
Multichannel Protocols for User-Friendly and

Scalable Initialization of Sensor Networks

Toni Perković, Ivo Stančić, Luka Malǐsa, and Mario Čagalj

FESB, University of Split, Croatia
{toperkov,istancic,lmalisa,mcagalj}@fesb.hr

Abstract. We consider the classical problem of establishing initial secu-
rity associations in wireless sensor networks. More specifically, we focus
on pre-deployment phase in which sensor nodes have not yet been loaded
with shared secrets or other forms of authentic information.

In this paper, we propose two novel multichannel protocols for ini-
tialization of large scale wireless sensor networks. The first protocol uses
only secret key cryptography and is suitable for CPU-constrained sensor
nodes. The second protocol is based on public key cryptography. Both
protocols involve communication over a bidirectional radio channel and
an unidirectional out-of-band visible light channel. A notable feature of
the proposed “public key”-based key deployment protocol is that it is
designed to be secure in a very strong attacker model, where an attacker
can eavesdrop, jam and modify transmitted messages by adding his own
message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channel. We show that
many existing protocols that rely on the visible light channel are insecure
in this strong adversary model.

We implemented the proposed protocols on the Meshnetics wireless
sensor platform. The proposed protocols are cheap to implement, secure
in the very strong attacker model, easy to use and scalable. We also de-
signed and tested a simple random number generator suitable for sensor
platforms.

1 Introduction

Deployment of cryptographic keys into individual sensor nodes is an imperative
for secure operation of a sensor network. While there is a large body of work
on key management in scenarios where cryptographic keys are already deployed
into the nodes [9,11,12,21,27], very few studies exists on the equally important
problem of establishing initial security associations in large wireless sensor net-
works.

Many existing systems consider the key pre-deployment to be a trivial mat-
ter. Thus, we can read that “the key distribution is relatively simple; nodes are
loaded with a shared key before deployment”. Long experience with WiFi net-
works have taught us that very often such “relatively simple” setup procedures
render the security features useless (users easily give up and thus leave their net-
works unprotected), even when dealing with only a few network devices. Some

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 228–247, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Multichannel Protocols for User-Friendly and Scalable Initialization 229

other solutions propose to send the key in the clear over the radio channel or al-
ternatively, imprint the keys onto the nodes at production time (ZigBee [1]). The
problem with this approach is that customers may not trust the keys deployed
by the factory.

Solutions that require physical contact are not scalable, especially if the user is
required to initialize a large number of nodes. More advanced solutions have been
proposed in [8,5,3,24,24,19,30] some of which do not scale well and/or require
specialized node hardware, and some are insecure in the realistic attacker model
introduced in this paper.

When dealing with initialization of network nodes on a large scale, a secure,
fast, cost effective and above all user-friendly solution is mandatory. In this pa-
per, we propose two novel multichannel protocols for initialization of large scale
wireless sensor networks. Similar to [30], our protocols involve communication
over a radio channel and the out-of-band visible light channel (VLC). The first
protocol uses only secret key cryptography and is suitable for CPU-constrained
sensor nodes. The “secret key”-based initialization of sensor nodes is depicted
in Figure 1(a). In this protocol, each sensor node establishes a unique secret key
with a base station (BS). The base station comprises a simple web camera and
one sensor node all attached to an ordinary PC. In the first phase of the pro-
tocol, the sensor nodes transmit secret keys to the base station over a protected
visible light channel (Figure 1(a)). In the second phase, each sensor node runs a
key verification protocol with the base station over a bidirectional radio channel.
Once the keys are verified, the base station can serve as a trusted third party and
mediate establishment of security associations between any pair or any group of
sensor nodes.

Our second protocol uses public key cryptography. The “public key”-based
sensor node initialization process is summarized in Figure 1(b). As with the
previous protocol, the ultimate goal is to establish security association between
each sensor node and the base station. This protocol is based on the multichannel
pairing protocol from [38,5]. Thus, each sensor node first exchanges its public key
(through specially formed commitment/openning pairs) with the base station
over a radio channel (Figure 1(b)). In turn, each sensor node transmits a short
authentication string (SAS) using a visible light channel (Figure 1(b) - right).
The proposed “public key”-based protocol is similar to [30], with the difference
that our protocol is designed to be secure in a very strong attacker model, where
an attacker can eavesdrop, jam and modify transmitted messages by adding his
own message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channel1.

The paper is organized as follows: in Section 2 we state the problem and assump-
tions. In Sections 3 and 4 we present the “secret key”- and “public key”-based pro-
tocols (including security analysis of both protocols).We describe the implementa-

1 It was brought to our attention recently that a similar approach has been suggested
in [31]. The initialization method in [31], however, is developed for a weaker attacker
model than the one we consider here.

230 T. Perković et al.

BS

Sn

S1

S2

BS

Sn

S1

S2

BS

Sn

S1

S2

BS

Sn

S1

S2

(a) (b)

Fig. 1. Two phases of node initialization for (a) secret key and (b) public key deploy-
ment protocol. In (a) nodes transmit the key to the base station via VLC (dashed
arrows) and perform authentication via a radio channel (full line arrows), while in (b)
they exchange public keys over a radio channel and perform authentication via VLC.

tion of the protocols and a simple random number generator in Section 5. Related
work is provided in Section 6. Finally, we conclude in Section 7.

2 Problem Statement and System Model

We consider the following problem: How to securely initialize a large number of
sensor nodes in a user-friendly fashion? Since the initialization will be performed
by potentially non-expert personnel, a solution has to be easy both to learn
and use (user-friendliness). In addition, the hardware cost per node has to be
minimized (cost-efficiency).

2.1 System Model

We assume that a user is equipped with a base station used for verification and
monitoring as shown in Figure 2.

Base Station. The base station comprises a monitor, a simple web camera
and one sensor node (a verification node) all attached to an ordinary PC. The
verification node serves as a radio modem to the base station.

Uninitialized Sensor Nodes. Nodes may be equipped with a single LED (we
used two LEDs in our implementation) used for key transmission via out-of-band
VLC and with radio transceivers. In addition, each node has a “pushbutton” used
to either restart or finalize the initialization process.

Cardboard box. A simple cardboard box is used to block the escape of light
during the key transmission via VLC. The cardboard box is required only for
the “secret key” - based key deployment protocol.

2.2 Attacker Model

An adversary has full control over the radio channel. He can eavesdrop, drop,
delay, replay and modify messages sent via radio. Thus, he is able to initiate
communication with any device (a node or the base station) and at any given

Multichannel Protocols for User-Friendly and Scalable Initialization 231

Web camera

Verification node

1 2 3 4

1

2

3

4

Monitor

Cardboard box

Base station

Fig. 2. Secret key deployment setup comprises a base station and a simple cardboard
box

time during the key transmission. Furthermore, the adversary can install his
own web camera in the same place where the initialization is taking place. We
assume that devices involved in key deployment (PC and nodes themselves) are
not compromised. Taking into account these constraints, we define: (a) a passive
adversary who only observes the visual channel and can eventually record a
secret key if the key transmission takes place in insecure conditions (outside
the cardboard box), and (b) an active adversary who in addition can initiate
communication with any device during the initialization phase.

In the case of “public key” - based initialization, we consider a stronger ad-
versary model where an attacker can eavesdrop and modify messages sent over
a light channel at all times (we elaborate this in Section 4).

3 Secret Key Deployment

In this section we propose secret key based key deployment protocol and provide
initial security assessment of the proposed key deployment method.

3.1 Key Transmission and Verification

Prior to the start of node initialization, the user connects a web camera and
a verification node to a PC. Next, the user places the web camera on top of
the box from the inside, as shown in Figure 2. At this stage, the user turns the
nodes ON and places them inside the box. Next, the user closes the box, runs
the program on the PC and initiates the node initialization procedure. The box
remains closed until the key transmission and verification is performed on all
nodes which is subsequently indicated on the monitor.

Key transmission. Our “secret key”-based deployment is build upon ISO/IEV
9798-2 [4] three-pass key authentication protocol (Figure 3). We modify this
protocol to include the communication over VLC (dashed arrow in Figure 3).
The modified protocol evolves as follows.

The node Si generates n-bit random key KSiB and k-bit random string NSi .
The base station generates k-bit random string NBi . The node, equipped with

232 T. Perković et al.

Node Si Base Station BS
Pick KSiB ∈U {0, 1}n

Pick NSi ∈U {0, 1}k Pick NBi ∈U {0, 1}k

(1)
Si||KSiB ��������

(2) ��
B||NBi

(3)
Si||{NSi

||NBi
||B}KSiB��

Verify NBi , KSiB

(4) ��
B||{NSi

||NBi
}KSiB

(5) Verify NSi , KSiB

Fig. 3. Modification of ISO/IEV 9798-2 three pass key authentication protocol. The
dashed arrow represents key transmission over secure VLC.

minimally one LED, sends the key via VLC (step 1) to the base station (web
camera), as shown in Figure 3. At the same time, the base station performs three
tasks: (i) collects keys KSiB generated by the nodes (step 1), (ii) initiates key
verification over a radio channel (steps 2-5), and finally, (iii) notifies the user
which node has been successfully initialized via the monitor. Section 5 provides
details of the key transfer over VLC.

Key verification. After the key is transmitted over VLC, the base station
initiates the key verification protocol. All messages in the key verification are
exchanged over the radio channel. The base station (using the verification node)
sends random nonce NBi over the radio channel to node Si (step 2). Next, Si

forms a packet by encrypting concatenations NSi‖NBi‖B with the key KSiB.
The node Si sends this message (and its identity) to the base station (step 3).
The base station extracts the random nonce NSi , verifies the key KSiB and the
random nonce NBi . If the verification is successful, the BS encrypts concatena-
tion NBi‖NSi using KSiB and sends it back to node Si. The node Si receives
and verifies both the key KSiB and the random nonce NSi . The whole procedure
is considered as completed if all the nodes are successfully initialized, which is
finally indicated by the GUI on the monitor. At the end, the user opens the box
and completes the initialization with the short push on the node’s button. This
feature is used to ensure the “proof of presence” property to prevent an active
attack (as described in Section 3.3).

3.2 Sensor Node State Diagram

Both user and base station need to know the status of the initialization process
at any given time. For that reason, the current state of the node will be indicated
with a LED according to the state diagram shown in Figure 4. During the initial-
ization process, the node can take one of the four following states: Uninitialized,

Multichannel Protocols for User-Friendly and Scalable Initialization 233

Uninitialized Ready Initialized Confirmed

Push (OK)Key establishment Verification

LED LED LED LED

Fig. 4. Node’s state diagram. A colored square indicates that the LED is ON, while a
half colored that the LED is blinking.

Ready, Initialized and Confirmed. Next, we describe each of these states as well as
the transitions between them.

Uninitialized state. Initially, when the user powers the node ON it is in the
Uninitialized state. Prior to the start of key transmission the LED blinks with a
predefined frequency. During this phase the node generates the key and, upon
completion, sends it via VLC to the camera. After the key transmission is com-
plete, the node advances to the Ready state (step 1 in Figure 3).

Ready state. The node remains in this state for a predefined period of time (e.g.,
a few seconds). In this state the node has sent the key and awaits the base station
to initiate the key verification protocol over a radio channel. During this phase
the node’s LED is OFF (Figure 4). If the node does not receive any messages from
the base station within the predefined period of time, it automatically restarts
and returns back to the Uninitialized state. The node repeats the whole procedure
which involves new key generation and transmission over VLC. Alternatively,
the node receives a message from the base station and starts the key verification
(steps 2-5 in Figure 2). If the key verification is successful, the node advances to
the Initialized state.

Initialized state. In this state the node’s LED is turned ON (Figure 4). At
the same time, the base station notifies the user via the monitor about the
node’s position within the box as well as its current state. If the key verification
succeeded on both sides (the node’s and the base station’s), the user is instructed
to remove the nodes from the box and to shortly push the button on the node to
finalize the initialization. The push of the button serves as “proof of presence”,
an aspect we describe in Section 3.3. However, if the node or the base station
failed to verify the key, the user is instructed over the monitor to restart the
initialization on selected nodes with a longer push on the button in order to
repeat the node initialization. After the short push of the button, the node
advances to the Confirmed state.

Confirmed state. In this state the node and the base station established a secret
key and verified it, and the initialization process is finalized.

3.3 Initial Security Assessment

Our “secret key”-based protocol is build upon ISO/IEV 9798-2 [4] three-pass
key authentication protocol that was proven to be secure when used over a radio

234 T. Perković et al.

channel. Therefore, we focus on possible attacks over the VLC, as we extended
the ISO/IEV 9798-2 [4] protocol by including a transmission of a secret key via
the VLC.

Camera recording (passive) attacker. A camera-recording attacker attempts
to learn the secret key simply by recording the key sent from the node via VLC
(step 1 in Figure 2). In this model the attacker does not interact in any way with
the node initialization procedure.

Let us consider the case in which the node starts sending the key under
insecure conditions (e.g., outside of the box). Thus, the attacker records the
key, and the node advances from Uninitialized to Ready state (node’s LED turns
ON). In this state, the node waits a predefined period of time for the base station
to initiate the key verification (Figure 4). After the predefined time period has
passed during which the base station didn’t initiate the key verification protocol,
the node returns back to the Uninitialized state and repeats the whole procedure
again (generates a new key and, again, sends it via VLC). The base station
waits to receive a notification from the user that the system is ready (operates in
secure conditions). Only then will the base station begin to process keys received
over VLC and initiate the key verification protocol. Under secure conditions, the
attacker does not have an access to the key transmitted by the node and therefore
cannot successfully perform the key verification with the node.

Active attacker. In this attacker model, the attacker controls both the radio
channel and communication over VLC when sensor node(s) are out of the card-
board box. Let us assume that the attacker captures the key sent by a node via
VLC under insecure conditions (e.g., the node outside of the box). At this stage,
the node is in Ready state and awaits the base station to initiate key verifica-
tion (Figure 4). Next, the attacker initiates the key verification over the radio
channel using the captured key. If the verification is successful on the node’s
side, the node advances to the Initialized state (the LED turns ON as shown in
Figure 4). In this state the node waits for the user to confirm the initialization
(push on a button). The user doesn’t know that the attacker placed the node
in the Initialized state so she picks the node up, and places it inside the box.
Once the compromised node is placed inside the box, the base station recog-
nizes a constantly powered ON LED on it and warns the user (via the monitor)
to restart the initialization of that node. This is done by a longer push on the
node’s button. This form of active attacks does not work as the attacker does not
have physical access to the node, therefore he cannot force the node to advance
to Confirmed state. The user basically “proves her presence” through the push
button.

4 Public Key Deployment

In this section we extend the attacker model to a more powerful adversary who
can observe the electromagnetic radiation emanating from the LEDs. We assume
the LEDs emanate radio signals which cannot be blocked by a simple cardboard

Multichannel Protocols for User-Friendly and Scalable Initialization 235

box and we also assume that the attacker is able to easily eavesdrop on the
leaked signals. This is a variant of an attack previously introduced in [18].

To establish keys between nodes and the base station by using a bidirec-
tional radio channel and an unidirectional out-of-band VLC, we use SAS pro-
tocols [5,38]. The protocols make the key exchange process more usable, but at
the cost of having to introduce public key cryptography. Recent work on ellip-
tic curve cryptography has shown promising results regarding key distribution
on resource constrained devices like our sensor nodes. In TinyPBC [26] and Na-
noECC [36] times less than 1 and 2 seconds, respectively, for point multiplication
in binary fields were achieved.

Many prominent solutions that use LEDs and cameras [32,30] assume that
the Visible Light Channel is authentic, which is not the case in our attacker
model. To convey information via VLC they use on-off keying (switch the LED
ON or OFF). An attacker equipped with a directional light source (e.g. a laser)
has the capability to modify a message sent via VLC. In our model the attacker
can modify messages by flipping 0 → 1, but not vice versa (1 → 0) as the
attacker cannot force a switched ON LED to turn OFF. In this case we speak
of a semi-authentic visible light channel.

In the following sections we describe how to perpetrate such attacks and we
also propose solutions on how to protect against them.

4.1 Attacks on Visible Light Channel

We consider prominent device pairing methods proposed in [32] and [30]. Both
of the methods were developed for an authentic VLC (an attacker cannot modify
messages sent via VLC). The proposed methods are secure within the authentic
VLC model but, as we will show, are insecure in our semi-authentic VLC model
(an attacker can flip 0 → 1).

Protocol [32] in the semi-authentic model. In [32] two devices (S1 and S2

as shown in Figure 5(a)) exchange public key values via a radio channel using the

BS

S1

Laser

beams

S2

M

SAS2

SAS1

(a)

M

S1 S2

SAS1
SAS2

Laser

 beam

(b)

Fig. 5. Attacker M , with the aid of a laser, tries to modify short authentication strings
exchanged over VLC (dashed arrows) between devices S1, S2 and BS (full-line arcs
represent communication over a radio channel)

236 T. Perković et al.

SAS protocol [5,38]. To authenticate these messages, each device simultaneously
transmits short authentication strings (SAS) using visible light. The camera (BS
in Figure 5(a)) captures both of these authentication strings and compares them.
As BS does not know the SAS beforehand, the attacker can mount a MITM
attack and modify these strings with a laser. Attacker M exchanges public keys
with two devices S1 and S2 via a radio channel. When transmission via VLC
occurs, the attacker points the lasers into the nodes’ LEDs and appropriately
modifies the bits (flips 0 → 1). The simplest attack is the one in which the
attacker flips all bits 0 → 1. In this case, the base station will see all 1s and
inform the user about the correct authentication. Please note that all 1s is a
legitimate SAS.

Protocol [30] in the semi-authentic model. In an approach similar to [32],
two devices (S1 and S2 in Figure 5(b)) exchange public key values over a radio
channel. In this scheme, at least one device has an integrated web camera. In
order to verify the exchanged public key values, device S2 sends the SAS via
VLC (using LEDs) to the device S1. Here, an attacker tries to mount a MITM
attack by exchanging different public keys with devices S1 and S2, (Figure 5(b)).
To succeed, the attacker has to ensure that SAS1 = SAS2. Due to the property of
the protocols [5] in which the probability for SAS1 and SAS2 to be equal is 2−k (k
is the length of the SAS) the attacker will establish two different authentication
strings SAS1 and SAS2 with a high probability. However, in the semi-authentic
model where the adversary can modify the bits (flip 0 → 1) this probability
is significantly reduced. Indeed, if the ith bits of SAS1 and SAS2 are equal, an
attacker will not need to modify them in any way. On the other hand, if the
ith bits of SAS1 and SAS2 equal 1 and 0, respectively, an attacker could flip
0 → 1 by using the laser. Finally, if the ith bits of SAS1 and SAS2 are 0 and 1,
the attacker will be unable to flip 1 → 0 for he cannot switch OFF an already
powered ON LED. This is summarized below:

SAS1i SAS2i Attack

0 0 yes

0 1 no

1 0 yes

1 1 yes

Thus, we conclude that that 3 combinations of ith bits of SAS1 and SAS2 are
beneficial for the attacker (all combinations but the second one). It follows that
the probability for an attacker to modify the bits is 3/4, therefore, the probability
of a successful attack increases to (3/4)k as opposed to 2−k (in the case of
authentic VLC). If k = 15, the probability in a single attack increases from 2−15

to approximately 2−6.

Virtual node attack. Let us assume the user wants to initialize one node (S1)
and the attacker (M) wants to inject his own virtual node (S2) as shown in
Figure 6. Attacker M simply exchanges public key values over a radio channel
with BS and points his laser within the visible area of the base station’s camera.
The pointed laser is used to create a virtual node (device S2 in Figure 6), and as

Multichannel Protocols for User-Friendly and Scalable Initialization 237

BS
S1

Laser

beam

S2

M

SAS2

SAS1

Fig. 6. An example of the virtual node attack; dashed arrows and full-line arcs represent
communication over a semi-authentic VLC and a radio channel, respectively

such, to “blink” the correct short authentication string in such a way that the
base station’s camera detects it. The BS compares the SAS2 it received from
the attacker’s laser with the one established over radio, sees that they match,
and accepts the public key values from M as authentic.

4.2 “Public Key”–Based Deployment Protocol

We assume that each node Si and the base station BS previously generated
public key values pkSi and pkB. In order to exchange authenticated public key
values over a radio channel, we propose using the protocol introduced in [5,38],
and shown in Figure 7. Please note, the base station performs this protocol
individually with each node. The protocol evolves as follows:

(i) The user counts the number of nodes he/she wants to initialize and enters
the number into the base station control software via a keyboard. We will show

Node Si Base Station BS
Pick NSiεU{0, 1}k Pick NBiεU{0, 1}k

mSi ← 1‖Si‖pkSi‖NSi mBi ← 0||B||pkB ||NBi

(cSi , dSi)←commit(mSi) (cBi , dBi)← commit(mBi)
cBi��
cSi ��

m̂Bi ← open(ĉBi ,
̂dBi)

dBi��

SASSi ← ̂NBi ⊕NSi

dSi �� m̂Si ← open(ĉSi ,
̂dSi)

SASBi ← NBi ⊕ ̂NSi

SASSi ������ Verify SASSi = SASBi

If SASSi = SASBi , the base station informs the user
to accept public key values as authentic.

Fig. 7. SAS protocol by [5,38]. The dashed arrow represents communication over a
semi-authentic VLC.

238 T. Perković et al.

later that by entering the number of nodes we can prevent the virtual node
attack and make the size of the SAS invariant of the number of nodes to be
initialized.

(ii) The user switches the nodes ON and places them in front of the camera,
with the LEDs facing the camera.

(iii) The node’s LED starts flashing with the delimiter 111000 to indicate to
the BS they are ready to be initialized and to enable the BS to count them.

(iv) Next, the user instructs the base station to begin with the protocol shown
in Figure 7. Having exchanged commit/open pairs with the BS, each node Si

first calculates the respective SASSi (Figure 7), Manchester encodes SASSi and
begins transmitting it repetitively via a VLC (using on-off keying, switching LED
OFF and ON). The Manchester encoded short authentication string, denoted
M(SASSi), is separated with delimiter 111000. The usage of the delimiter and
Manchester encoding was inspired by I-codes [6] and was used to prevent the
flipping attacks (Section 4.3). Finally, the node transmits (blinks) the following
repetitive sequence:

· · ·
delim.

︷ ︸︸ ︷

1 1 1 0 0 0

M(SASSi
)

︷ ︸︸ ︷

1 0 0 1 · · · 1 0

delim.
︷ ︸︸ ︷

1 1 1 0 0 0

M(SASSi
)

︷ ︸︸ ︷

1 0 0 1 · · · 1 0

delim.
︷ ︸︸ ︷

1 1 1 0 0 0 · · ·
(v) If the SAS verification is successful for all the nodes, the user is instructed

to finalize the initialization procedure by pushing a button on each of the nodes.
If one or more nodes fail to initialize properly (e.g. due to errors in transmis-
sion, attacks etc.) the initialization procedure is aborted for all the participating
nodes.

4.3 Short Security Analysis

Due to the lack of space, in this section we provide only a short security analysis
of the public key deployment protocol.

Flipping attacks. In order to prevent flipping attacks we used Manchester
encoded SASSi for the transmission via VLC. Note that such a message contains
an equal number of 0s and 1s. Due to the on-off keying modulation and the fact
that an attacker is unable to switch OFF the LED (flip 1 → 0), any attempt
of flipping will be detected by the BS as an excess of 1s. This construction is
proved secure in [6].

Virtual node attack. According to the protocol, the base station knows exactly
how many nodes it has to initialize (step (i) of the protocol). In addition, the BS
counts itself the nodes by detecting respective delimiters (111000) transmitted
over VLC. In order to successfully inject his own virtual nodes, the attacker has
to block transmission of the delimiter 111000 over VLC for at least one of the
nodes. However, the attacker cannot do this, for he is unable to turn OFF an
already switched ON LED. In addition, any attempt of flipping 0 → 1 in the
delimiter will be detected by the BS [6].

All or none. The design choice to abort the initialization procedure if at least
one node fails to initialize properly makes the SAS invariant to changing the

Multichannel Protocols for User-Friendly and Scalable Initialization 239

number of nodes to be initialized. Indeed, from the above analysis we know that
an attacker can neither add new (virtual) nodes, remove existing (legal) ones,
nor perform bit flipping attacks. It follows that the attacker can only try to
perform a man-in-the-middle attack against one or more legal nodes. Now, if
an attacker attempts to mount the attack against m nodes (out of n) and the
respective short authentication strings are mutually independent, the probability
of a successful attack against at least one sensor node, in a single attempt, will
be at least min{m · 2−k, 1} [5]. For example, if the attacker attacks m = 100
nodes and k = 15, the probability for the attacker to succeed against at least
one node is around 2−8. However, by restricting the attacker to be successful
against all the nodes, the probability for the attacker to succeed is reduced to
(2−15)m = 2−15·m. Therefore, the best strategy for the attacker is to mount an
attack against exactly one node (i.e., m = 1), which implies the probability of
success (in a single attempt) to be bounded by 2−k + ε (k being the size of SAS
and ε a negligible probability) [5].

5 Implementation

We next describe the implementation of our secret-key deployment protocol.
More specifically, we describe the implementation of a simple random number
generator (RNG) and the key recognition software that enables communication
over the light channel. We used Meshnetics ZigBee sensor nodes equipped with
Green and Red LEDs, Atmel AT-mega1281V microcontrollers and AT86RF230
RF transceivers. Each sensor module features 128KB of flash memory and 8KB
of RAM with data rate of 250 kbps in frequency band from 2.400− 2.483 GHz.
For software developing and testing of the initialization procedure, a PC with the
following configuration was used: Intel dual core processor clocked at 2.66GHz,
2GB of RAM, a Logitech notebook deluxe webcam with VGA resolution at 30fps
interfaced via USB to the computer and Windows XP SP3 operating system.

5.1 Random Number Generator

The key feature for secure communication lies in a good random number genera-
tor. In this section, we describe our Random Number Generator (RNG). We first
describe some related work on random number generators suitable for devices
with limited processing capabilities.

TinyRNG [15] uses transmission bit errors as a source of randomness. These
bits are randomly distributed as well as uncorrelated and may not be manipu-
lated by an adversary. In [14] two oscillators are used, one oscillating much faster
than the other. Generated bit stream’s randomness is based on the frequency
instability of a free running oscillator. The slow oscillator samples the higher
frequency oscillator. They have shown that if the jitter in the slow oscillator
signal is sufficient, the output of the RNG will have very little bit-to-bit corre-
lation. Tkacik [37] also uses two free-running oscillators whose frequency vary
with voltage and temperature. Random numbers are generated as exclusive-or of

240 T. Perković et al.

previously selected and permuted 32 bits of the LFSR (linear feedback shift reg-
ister) and CASR (cellular automata shift register). Each shift register is clocked
by these oscillators. However, an initial seed is required for each register.

Design of a Random Number Generator. In our implementation we used
the approach from [14]. The generation of random numbers goes as follows:
Meshnetics ZigBee nodes are equipped with two usable oscillators, an Internal
Calibrated RC Oscillator (4 MHz) and a Watchdog Oscillator (128 kHz) [25]. The
software running on the sensor nodes creates two timers; one timer is associated
with the slower oscillator and the other timer with the faster one. The timers
are configured with clock dividers in such a way that the slower timer fires once
per second, while the faster one fires roughly 50000 times per second. On every
tick of the slower timer, the number of ticks from the faster timer is logged.
Figure 8(b) shows two traces of the number of ticks from the faster timer during
the period of 512 ticks from the slower timer (roughly 512 seconds). As shown,
the source of randomness comes from the instability (jitter) of the two used
oscillators (Figure 8(a)).

Digital postprocessing. Table 5.1 shows the digital postprocessing and the
random number generation process. As shown, on each successful low frequency
timer tick the number of high frequency ticks is counted. Next, this value is

0

1

0

1

t

t

Slower timer (Watchdog)

Faster timer (Internal crystal)

1/f1

i

1 2 3 4 5 6 1 2 3

i+1

7 4

1/f2

100 200 300 400 500

5.05

5.055

5.06

5.065

5.07

x 104

Sample number

N
u
m

b
e
r

o
f
ti
c
k
s
 (

fa
s
te

r
ti
m

e
r)

Sequence 1

Sequence 2

0

(a) (b)

Fig. 8. (a)An example of oscillator frequency instability (jitter). (b) Two traces show-
ing the number of ticks of a faster timer relating to one tick of the slower one.

Table 1. An example of digital postprocessing performed on the generated raw bit-
stream as well as the generation of random numbers. The generated bit stream is
110100.

Number of ticks Number of ticks Partial binary Last two
(Watchdog) (Internal RC) representation digits

1 50607 10101111 11
2 50605 10101101 01
3 50640 11010000 00

Multichannel Protocols for User-Friendly and Scalable Initialization 241

converted into a binary representation (last eight binary digits are presented
in Table 5.1) from which the last two bits are taken. We could extract more
than two bits at the expense of a more complex extractor. Since for our purpose
the entropy is sufficient, we choose to use this simple extractor. The results of
statistical tests are presented in the next section.

Statistical Tests. ENT [40] and NIST [13] statistical test suites were used to
test the randomness of our generated bitstreams. Statistical tests were conducted
on a 3 × 106 long bitstream which we obtained from 7 ZigBee nodes over the
period of approximately 3 days.

ENT [40] is a pseudorandom number frequency test that performs a variety
of tests such as Entropy, Arithmetic mean, Monte Carlo value for Pi, Serial
correlation coefficient and Chi square distribution. Table 5.1 contains the results
of the ENT test performed on a 3 × 106 long bitstream.

Only the last two bits were taken from the binary representation of the faster
timer tick count. If more than two bits are taken, the bitstream fails the “Chi
square” part of the ENT test suite. But, as we already mentioned, our RNG
directly samples the number of faster timer ticks, without the requirement for
other complex extractors.

NIST STS [13] contains 15 tests out of which only 8 were performed due to
the minimum bitstream requirement (3 × 106 bits were produced) for each test.
Each test is used to calculate the P-value which shows the strength of the null
hypothesis. The hypothesis passes the test if the P-value is higher than 0.01 in
which case the sequence is considered to be random. As shown in Table 5.1, the
generated sequence passed the tests (P-value is higher than 0.01).

Table 2. ENT test results

Entropy = 0.999999 bits per bit.
Optimum compression would reduce the size of this 3× 106 bit file by 0 percent.
Chi square distribution for 3267632 samples is 2.40 and randomly would exceed
this value 12.14 percent of the times.
Arithmetic mean value of data bits is 0.4996 (0.5 = random).
Monte Carlo value for Pi is 3.155460889 (error 0.44 percent).
Serial correlation coefficient is 0.000264 (totally uncorrelated = 0.0).

Table 3. NIST test results

TEST P-VALUE PROPORTION TEST P-VALUE PROPORTION

frequency 0.148094 0.9922 fft 0.468595 1.0000
block-frequency 0.500934 0.9922 aperiodic all passed all passed
cumulative-sums 0.311542 0.9922 apen 0.275709 0.9844
cumulative-sums 0.031497 0.9922 serial 0.671779 0.9844

runs 0.437274 0.9922 serial 0.637119 0.9922

242 T. Perković et al.

These tests were performed over the raw bits. Since the output bitstream
passes both NIST and ENT test suites, no additional randomness extractors
(universal hash functions [41,7], von Neumann extractor [39], or simply applying
a cryptographic hash function over the bitstream) are necesarry.

These results are preliminary; future work will include a more detailed study of
factors which impact the work of RC oscillators (e.g. voltage and temperature),
and therefore directly impact the quality of the generated random numbers.

5.2 Communication over a Visible Light Channel

After the key generation follows the key transmission via an out-of-band Visible
Light Channel (VLC). The sensor nodes are programmed in such a way that
generated key bits are Manchester encoded prior to transmission which ensures
lower bit error rates during the transmission over VLC. The bits are transmit-
ted in such a way that logical 0 and 1 of our bitstream are represented with
LED ON and OFF states, respectively. The duration of each state (single LED’s
blink) is approximately 200 ms. In Figure 9 we give an example of a bitstream’s
“life-cycle”; from the bit generation to the bit transmission phase. As shown in
Figure 9, the generated bits are separated in such a way that the first and the
second LED (Green and Red LED) transmit odd and even bits, respectively, of
Manchester encoded binary stream via VLC. In this way we achieve easier key
recognition on the side of the base station, as described in the sequel.

Computer Vision. Once the user places sensor nodes inside of the box, we use
our computer vision (CV) system to derive the secret key from the nodes’ LED
blinking sequence. We developed our CV system in MATLAB 2007 GUI [16],
and achieved transmission speeds of 10 bits per second (5 b/s per each LED).

The image processing part of our CV system is CPU demanding. In order
to achieve real-time performance, we process only certain parts of an webcam-
obtained image - so called “Areas of Interest” (small rectangles encompassing
LEDs of each node). The algorithm was designed to work with two LEDs on each
node (Green and Red LED). To determine the Area of Interest (AoI) for each
node, which is the first step, a few seconds of buffered frames is required. Once
the areas are determined, the rest of the algorithm is performed in real-time.
All of the following steps are performed only over Areas of Interest. The rest of
the image does not contain any relevant information, and thus is excluded from
future processing.
Image transformation. In the second step, the selected image parts (AoIs) are
converted from RGB to HSV color space, known to be more reliable for detecting

Manchester

encoding

 1 0 1 1

Input (random)

bit-stream

Visible Light

Modulation
Separator

 1 1

 0 1

G

R

 1 0 1 0

 0 1 1 0

G

R

G

R

tt2 t3t1 t4

Fig. 9. An example of the bit stream sent via VLC using Manchester encoding. G and
R stand for Green and Red LED, respectively.

Multichannel Protocols for User-Friendly and Scalable Initialization 243

1

0

1

B
in

a
ry

 V
a

lu
e

640 660 680 700 720 740 760 780 800 820

Frame Number

R
e

d
 L

E
D

 G
re

e
n

 L
E

D

111111

000000 000000......

convolution

6

0

6

C
o
n
v
o
lu

ti
o
n
 V

a
lu

e

640 660 680 700 720 740 760 780 800 820

Frame Number

Frame loss

R
e
d
 L

E
D

 G
re

e
n
 L

E
D

decoding

0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0

1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

1

0

1

B
in

a
ry

 V
a

lu
e

640 660 680 700 720 740 760 780 800 820

Frame Number

R
e

d
 L

E
D

 G
re

e
n

 L
E

D

0

(a) (b) (c)

Fig. 10. A key recognition process: (a) detecting the status of LED indicators, (b)
applying the convolution over the sampled area and (c) the bit identification process
after the convolution

colors in low and changing light conditions [33]. Obtained images are tested for
their levels of Hue, Saturation and Value, which enables us to detect the state
(ON/OFF) of each LED. Color detector relies mainly on the level of Hue, while
levels of Saturation and Value are just used in order to avoid false detection due
to noise at low illumination conditions in the dark box.

Recognition of VLC signal. Due to a high frame loss and transmission er-
ror rates, during the transmission each bit is repeated in 6 consecutive frames
(6 samples per bit). Decoding starts by detecting first 18 frames of the packet
delimiter (3 binary ones in a sequence on both LEDs). Next, the key recognition
algorithm performs the mathematical operation of convolution over the frames
following the delimiter with a mask of six consecutive 1s (Figure 10(a)). As
a result, data arrays containing values ranging from 0 to 6 are obtained (Fig-
ure 10(b)), where elements with extremes 0 and 6 are decoded as bits 0 and 1,
respectively. Plateaus (areas with multiple, identical and consecutive elements)
are decoded as double 0s or 1s, depending on their values (0 or 6). As Manchester
encoding was used, only the convoluted signal’s slope is analyzed, and not their
values. This results in a method highly robust to de-synchronization effects. As
shown by an example in Figure 10(b), frame loss during transmission via VLC
does not affect correct bit recognition in any way.

6 Related Work

Recently, manykey deployment schemes such as ZigBee [1], SPINS [27], LEAP [42]
and Transitory Master Key [10] have been proposed. Others [9,11,12,21,28] pro-
pose random key pre-distribution schemes. All of these schemes rely on an unspec-
ified secure key deployment mechanism between devices.

In On-off Keying, the presence of an RF signal represents a binary 1, while its
absence represents a binary 0 [5,6]. By using an unidirectional encoding scheme,
On-off Keying ensures that an attacker is unable to modify a packet during
transmission.

244 T. Perković et al.

In Shake Them Up [8], user establishes a secret key between two nodes by
holding and shaking the devices together while they send identical packets over
the radio. This way, they assume that an adversary is unable to distinguish the
source of the packets. This may be violated by using radio fingerprinting. Also,
this does not scale well. The three related schemes are Are You With Me [20],
Smart-Its Friends [17] and [22].

In Key Infection [2], two nodes establish a secret key by sending it in the clear
over radio. They assume an attacker is unable to eavesdrop all the keys from
all the nodes (e.g., 10.000 nodes) during key deployment. Based on simplicity
and cost effectiveness, this scheme is insecure against a determined adversary.
Moreover, an adversary is capable of injecting his own key, also violating key
authentication.

In Resurrecting Duckling [35], a physical contact is required to securely estab-
lish a secret key. Based on the assumption that physical contact is secure, key
authenticity and secrecy are ensured. But, since it requires specialized additional
hardware, this scheme is not cost effective.

In Message In a Bottle [19], keys are sent in the clear to the nodes located
inside a Faraday cage that ensures key secrecy and authenticity. However, the
number of simultaneously initialized nodes determines the size of the Faraday
cage. Moreover, a scale is used to determine the number of nodes within the
Faraday cage based on total Faraday cage weight. In order to ensure key secrecy
and authenticity for a large number of nodes, this scheme requires specialized
setup hardware.

In HAPADEP [34] both data and verification information is sent over an audio
channel. The pairing devices are both required to have speakers and microphones.
In a related paper, Saxena and Uddin [30] present a device pairing method with
an unidirectional channel based on devices equipped with LEDs and a video
camera as the receiver. Their method is used for asymmetric pairing scenarios.
Again, Saxena et. al. [32] use an auxiliary device (a laptop equipped with a web
camera) to compare a short authentication string sent from the nodes to the
laptop via unidirectional visible light channel. Both protocols are prone to laser
attacks where an adversary may inject his/her malicious key by modifying the
messages sent via the light channel with a directional light source (e.g. laser
emitter).

Talking to strangers [3] requires specialized setup hardware (e.g. audio or
infrared) in order to setup a public key. Seeing Is Believing uses an installation
device with a camera or a bar code reader to create an out-of-band secure channel
[24]. Key authenticity is achieved through certified public keys.

Mayrhofer and Welch [23] use an out-of-band laser channel constructed with
off the shelf components for transmitting short authentication strings. According
to [23], the proposed solution does not ensure complete authenticity of the the
laser channel. Roman and Lopez [29] discuss general aspects of communication
over a visible light channel.

Multichannel Protocols for User-Friendly and Scalable Initialization 245

7 Conclusion

We made several contributions in this paper. We proposed two novel multichan-
nel protocols for initialization of large scale wireless sensor networks. The first
protocol uses only secret key cryptography and is suitable for CPU-constrained
sensor nodes. The second protocol is based on public key cryptography. Both
protocols involve communication over a bidirectional radio channel and an uni-
directional out-of-band visible light channel.

We demonstrated the importance of considering a very strong and realistic
attacker model, where an attacker can eavesdrop, jam and modify transmitted
messages in both a radio and a visible light channel; many existing protocols
that rely on a visible light channel were shown to be insecure in this strong
adversary model. Our “public key” - based protocol is designed to be secure
in this very strong attacker model. Moreover, we showed that principle “all or
none” keeps invariant the size of short authentication strings to changing the
number of sensor nodes to be initialized.

The proposed protocols are implemented on the Meshnetics ZigBee sensor
nodes. We showed that the proposed protocols are cheap to implement (a sensor
node has to be equipped with one LED and a “push button”) and scalable.
We also designed and tested a simple random number generator suitable for
CPU-constrained sensor nodes.

Acknowledgment

The authors would like to thank the anonymous reviewers for their thorough
reviews and helpful suggestions.

References

1. ZigBee Alliance. ZigBee Specification (Document 053474r06, Version 1.0). Techni-
cal report (June 2005)

2. Anderson, R., Chan, H., Perrig, A.: Key Infection: Smart Trust for Smart Dust.
In: IEEE International Conference on Network Protocols (2004)

3. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to Strangers: Au-
thentication in Ad-hoc Wireless Networks. In: Symposium on Network and Dis-
tributed Systems Security (2002)

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

5. Cagalj, M., Capkun, S., Hubaux, J.: Key Agreement in Peer-to-Peer Wireless Net-
works. In: Proceedings of the IEEE Special Issue on Cryptography and Security
(2006)

6. Cagalj, M., Hubaux, J.P., Capkun, S., Rengaswamy, R., Tsigkogiannis, I., Srivas-
tava, M.: Integrity (I) Codes: Message Integrity Protection and Authentication
Over Insecure Channels. In: Proceedings of the IEEE Symposium on Security and
Privacy (2006)

7. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences 18(2) (1979)

246 T. Perković et al.

8. Castelluccia, C., Mutaf, P.: Shake Them Up!: A Movement-based Pairing Protocol
for CPU-constrained Devices. In: ACM MobiSys (2005)

9. Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor
Networks. In: Proceedings of the IEEE Symposium on Security and Privacy (2003)

10. Deng, J., Hartung, C., Han, R., Mishra, S.: A Practical Study of Transitory Mas-
ter Key Establishment For Wireless Sensor Networks. In: Proceedings of the First
International Conference on Security and Privacy for Emerging Areas in Commu-
nications Networks (2005)

11. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-Distribution
Scheme for Wireless Sensor Networks. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, CCS (2003)

12. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proceedings of the 9th ACM conference on Computer and Commu-
nications Security (2002)

13. Rukhin, A., et al.: A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications (2001), http://csrc.nist.gov/rng/

14. Fairfield, R.C., Mortenson, R.L., Coulthart, K.B.: An LSI random number gener-
ator (RNG). In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 203–230. Springer, Heidelberg (1985)

15. Francillon, A., Castelluccia, C.: TinyRNG: A Cryptographic Random Number Gen-
erator for Wireless Sensors Network Nodes. In: Int. Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (2007)

16. MATLAB Online Users Guide, http://www.mathworks.com (last access, Septem-
ber 2008)

17. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.W.:
Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts. In: International Proceedings of the 3rd international conference
on Ubiquitous Computing (2001)

18. Kuhn, M.G.: Electromagnetic eavesdropping risks of flat-panel displays. In: Mar-
tin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 88–107. Springer,
Heidelberg (2005)

19. Kuo, C., Luk, M., Negi, R., Perrig, A.: Message-In-a-Bottle: User-Friendly and
Secure Key Deployment for Sensor Nodes. In: ACM SenSys (2007)

20. Lester, J., Hannaford, B., Borriello, G.: “Are you with me?” - using accelerometers
to determine if two devices are carried by the same person. In: Ferscha, A., Mattern,
F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 33–50. Springer, Heidelberg
(2004)

21. Liu, D., Ning, P., Du., W.: Group-Based Key Pre-Distribution in Wireless Sensor
Networks. In: ACM Workshop on Wireless Security (2005)

22. Mayrhofer, R., Gellersen, H.: Shake Well Before Use: Two Implementations for
Implicit Context Authentication. In: Ubicomp (2007)

23. Mayrhofer, R., Welch, M.: A Human-Verifiable Authentication Protocol Using Vis-
ible Laser Light. In: International Conference on Availability, Reliability and Se-
curity (2007)

24. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-Is-Believing: Using Camera Phones
for Human-Verifiable Authentication. In: Proceedings of the IEEE Symposium on
Security and Privacy (2005)

25. Murray, K.D.: 8-bit AVR Microcontroller with 64K/128K/256K Bytes In-System
Programmable Flash, http://www.atmel.com (last access, March 2008)

http://csrc.nist.gov/rng/
http://www.mathworks.com
http://www.atmel.com

Multichannel Protocols for User-Friendly and Scalable Initialization 247

26. Oliveira, L.B., Scott, M., Lopez, J., Dahab, R.: TinyPBC: Pairings for Authenti-
cated Identity-Based Non-Interactive Key Distribution in Sensor Networks. In: 5th
International Conference on Networked Sensing Systems, INSS (2008)

27. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: Security
Protocols for Sensor Networks. Wireless Networks 8(5) (2002)

28. Ramkumar, M., Memon, N.: An Efficient Key Predistribution Scheme for Ad-hoc
Network Security. IEEE Journal on Selected Areas in Communications (2005)

29. Roman, R., Lopez, J.: KeyLED - Transmitting Sensitive Data Over Out-of-Band
Channels in Wireless Sensor Networks. In: IEEE WSNS (2008)

30. Saxena, N., Uddin, M. B.: Automated Device Pairing for Asymmetric Pairing Sce-
narios. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 311–327. Springer, Heidelberg (2008)

31. Saxena, N., Uddin, M.B.: Bootstrapping Key Pre-Distribution: Secure, Scalable
and User-Friendly Initialization of Sensor Nodes. In: ACNS (2009)

32. Saxena, N., Uddin, M.B., Voris, J.: Universal Device Pairing Using an Auxiliary
Device. In: Proceedings of the 4th Symposium on Usable Privacy and Security,
SOUPS (2008)

33. Shapiro, G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs
(2001)

34. Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human-Assisted Pure Audio De-
vice Pairing. In: Proceedings of the 11th International Conference on Information
Security, ISC (2008)

35. Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks. In: 7th International Workshop. Springer, Heidelberg (1999)

36. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

37. Tkacik, T.E.: A Hardware Random Number Generator. Revised Papers from the
4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES (2003)

38. Vaudenay, S.: Secure Communications Over Insecure Channels Based on Short
Authenticated Strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
309–326. Springer, Heidelberg (2005)

39. von Neumann, J.: Various Techniques Used in Connection With Random Digits.
Applied Math Series (1951)

40. Walker, J.: Hotbits, http://www.fourmilab.ch/random/ (last access, March 2009)
41. Yuksel, K., Kaps, J.P., Sunar, B.: Universal Hash Functions for Emerging Ultra-

Lowpower Networks. In: Proceedings of the Communications Networks and Dis-
tributed Systems Modeling and Simulation Conference (2004)

42. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, CCS (2003)

http://www.fourmilab.ch/random/

	Multichannel Protocols for User-Friendly and Scalable Initialization of Sensor Networks
	Introduction
	Problem Statement and System Model
	System Model
	Attacker Model

	Secret Key Deployment
	Key Transmission and Verification
	Sensor Node State Diagram
	Initial Security Assessment

	Public Key Deployment
	Attacks on Visible Light Channel
	``Public Key"–Based Deployment Protocol
	Short Security Analysis

	Implementation
	Random Number Generator
	Communication over a Visible Light Channel

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

