1]. The cipher key K of the
filter is shared between all the nodes and the base station. In this case, each node
ciphers k times its Id by putting at 1 the bit corresponding to this position in
the Bloom filter. This improvement seems to be efficient even if the probability
to obtain a false positive in the Bloom filter is about 0, 6185m/n where n is the
number of elements to insert in considering that k is about 0, 7m

n . For a network
with 200 nodes, a Bloom filter of size 2048 bits with k = 7 has a false positive
probability less than 1%. This probability could be reduced if instead of bits, the
Bloom filter is composed of 4 bits word or of bytes. If a Bloom filter is used, the
required computations performed by each sensor are increased by k additional
1 Once all the IV s values used, the cipher keys must be changed to discard WEP like

attacks.



256 W. Znaidi, M. Minier, and C. Lauradoux

hash computations and the base station must test if all the Id nodes are or are
not in the Bloom filter leading to kN additional hash computations.

We have proposed a direct use of the Krawczyk constructions in the case where
we try to obtain the XOR of the messages and not the sum. We have presented
examples using the first construction, the same reasoning could be applied using
the second construction. In this case, each node must be initialized with the
same matrix A to conserve the ⊕-linearity, the other parameters being the same
than the one previously described. A deduced MAC size of 64 or 96 bits gives
reasonable security bounds.

3.2 Aggregation over Fp

In this section, we extend the Krawczyk’s MAC constructions over Fp with p
prime to transform the proposed MAC from ⊕-linear to +-linear as the one
proposed by Sarkar.

Extension of Krawczyk’s Over Fp. We first introduce the following nota-
tions: we denote by F

l
p the vectorial space of size l over Fp and F

n
p the one of size

n. The message M we want to compute the MAC is written M = (M0, · · · , Ml−1)
where each Mi belongs to Fp. In the same way, the output of the hash function
is considered as an element of F

n
p , a vector of size n over Fp.

In this case, the first Krawczyk’s construction becomes: given a message M =
(M0, · · · , Ml−1) in F

l
p seen as a polynomial with coefficients in Fp: M(x) =

M0x
l−1 + M1x

l−2 + · · · + Ml−1; given an irreducible polynomial q(x) of degree
n with coefficients in Fp with its leading coefficient equal to 1; the hash function
is defined as hq(M) = M(x) ·xn mod q(x) seen as a vector of size n of elements
of Fp. The obtained tag is thus tag = hq(M) + r where r is a vector of size n of
random numbers taken in Fp.

We need to compute Prh(hq(M)−hq(M ′) = c(x)) to prove that this function
is ε-almost universal. This function is trivially +-linear. Thus, directly using
the results of [21] and of [17], if hq(M) − hq(M ′) = c(x), by linearity, we have
hq(M −M ′) = c(x), i.e. q(x) divides (M −M ′) · xn − c(x). This polynomial has
a maximal degree equal to l + n whereas q(x) has a degree of n, the number of
factors of degree n of this polynomial is n+l

n . The maximal number of functions
hq that map M − M ′ in c(x) is n+l

n . The number of all possible functions is
the set of irreducible polynomials of degree n over Fp[x]; there are pn−1

n such
functions. We thus directly deduce that Prh(hq(M) − hq(M ′) = c(x)) ≤ n+l

pn−1

and that the family of proposed functions is ε-almost + universal with ε = n+l
pn−1

and it is multi-linear.
We have generalized the first Krawczyk’s construction for a prime field Fp

keeping the willing linear properties. Notice that the second scheme proposed in
[17] could be generalized in the same way: in this case, this last generalization
is very closed to the one proposed by Sarkar except the definition of the final
set seen in the Krawczyk’s generalization as a vectorial space ans seen in the
Sarkar’s construction as a field extension. Let us now explain how to use those
generalizations for WSNs.
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Applications for WSNs. In this section, we will describe how to use those
new constructions for MAC aggregation in WSNs. We suppose here that the
messages (for example temperatures) sensed by the nodes will be sent by packets,
one packet being constituted of l single messages of size p. Each node sensing l
different values stores those values M0, · · · , Ml−1 before sending them together
to the base station at each given time interval or on demand, l being known
and fixed in advance. In the case where a sensor has not collected l values but a
smaller number, it replaces in the sent message the missing values by some 0s.
Let us illustrate the proposed method using the example of Fig. 1.

Using the same assumptions than the one of Section 3.1, we suppose that
each node i shares with the base station a cipher key KEi, an authentication
key KAi, a stream cipher E and an irreducible polynomial q(x) of degree n with
coefficients in Fp common with all the other nodes and the base station.

The node i stores l messages and sends them to the base station using the
proposed method. For ciphering messages, it directly uses the method described
in [6], i.e. it computes for each message Mj (j ∈ [0, .., l − 1]), Mj + rj mod p
where rj is a pseudo-random number smaller than p and where p is a prime
number defined as p ≥ 2�log2 M∗N� (where M is the maximal size that can take
a single message) and where N is always the total number of nodes. So, first,
node i ciphers its l messages M i = (M i

0, · · · , M i
l−1):

Ci = M i + ri

= (Ci
0 = M i

0 + ri
0 mod p, · · · ,

Ci
l−1 = M i

l−1 + ri
l−1 mod p)

where each ri
j is a random number in [0, p− 1]. Those values are obtained using

algorithm E initialized with the key KEi and an IV value IVi. From this point,
node i computes the MAC of all the l messages M i seen as a polynomial with
coefficients in Fp: it first computes a vector of size n: hq(M i) = (hi

0, · · · , hi
n−1) =

(M i · xn mod q(x)). Finally, we have:

tagi + r′i = (tagi
0, · · · , tagi

n−1)

= (hi
0 + r′i0 mod p, · · · ,

hi
n−1 + r′in−1 mod p)

where r′j are random numbers belonging to [0, p−1] obtained using E initialized
with KAi and IVi. Node i transmits to its parent node k: {hdr, data, tag} with
hdr = IVi, data = Ci and tag = tagi.

Following the same previous example, the node j depending on the same
parent k transmits its own l messages and the associated MAC: {IVj , C

j , tagj}.
The node k transmits to the base station (considering that it has also l messages
to transmit):

{IVi, IVj , IVk, Ci + Cj + Ck, tagi + tagj + tagk}.
The base station deciphers Ci+Cj+Ck−ri−rj−rk = M i+M j+Mk = M using
its knowledge of each KEi and of IVi. M is a vector of size l. More precisely:
M = (

∑
i M i

0 mod p, · · ·∑i M i
l−1 mod p). It then verifies:
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tagi + tagj + tagk + r′i + r′j + r′k

= M i · xn + M j · xn + Mk · xn mod q(x)
= (M i + M j + Mk) · xn mod q(x)

= (
∑

i

M i
0 mod p, · · · ,

∑

i

M i
l−1 mod p) · xn mod q(x)

= M · xn mod q(x)

Thus, the base station is able to verify the value of the aggregated tags according
the received sum value.

Examples of values sizes. As previously mentioned, for key and IV sizes we
keep the sames as the ones defined in Section 3.1. So, let us define the p value.
It depends on the size of the network and of the maximal size of the message to
send. With the temperature example and a network composed of 200 nodes, we
consider that the temperature is smaller than 5000 Celsius degree. we directly
deduce that the p size is about 20 bits. We thus need to choose a prime number
easy to implement such as 220 +7. For the particular values closed to the powers
of 2, we could choose the prime numbers given in [20]. So if p = 220 + 7, an
irreducible polynomial of degree 6 gives an admissible security bounds and we
can send the messages by packets of size 10. Thus the generated MAC for each
node will be of size 126 bits, the concatenation of 10 messages will be of length
300 bits. If N nodes transmit their values, the packets size will be bounded over
by 48N + 126 + 300.

As explained in Section 3.1, a ciphered Bloom filter (with the same properties)
could be used for overhead reductions.

3.3 Security Analysis in the AMAC Model

In [7], A. Chan and C. Castelluccia proposed two security models for aggregation
schemes in WSNs. The first one is called Concealed Data Aggregation (CDA)
and concerns a security model for data aggregation whereas the second one called
AMAC is dedicated to the security of Aggregated Message Authentication Codes.

The security model for CDA defines a security notion against adaptive cho-
sen ciphertexts attacks and the indistinguishability notion in this model (IND-
CCA2). The particular game used here authorizes the usual challenges in this
model (cipher oracle and decipher oracle). The authors noticed that the con-
struction defined in [6] does not verify the IND-CCA2 property. This comes
directly from the intrinsic nature of the construction: we could distinguish two
particular ciphertexts and their sum.

In the same article, the authors defined the AMAC security notion using a
generation oracle and a verification oracle. In this model, they demonstrated
that an adversary is able to win the following game: given two messages, (hdr =
{i}, mi, tagi) sent by node i and (hdr = {j}, mj, tagj) sent by node j that the
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adversary knows; if the adversary sends to the verification oracle the aggregated
of those two messages (hdr = {i, j}, mi + mj , tagi + tagj) then the adversary is
able to forge a tag for a valid message.

The schemes proposed here have this security weakness intrinsically linked
with the wishing linear properties. However, we could legitimately question the
practical implications of a such attack especially concerning our MAC schemes.
The discussion below only concerns the AMAC case of study, the data aggrega-
tion scheme used here being the one studied in [7]. Indeed, if we suppose that
the base station needs the complete value of the header to correctly decipher
the messages sum and the aggregated value of the tags, this implies that the
adversary (that can not replay old packets due to the presence of the IV value
into the header) could only send to the base station information that it already
knows. If the base station does not possess those information, this implies that
the two nodes i and j were not able to transmit their values to the base station
(because for example the parent node is dead). In this last case, the adversary
helps for good operations in the network.

Moreover, in the AMAC security model proposed in [7], the header is not taken
into account. We can imagine to redefine a security model where the header is
included. In this case, the security of the scheme could rely in part at least
on the header itself by ciphering it for example or by using a ciphered Bloom
filter as explained in Section 3.1. One of the simplest methods consists in always
ciphering the header using the AES and a unique key shared by all the nodes
in the network and the base station. This method is not robust against node
compromise and do not allow to verify if the header has been modified during
process or not. To discard this last problem, we could add to this ciphered header
a MAC chain for which each node contributes by over-ciphering data as done
in [9]. The only deduced constraint is that the use of an additive homomorphic
cipher is prohibited to cipher and authenticate the header.

4 Performance Comparison

In this section, we present the performance evaluation of different aggregation
models. We have considered four cases:

• Scenario 1: the communication scheme uses no aggregation, i.e. the con-
catenation, nor for the data neither for the authentication.

• Scenario 2: the data are aggregated using a stream cipher as proposed
in [6]. The authentication is not aggregated.

• Scenario 3: the data and the authentication are respectively aggregated
with a stream cipher over F2 and with the AMAC proposed in Section 3.1.

• Scenario 4: the data and the authentication are respectively aggregated
with a stream cipher [6] and with the AMAC proposed in Section 3.2.

We test those four schemes using the LEACH [14] election mechanism and the
WSnet simulator [12]. First, we briefly describe LEACH, the simulation param-
eters and we discuss the different results.
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4.1 LEACH: Low-Energy Adaptative Clustering Hierarchy

LEACH [14] is a clustering-based protocol which minimizes energy dissipation
in WSN’s. LEACH selects randomly nodes as cluster heads (special aggregator
nodes), so the energy dissipation in the communications with the sink is spread
to all nodes in the network. LEACH is composed of two steps: the set-up phase
and the steady phase. During the set-up phase, a sensor node is elected as cluster
head if it generates a random number (between 0 and 1) greater than a given
threshold T defined as:

T =

{
P

1−P∗[r mod 1/P ] , if n ∈ G

0, Otherwise

where P is the desired percentage of cluster heads, r is the current round of the
protocol and G is the set of nodes that have not been selected as a cluster head
in the previous rounds. Using this threshold, each node will be a cluster-head
at some point after 1/P rounds. After an advertisement information, each node
selects its cluster head. During the steady phase, each node sends their sensing
values to its cluster head which aggregates the received data before sending
them to the base station. After the steady phase, the network goes into the
set-up phase again for a new round and a new cluster heads election.

4.2 Different Scenarios and Evaluation Parameters

We have implemented the LEACH protocol on the WSnet simulator. we have set
P = 0.2 and we have tested our approach on a random nodes distribution. Each
simulation is run with n sensor nodes and n ∈ [100; 600] distributed randomly
over a square field of 400m by 400m. Our simulations use the IEEE 802.11
physical and MAC layers which are fully simulated in the WSnet environment.
We have also used the RC4 stream cipher but any other stream cipher can be
used. In this study, we have simulated four different scenarios: the first scenario
consists in no aggregation at all, nor for the data neither for the MACs. The
second scenario simulates the data aggregation technique presented in [5] which
we add the concatenation of all tags generated by sensor nodes. The two last cases
simulate our own proposals described in Section 3.1 and in Section 3.2. Note that
the operations performed in Scenario 3 are based upon XOR operations whereas
the usual + is used only in Scenario 4.

4.3 Simulation and Results

We have simulated the 4 scenarios described above based on aggregator nodes
elected using the LEACH protocol. We consider in all simulations that each node
senses a value at each second and sends it with a given probability equal to 90 %.

We have tested the average delay time for a packet to travel until reaching the
sink and the average energy consumption per nodes for the four scenarios. For
each test, we have repeated the tests over 100 simulations for the four scenarios.
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Fig. 2. Energy consumption for different aggregation schemes

Fig. 2 presents the average delay for a packet to reach the sink. Clearly,
Scenario 4 is the slowest one and has the maximum delay for the average packet
transfer as every node must wait l time intervals before sending the l aggregated
values to first its cluster head that aggregates them and forwards to the sink.
Moreover, the cluster head must wait values from other members before sending
all the aggregated values to the base station. So, as expected, the Scenario 4 has
the highest latency compared with the other scenarios. This proposal is really
adapted to applications that require simple data gathering or environmental
monitoring without any emergency needs. Among the three other scenarios, the
Scenario 3 is the one that presents the best average delay compared with the two
first scenarios. This comes from the fact that this scenario minimizes the size of
the sent packets leading to a better transmission time for every cluster head.

Fig. 3 presents the gain on energy consumption between Scenario 4 and each of
the other scenarios. As one could see on the figure, this gain is between 2.5 and 9
which is really significant. Moreover, Scenario 3 has the best energy consumption
after Scenario 4. Those real improvements in terms of energy keeping is directly
linked with the size of the sent packets because in the three first scenarios the
number of sent packets is about the same whereas in the last case, the number
of sent packets is divided by l here equal to 10.

More formally, considering the WSN as a tree of depth d and of width t,
considering that one bit is sent by each nodes, the number of sent bits when no
aggregation is performed is equal to

∑d
i=0(d− i)td−i, whereas when we consider

an aggregated scheme, the total number of sent bits is
∑d

i=0 td−i. In those cases,
considering that each node send a message of m bits and a tag of � bits, the
number of bits sent if Scenario 1 is used is (�+m)

∑d
i=0(d−i)td−i, for Scenario 2

it is �
∑d

i=0(d−i)td−i+m
∑d

i=0 td−i, for Scenario 3 it is �
∑d

i=0 td−i+m
∑d

i=0 td−i

and for Scenario 4, considering that a message of length m and a MAC of length
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Fig. 3. Gains on energy consumption when comparing Scenario 4 with the three first
scenarios

� is sent one time during l periods, it is about

�
∑d

i=0 td−i + m
∑d

i=0 td−i

l
.

Thus, performance evaluations confirm theoretical evaluations: in the theoretical
approach, the gain would be better than as shown by evaluations but this fact
is directly linked with the perfect structure of the network supposed in the the-
oretical model; the number of aggregator nodes is also greater in the theoretical
approach.

5 Conclusion

In this paper, we have presented a simple method based upon universal hash
function to aggregate MACs in a Wireless Sensors Network. To reach this aim,
we extended the two schemes originally proposed by Krawczyk in [17] to simplify
the data treatment. We have also discussed the security of our schemes in the
model proposed in [7]. We have validated our approaches by intensive simulations
that show the pertinence of our schemes and a significant gain in terms of energy
when our last proposal is used.

Due to the small sizes of the sent messages in a WSN, it seems judicious
to send several messages in a same time to be sure to generate a correct (and
sufficiently long) MAC. If only a single message is sent, the required functions for
this operation look more like expansion functions than compression functions.
In our future work, we will particularly focus on this expansion aspect and on
the implementation of universal hash functions in MSP430 sensors in order to
evaluate their software performances on small devices.
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