
Dealing with Liars: Misbehavior Identification

via Rényi-Ulam Games�

William Kozma Jr. and Loukas Lazos

The University of Arizona, Electrical and Computer Engineering Dept. Tucson,
Arizona, 85712

{wkozma,llazos}@ece.arizona.edu

Abstract. We address the problem of identifying misbehaving nodes
that refuse to forward packets in wireless multi-hop networks. We map
the process of locating the misbehaving nodes to the classic Rényi-Ulam
game of 20 questions. Compared to previous methods, our mapping al-
lows the evaluation of node behavior on a per-packet basis, without the
need for energy-expensive overhearing techniques or intensive acknowl-
edgment schemes. Furthermore, it copes with colluding adversaries that
coordinate their behavioral patterns to avoid identification and frame
honest nodes. We show via simulations that our algorithms reduce the
communication overhead for identifying misbehaving nodes by at least
one order of magnitude compared to other methods, while increasing the
identification delay logarithmically with the path size.

1 Introduction

Multi-hop networks, such as wireless ad-hoc, sensor, and mesh networks rely
on collaboration among network nodes to provide reliable data services. If the
destination is not within the communication range of the source, data has to be
relayed by intermediate nodes. Implicit in this relay process is the assumption
that intermediate nodes are willing to forward traffic other than their own.

However, a fraction of nodes may not conform to the specifications of col-
laborative routing protocols. Sophisticated users can misconfigure their devices
to behave in a selfish manner and drop relay traffic, in order to save energy
resources [8, 9, 34]. Moreover, in hostile environments, an adversary may com-
promise several nodes and configure them to misbehave. It has been shown that
even a small fraction of misbehaving nodes refusing to relay packets, can lead to
a significant drop in the overall network performance [6,7,20,21]. In this paper,
we address the problem of developing resource-efficient methods for identifying
nodes that refuse to collaborate in relaying packets. We define resource efficiency
in terms of the communication overhead associated with the identification of all
misbehaving nodes along a routing path.

Previously proposed solutions addressing routing misbehavior can be clas-
sified to reputation-based systems [6, 7, 21], credit-based systems [8, 9, 16, 34],
� This research was supported by BAE systems, and Connection One (an I/UCRC

NSF/industry/university consortium).

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 207–227, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

208 W. Kozma Jr. and L. Lazos

and acknowledgment-based systems [1, 2, 18, 20, 23]. A common element in all
these solutions is the evaluation of node behavior on a per-packet basis. This
approach provides a fine granularity in quantifying the behavior of nodes and
low delay in identifying the misbehaving ones. However, it expends energy (in
the form of receptions or transmissions) on a per-packet basis. For example,
in acknowledgment-based systems, packets must be acknowledged two or more
hops upstream [2,1], thus consuming energy and bandwidth.

We develop a communication-efficient solution that allows the per-packet eval-
uation of behavior while not incurring the per-packet overhead. Nodes themselves
are responsible for monitoring the packets they receive and forward to the next
hop. When misbehavior is observed on a particular path, the source requests
from nodes along the path to commit to a proof of the packets they receive and
forward via an audit process (similar to [18, 1]). Although misbehaving nodes
may lie about the packets they forward, the source combines multiple audit
replies from honest nodes to identify the misbehaving ones.

Our Contributions: We map the problem of misbehavior identification to the
classic Rényi-Ulam game of 20 questions [29, 32]. Rényi-Ulam games have been
extensively used in various contexts including error correction codes [3], select-
ing, sorting, and searching in the presence of errors [25, 30, 31], to name a few.
We develop communication-efficient algorithms for locating misbehaving nodes,
based on different versions of Rényi-Ulam games. Our mapping allows the per-
packet evaluation of node behavior without incurring the per-packet communi-
cation overhead. Furthermore, our formulation addresses colluding adversaries
who coordinate their attacks to avoid identification and frame honest nodes.

The remainder of the paper is organized as follows. In Section 2, we present
related work. In Section 3, we state the problem and our model assumptions. In
Section 4, we map the misbehavior identification problem to Rényi-Ulam games
and develop two auditing (searching) strategies. In Section 5, we present an effi-
cient method for constructing audits. In Section 6, we compare the performance
of our algorithms to previously proposed schemes. In Section 7, we conclude.

2 Related Work

Previously proposed methods for addressing the misbehavior problem can be
classified into three categories: (a) credit-based systems, e.g., [8, 9, 16, 34], (b)
reputation-based systems, e.g., [14,7,13,21,6,22], and (c) acknowledgment-based
systems, e.g., [1, 2, 20, 23].

Credit-Based Systems: Credit-based systems [8,34,9,16] are designed to provide
incentives for forwarding packets in the form of credit payments. Nodes accumu-
late credit that can be later used to pay for sending their own traffic. Buttyan
et al. [8, 9] proposed a scheme in which a nuglet counter is used to tabulate the
amount of credit accumulated at each node. To prevent tampering with the ac-
cumulated credit, the nuglet counter is implemented in tamper proof hardware.
Zhong et al. [34] proposed Sprite, in which nodes collect receipts for the packets

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 209

they forward which can be later exchanged for credit in a Credit Clearance Ser-
vice (CCS). Jakobsson et al. [16] used cryptographic payment tokens that are
attached to all packets and managed by a virtual bank. In credit-based systems
a misbehaving node can drop relayed traffic if it is not interested in routing its
own packets. Moreover, colluding nodes can agree to forward their own flows to
accumulate credit while dropping all other flows. Finally, credit-based systems
favor well connected nodes to boundary ones.

Reputation-Based Systems: Reputation-based systems [6,7,13,21,22,14] rely on
building a reputation metric for each node according to its behavioral pattern.
Buchegger et al. [6,7] proposed the CONFIDANT scheme, in which neighboring
nodes monitor the behavior of their peers via overhearing. A similar monitoring
method was proposed by Marti et al. [21]. In building the reputation metric,
monitoring nodes usually overhear the transmission and reception of messages on
a per-packet basis, thus operating their radio in promiscuous mode. Ganeriwal et
al. [13] used a Bayesian model to map binary ratings into reputation metrics. He
et al. [14] proposed SORI, which monitors neighboring nodes using a watchdog
mechanism and propagates collected information to nearby nodes, thus relying
on both first- and second-hand evaluations. Michiardi et al. [22] proposed CORE,
where nodes combine reports from other nodes and task-specific monitoring to
assign reputation metrics.

Node monitoring becomes complex in cases of multi-channel networks or nodes
equipped with directional antennas. Neighboring nodes may be engaged in paral-
lel transmissions in orthogonal channels thus being unable to monitor their peers.
Moreover, operating in promiscuous mode requires up to 0.5 times the amount
of energy for transmitting a message [12], thus making message overhearing an
energy expensive operation.

Acknowledgment-Based Systems: Acknowledgment-based systems [1, 2, 20, 23]
rely on the reception of acknowledgments to verify that a message was forwarded
to the next hop. Liu et al. [20] proposed the 2ACK scheme, where nodes explicitly
send acknowledgments two hops upstream to verify cooperation. Packets that
have not yet been verified remain in a cache until they expire. A value is assigned
to the quantity/frequency of unverified packets to determine misbehavior. The
2ACK scheme is susceptible to collusion of two or more consecutive nodes. Fur-
thermore, colluding nodes can frame honest ones by claiming not to receive the
acknowledgments. Padmanabhan et al. [23] proposed a method based on tracer-
oute in which the source probes the path with pilot packets indistinguishable
from data packets. Finally, Awerbuch et. al. [1] proposed an ACK-based scheme
relying on a binary search process to identify a single misbehaving link. As with
previous schemes, node collusion is not considered.

In our previous work [18], we proposed REAct, a reactive misbehavior identi-
fication scheme relying on audits. In REAct, the destination periodically sends
acknowledgments to the source indicating the performance on the route. In the
case of a performance drop, the source initiates a series of random audits to
identify the misbehaving nodes. Nodes in the path in question provide a proof of

210 W. Kozma Jr. and L. Lazos

the packets they forward to the next hop using Bloom filters. REAct reduces the
communication overhead for identifying misbehaving nodes due to the compact
representation of its audits. However, REAct does not address collusion.

3 Network and Adversarial Models

Network Model: We assume a multi-hop ad hoc network where nodes collabora-
tively relay traffic according to an underlying routing protocol such as DSR [17]
or AODV [26]. The path PSD used to route traffic from a source S to a desti-
nation D is assumed to be known to S. This is true for source routing protocols
such as DSR. If DSR is not used, PSD can be identified through a traceroute
operation. For simplicity, we number nodes in PSD in ascending order, i.e., ni is
upstream of nj if i < j.

We assume that the source and destination collaboratively monitor the perfor-
mance of PSD. The destination periodically reports to the source critical metrics
such as throughput or delay. If a misbehaving node drops the periodic updates
as part of its misbehavior pattern, the source interprets the lack of updates as
misbehavior. Likewise, the destination explicitly alerts the source in case the
performance in PSD is restored. These alerts are used to pause the misbehavior
identification process and account for: (a) temporal variations of performance
due to traffic or intermittent connectivity, and (b) random behavioral patterns
of the misbehaving nodes. We initially consider a quasi-static network in which
PSD does not change during the misbehavior identification process. This is later
relaxed, allowing changes in PSD due to node mobility.

We assume that the integrity, authenticity, and freshness of critical control
messages can be verified using resource-efficient cryptographic methods. For ex-
ample, a public key cryptosystem realized via computationally-efficient elliptic
curve cryptography may be used to verify the authenticity and integrity of mes-
sages while providing confidentiality [19]. Note that such cryptosystems require
the existence of a trusted certificate authority (CA) for initialization (issuance
of keys and certificates) as well as revocation of users via a certificate revocation
list (CRL). Several methods have been proposed for the distributed implemen-
tation of a CA [11,28, 33]. Alternatively, methods based on symmetric keys can
be used to protect critical messages [15, 24, 27].

Adversarial Model: We assume that a set M of misbehaving nodes exist in a
path of length k ≥ |M |. Misbehaving nodes can be located anywhere in PSD.
The source and destination have a mutual interest in communicating, thus mis-
behavior of S and D is not considered. Misbehaving nodes are aware of the mech-
anism used for misbehavior identification. The goal of misbehaving is twofold;
degrade throughput in PSD, and remain undetected. We consider two models
with respect to the behavioral pattern of nodes in M .

Independently misbehaving nodes: In this model, nodes in PSD misbehave inde-
pendently without coordinating their packet dropping patterns. Misbehavior is
modeled after an ON/OFF process in which nodes alternate between dropping

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 211

packets and behaving honestly. The duration of the misbehaving/behaving period
is exponentially distributed with parameters μ1, μ2.

Colluding nodes: Colluding nodes share information with respect to the misbe-
havior identification process. For example, one misbehaving node can notify an-
other of any actions of the source. Information sharing is achieved either in-band
via the exchange of encrypted messages, or through an out-of-band coordination
channel. Based on collective knowledge, the colluding nodes coordinate their be-
havioral patterns to avoid identification or frame honest nodes. In this model,
we assume that colluding nodes are controlled by a single entity.

4 Misbehavior Identification

4.1 Motivation and Problem Mapping

The behavior monitoring mechanisms in previously proposed schemes operate
on a per-packet basis, either with acknowledgments [1, 2, 20, 23], or message
overhearing [6, 7, 21]. To reduce this overhead, we request nodes to self-evaluate
the set of packets they forward to the next hop. In this self-evaluation process,
honest nodes faithfully report the set of packets they received and forwarded,
while misbehaving nodes may lie regarding packets they dropped.

We map the process of identifying lies to Rényi-Ulam searching games [29,32],
that have been used for recovering an unknown value in the presence of errors.
Using our mapping to Rényi-Ulam games, we develop novel misbehavior identi-
fication methods that are collusion resistant. We first provide a brief background
on Rényi-Ulam games and then describe our mapping.

Background on Rényi-Ulam Games: Rényi-Ulam games are searching games
independently proposed by Rényi [29] and Ulam [32]. These games involve two
players; a questioner and a responder. The responder selects a secret value ω from
a finite search space Ω. The questioner attempts to determine ω by asking at
most q questions to which the responder is allowed up to � lies. Before starting the
game, the players agree on: (a) the search space Ω, (b) the number of questions q,
(c) the number of lies �, and (d) the mode of interaction between the players. The
format of the questions can be classified into three categories: (a) bit questions,
(b) cut questions, and (c) membership questions. Bit questions are defined as
“Is the ith-bit of ω equal to 1?” Cut questions are defined as, for some y ∈ Ω,
“Is ω ≤ y?” Membership questions are defined as, for some subset A ⊆ Ω, “Is
ω ∈ A?” The same questioning format is assumed for the entire game.

Two modes are possible for the interaction between the players; batch mode
and adaptive mode. In batch mode, the questioner submits all questions to the
responder at the same time. The responder is therefore able to review all ques-
tions before answering. In adaptive mode, the questioner asks questions one at a
time. The questioner can adapt its strategy based on all previous answers. The
questioner wins the game if it determines ω after at most q questions. Else, the
responder wins. The questioner is said to have a “winning strategy” if it can find
ω after at most q questions, independent of ω, or how the responder lies.

212 W. Kozma Jr. and L. Lazos

Questioner Responder

 = {1,…,k}

Is y?

No

S n1 n2 n3 n4 n5 D

Questioner Responder
=

AuditRequest

AuditReply

 = {n1,…,n5}

(a) (b)

Fig. 1. (a) A generic Rényi-Ulam game. (b) Misbehavior identification mapped to a
Rényi-Ulam game.

Mapping to Rényi-Ulam Games: In our mapping of misbehavior identification
to Rényi-Ulam games, the role of the questioner is assumed by the source and
destination, while the role of the responder is assumed by PSD. The search
space is defined as the set of nodes in PSD, i.e., Ω = {n1, . . . , nk}, k = |PSD|.
The responder selects ω ∈ {1, . . . , k}, corresponding to the node nω in PSD

which is misbehaving. The source’s goal is to determine nω, i.e., to locate the
misbehaving node. Questions submitted by the questioner correspond to audits
performed by the source to nodes in PSD.

When responding to an audit, nodes state the set of packets forwarded to
the next hop. The source combines one or more audits to construct bit, cut, or
membership questions. The responder lies when a misbehaving node lies with
respect to the packets forwarded to the next hop. For example, a node lies by
either claiming to forward all packets received when in reality it drops them, or
claiming to have forwarded no packets indicating they were dropped somewhere
upstream. The location of the misbehaving nodes in PSD is mapped to the
placement of such lies by the responder. Note that since the responder is a
single entity controlling the lies (i.e. location of misbehaving nodes and response
to audits), our mapping implicitly assumes collusion. Figures 1(a) and 1(b) show
the mapping of the misbehavior identification problem to a Rényi-Ulam game.

In our game, an honest node will always respond faithfully to an audit, thus a
lie can only occur if a misbehaving node is audited. By adaptively selecting the
nodes to be audited, the source can gather sufficient honest replies to identify
nodes in M . If each node in PSD is audited at most one time, the number of
possible lies is limited to � = |M |. If nodes are audited multiple times, the
number of lies depends on the exact auditing strategy. We now present two
adaptive auditing strategies inspired by Rényi-Ulam games.

4.2 Rényi-Ulam Inspired Auditing Strategies

Let Xi denote the set of packets forwarded by a node ni to the next hop. For ex-
ample, the source sends packets XS to the destination, and nodes ni, nj forward
packets Xi, Xj respectively. In the absence of misbehavior in PSD and assuming
no packet loss XS = Xi = Xj . In reality, some portion of the packets may be lost
due to the wireless channel conditions or congestion, and hence XS ≈ Xi ≈ Xj .

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 213

Definition 1. A link (ni, ni+1) is defined as misbehaving if its two incident
nodes ni, ni+1 provide conflicting claims with respect to the packets forwarded to
the next hop, i.e., |Xi

⋂
Xi+1| � |Xi|.

Proposition 1. At least one node incident to a misbehaving link is misbehaving.

Proof. By contradiction. Assume that both nodes ni, ni+1 of a misbehaving link
are honest. Hence, the set of packets Xi+1 forwarded by ni+1 to the next hop
is approximately equal to the set of packets Xi, forwarded by ni to ni+1, i.e.,
|Xi

⋂
Xi+1| ≈ |Xi|. This contradicts the definition of a misbehaving link.

Definition 2. A simultaneous audit is defined as auditing two or more nodes
with respect to the same set of packets XS , sent from S to D via PSD.

Corollary 1. The link between two behaving nodes ni, ni+1 cannot be identified
as misbehaving, when ni, ni+1 are simultaneously audited.

Proof. By Proposition 1, at least one misbehaving node is incident to any mis-
behaving link. Hence, two behaving adjacent nodes cannot be incident to a mis-
behaving link. The simultaneous audit requirement ensures that the dropping
pattern of any misbehaving node upstream of behaving node ni has the same
effect on the packets observed by ni, ni+1. Thus packets forwarded by ni are also
forwarded by ni+1, i.e., |Xi

⋂
Xi+1| ≈ |Xi|.

Note that the converse of Corollary 1 is not true. For two nodes ni, ni+1 for
which |Xi

⋂
Xi+1| ≈ |Xi|, we cannot conclude that both nodes are honest. Two

colluding nodes may be incident to a link, and thus claim similar audit replies
regardless of the packets forwarded.

Adaptive Audits with Cut Questions. We now show how the source can
identify misbehaving nodes using an adaptive strategy and cut questions. Cut
questions can be implemented by auditing one node at a time. These questions
are of the form, “Is the misbehaving node upstream of ni?”, where ni is the
audited node. Assume there exists a single continuously misbehaving node nM

in PSD. Define the set of nodes suspicious of misbehavior as V = {n1, . . . , nk}.
If ni ∈ V is audited and replies with Xi such that |XS

⋂
Xi| � |XS |, the source

concludes that all nodes downstream of ni are behaving honestly, and therefore
nM ≤ ni. This is true since either ni is honest in which case it never received
packets in XS indicating an upstream misbehaving node, or ni is the misbehaving
node lying about its audit reply. If ni replies that |XS

⋂
Xi| ≈ |XS |, the source

concludes that all nodes upstream of ni are honest, and therefore nM ≥ ni. This
is true, since if any node upstream of ni was the misbehaving one, ni would not
have received packets in XS . Thus the set V is reduced to {ni, . . . , nk}.

Pelc [25] proposed a questioning strategy for adaptive games in which the
questioner wins if he determines ω, or proves a lie took place. For a search space
of size |Ω|, and a maximum number of lies �, the winning strategy requires
�log2 |Ω|	+ � questions. To find ω, the questioner first performs a binary search
requiring �log2 |Ω|	 questions to converge to a value ω′. It then asks the responder

214 W. Kozma Jr. and L. Lazos

� times if ω ≤ ω′. Since the responder is limited in lies, the questioner can
determine if ω′ is the secret value or the responder has lied.

Following the winning strategy proposed by Pelc, let the source win if either
a misbehaving link is identified or the source can prove a lie has occurred. The
source can converge to a single link by performing a binary search. The source
initializes V = {n1, . . . , nk} and selects node with index i = � |V|

2 	, for audit.
As previously described, V is reduced to either {n1, . . . , ni} or {ni, . . . , nk}.
The source continues to audit nodes in V until |V| = 2. In the case of a single
misbehaving node, the source identifies the misbehaving link as shown in the
following Proposition.

Proposition 2. For a single misbehaving node, the source always converges to
the misbehaving link in log2(|PSD|) audits.

Proof. Let nM denote the misbehaving node. Initially, V = PSD and hence nM ∈
V . Let the source select a node ni upstream of nM for audit. Being upstream,
ni responds honestly that it forwarded packets to the next hop, reducing V to
{ni, . . . , nk}, with nM ∈ V . Similarly, if a node nj downstream of nM is audited,
it will respond that no packets were forwarded, reducing V to {n1, . . . , nj}. If
nM is audited, its response will indicate that misbehavior occurs either upstream
of downstream. In either case nM ∈ V , since the audited node always remains
in V . The convergence of the binary search will end in a suspicious set V =
{nM−1, nM} or V = {nM , nM+1}, depending on whether nM indicated that
misbehavior occurs upstream of downstream. In any case, the identified link
is a misbehaving one since per the definition, its two incident nodes provide
conflicting audit replies. Since the binary search converges in log2(|PSD|), in
case |M | = 1 the source will locate nM in log2(|PSD|) steps.

If two or more nodes collude, the source may converge on a link in which both
nodes are behaving, as shown in the following example. In Figure 2(a), M =
{n1, n4} with nodes n1, n4 colluding. Initially, n4 drops all packets, while n1 be-
haves. Let node n2 be audited and report no misbehavior, thus V = {n2, n3, n4}.
Assume now that nodes n1, n4 switch their behavior with node n1 dropping
packets while n4 is behaving, as shown in Figure 2(b). If node n3 is audited, it
will report misbehavior upstream, reducing V to {n2, n3} and thus removing n4

from V . Hence, link (n2, n3) is incorrectly identified as misbehaving.
Pelc solves this problem through the repetitive questioning of the result,

thereby exhausting the responder’s lies. In our case, a simultaneous audit on
nodes ni, ni+1 of an identified link V = {ni, ni+1} is sufficient to identify a mis-
behaving link or the occurrence of a lie. If |Xi

⋂
Xi+1| � |Xi|, a misbehaving

link is identified. Else, the source concludes that a lie occurred. Returning to our
previous example, in Figure 2(c), n2 and n3 are simultaneously audited. Since
both nodes are honest, they return identical audit replies and no misbehaving
link is identified. In this example, the responder has lied by changing the value of
ω during the search, i.e., initially ω = n4, then ω = n1. However, S can identify
that a lie occurred.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 215

S n1 n2 n3 n4 D S n1 n2 n3 n4 D

(a) (b)

S n1 n2 n3 n4 D

(c)

Fig. 2. (a) Nodes n1, n4 collude, with n4 dropping all packets. Audited node n2 claims
misbehavior is downstream. (b) Nodes n1, n4 alter their behaviors, with n1 dropping all
packets. Audited node n3 claims misbehavior is upstream. (c) Source simultaneously
audits n2, n3 to verify if misbehaving link exists.

When the source identifies a lie occurred, is can also reach to the following con-
clusion: either (a) nM ∈ V but lied during the simultaneous audit, or (b) |M | ≥ 2
with at least one misbehaving node upstream of ni+1 and one downstream of
ni. Note that if |M | = 1 and the misbehaving node stops misbehaving (due to
the fact that it is being audited) the destination alerts the source that misbe-
havior has stopped in PSD. In such a case, the source will take two steps. First,
any outstanding audits will be discarded. Second, the search will be suspended
at the current state until misbehavior re-appears on PSD. When misbehavior
is resumed, the source continues the search from where it left off the last time
misbehavior occurred.

If the destination does not alert the source that performance in PSD has been
restored, the source concludes that |M | ≥ 2. This is evident in our example by
the responses of n2; on the first audit in Figure 2(a), it claims that misbehavior
is downstream, while in Figure 2(c), it claims misbehavior is upstream. Let the
audit process converge to link (ni, ni+1). Since the source knows that at least
one misbehaving node is upstream of ni and one is downstream, it attempts
to isolate the effect of the misbehavior of each node by partitioning PSD into
PSni = {n1, . . . , ni} and Pni+1D = {ni+1, . . . , nk}. The source repeats the audits
recursively for each path partition PSni , Pni+1D. However, note that the desti-
nation can only determine if misbehavior occurs in PSD, not which partition.

To treat each partition individually, the source considers ni as a pseudo-
destination and ni+1 as a pseudo-source. In PSni , node ni is always audited
simultaneously with any other node. Similarly node ni+1 is audited simultane-
ously with any other node in Pn+1D. Note that if ni is the misbehaving node, it
has only two strategies, (a) respond honestly, or (b) lie. If ni lies, it immediately
implicates itself in a misbehaving link, since both ni, ni+1 are always audited.
If ni responds honestly, the search in PSni will converge to the misbehaving
link (assuming one misbehaving node in PSni). For the realization of the cut
questions, the source initializes VSni = {n1, . . . , ni} and selects nj , j = � |VSni

|
2 	

for audit. The cut question “Is nM < nj?” is true if |XS

⋂
Xj| � |XS | and

|XS

⋂
Xi| � |XS |. The second condition verifies misbehavior on PSni .

216 W. Kozma Jr. and L. Lazos

Algorithm 1. Cut Questioning Algorithm
1: ni ← n1, nj ← n|PSD|,V = {ni, . . . , nj}
2: while |V| > 2 do

3: h = � |V|
2
�, Audit(nh)

4: if |XS

⋂
Xh| ≈ |XS | then

5: ni ← nh

6: else
7: nj ← nh

8: end if
9: end while

10: Audit(ni, nj)
11: if |Xi

⋂
Xj | � |Xi| then

12: return Xi, Xj

13: else
14: return |M | ≥ 2, Partition PSD

15: end if

Likewise on Pni+1D, the audit response of ni+1 acts as a verification if packets
from XS have reached this partition. Node ni+1 therefore acts as a pseudo-
source for Pni+1D. Much like ni, if ni+1 lies it immediately implicates itself in a
misbehaving link since (ni, ni+1) is always audited. Thus the source can identify
multiple misbehaving links using this adaptive auditing strategy. This strategy
is presented in Algorithm 1.

Adaptive Audits with Membership Questions. Our scheme can also use an
adaptive auditing strategy based on membership questions to identify the mis-
behaving nodes. Membership questions are constructed by combining two cut
questions. To answer the question, “Is nM ∈ A = {ni, . . . , nj}?” the source au-
dits ni, nj simultaneously and compares their audit replies. If |Xi

⋂
Xj | ≈ |Xi|,

then ni, nj claim nM /∈ A, since all packets forwarded by ni are received by nj .
Else, they claim nM ∈ A. Dhagat et al. [10] proposed an adaptive questioning
strategy which proceeds in stages. During each stage, the questioner either be-
lieves the responder’s answer and places it in a trusted set T , or discards it if
it contradicts prior answers. Let Vj represent the set of possible values for ω at
stage j, with V1 initialized to Ω.

Suppose that Vj is the current stage, with |Vj | > 1, and let set {rj−1,a, rj−1,b}
represent the answers to round j − 1. The questioner divides Vj into two equal-
sized subsets, A and B. The responder is asked “Is ω ∈ A?” If the answer
rj,a is “yes”, the questioner adds {rj,a} to T and moves to the next stage with
Vj+1 = A. Else, the questioner asks “Is ω ∈ B?” If the answer rj,b is “yes,”
{rj,a, rj,b} are added to T and the questioner moves to Vj+1 = B. If both rj,a, rj,b

are negative, the questioner removes {rj−1,a, rj−1,b} from T , and returns to
stage Vj−1. The questioner then selects a different partition of Vj−1 for stage j
and repeats the questioning on each partition. Dhagat et. al. showed that the
responder’s secret value ω can be identified after q = � 2 log2 |Ω|

1−3β 	 questions, when
β < 1

3 , with β being the fraction of q than are lies [10]. To prevent repeated lies

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 217

S n1 n2 n3 n4 Dn5 S n1 n2 n3 n4 Dn5

(a) (b)
S n1 n2 n3 n4 Dn5

(c)

Fig. 3. (a) Let V1 = {S, n1, . . . , n5, D} with A = {S, n1, n2, n3}, B = {n3, n4, n5, D}
and nM = n4. The source audits A, concluding nM /∈ A. (b) The source then audits
B, concluding nM ∈ B. (c) The source proceeds to stage V2 = {n3, n4, n5, D} and
continues the auditing strategy.

from the same misbehaving node, the source selects a new node and repeats the
membership questions, until |Vj | = 2.

Mapping Dhagat’s questioning strategy to misbehavior identification, the
source begins from stage V1 = {S, n1, . . . , nk, D}. Set V1 is divided into two
subsets, A = {S, . . . , ni} and B = {ni, . . . , D} with i = � |V1|

2 	. The source first
asks “Is nM ∈ A?” by simultaneously auditing nodes S, ni. If S and ni return
conflicting audit replies, the source knows that nM ∈ A, adds {r1,a} to T , and
proceeds to stage V2 = {S, . . . , ni}. Else, the source questions “Is nM ∈ B?” by
simultaneously auditing nodes ni, D, whose audit replies define answer r1,b. If
ni, D return conflicting audit replies, i.e., |Xi

⋂
XD| � |Xi|, the source knows

that nM ∈ B, adds {r1,a, r1,b} to T , and proceeds with V2 = {ni, . . . , D}. If both
r1,a, r1,b are negative, the source concludes a lie has occurred.

In Figure 3(a), n4 = nM . The source splits V1 = {S, n1, . . . , n5, D} to sets A =
{S, n1, n2, n3}, B = {n3, n4, n5, D}, and audits S, n3 to realize the membership
question “Is nM ∈ A?” Since n3 is honest, the source asks “Is nM ∈ B?” by
simultaneously auditing n3, D, as shown in Figure 3(b). Since n3, D are honest,
the source concludes nM ∈ B. In Figure 3(c), the source moves to the next stage
by dividing V2 = B into two memberships sets. The process is repeated until
|Vj | = 2. In our example, the source converges to the misbehaving link (n3, n4).
The source’s auditing strategy is presented in Algorithm 2.

Proposition 3. For a single misbehaving node, the source converges to the mis-
behaving link in less than 4 log2(|PSD|) + 2 audits.

Proof. Let the source be at stage Vj = {ni, . . . , nk} with nM ∈ Vj and select node
nh for audit, creating membership sets A = {ni, . . . , nh} and B = {nh, . . . , nk}.
If nM
= ni, nh, nk, then all audit responses will be honest and the source will
conclude either nM ∈ A or nM ∈ B, thus proceeding to the next stage with
Vj+1 = A, Vj+1 = B and nM ∈ Vj+1. As long as the source audits honest nodes,
the set of suspicious nodes Vj will be reduced by half.

Now assume one of the ni, nh, nk is nM . When audited, nM will either respond
honestly, or lie. If nM responds honestly, the search will proceed to state Vj+1

218 W. Kozma Jr. and L. Lazos

Algorithm 2. Membership Questioning Algorithm
1: V1 = {ni, . . . , nk}, ni ← S, nk ← D, T = r1,a

2: while |Vj | > 2 do

3: h = � |Vj |
2
�, rj,a = audit(ni, nh)

4: if |Xi

⋂
Xh| � |Xi| then

5: T ← {rj,a}, j = j + 1, Vj = {ni, . . . , nh}
6: else
7: rj,b = audit(nh, nk)
8: if |Xh

⋂
Xk| � |Xh| then

9: T ← {rj,a, rj,b}, j = j + 1, Vj = {nh, . . . , nk}
10: else
11: return j = j − 1
12: end if
13: end if
14: end while
15: return Xi, Xk

with nM ∈ Vj+1 and |Vj+1| = |Vj |
2 . Thus the search continues to converge. If nM

lies, the source will obtain negative answers from both membership questions,
unable to reduce Vj further, thus returning to stage Vj−1 with nM ∈ Vj−1. The
source will then pick a different nh, and repeat the set splitting, thus preventing
the same lie from repeating.

In the absence of lies, the total number of membership questions needed for
convergence to the misbehaving link is 2 log2(|PSD|). This is true, since at each
stage we split the suspicious set in half similar to a binary search. To realize
a membership question we need to simultaneously audit two nodes, requiring
a total of 4 log2(|PSD|) audits in the worst case. If nM is audited and lies, the
search backtracks to the previous stage, resulting in the waste of two audits.
For a single misbehaving node nM and the fact that the source always selects
a different node after a backtrack, nM will be audited only once. Thus, in the
worst case, the source requires q ≤ 4 log2(|PSD|) + 2 audits.

Corollary 2. The source never converges to a link with two behaving nodes.

Proof. According to Algorithm 2, the source must receive conflicting reports
from two simultaneously audited nodes to proceed from stage j − 1 to stage j.
Hence, to terminate with Vj = {ni, ni+1} the source must receive conflicting
audit replies from ni, ni+1 when simultaneously audited. However, via Corollary
1, this cannot occur if ni, ni+1 are behaving nodes.

It is possible that multiple neighboring colluding nodes can delay the search
indefinitely. Assume all nodes in Vj collude. Once in stage Vj+1, the replies to the
audits from the colluding nodes yield membership questions on both partitions
negative, thus forcing the source to return to stage Vj . Auditing any other node
in Vj will yield the same results since nodes in Vj are colluding. If the source has
audited all possible partitions of Vj, and thus all ni ∈ V , with no progress to the
next stage, it terminates the search and proceeds to the identification phase.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 219

n1

n2

n3

n4

n5

n6

D
S

n

nn1

n2

n3

n4

n5

n6

D
S

(a) (b)

Fig. 4. (a) Node n3 drops packets, with link (n3, n4) being the misbehaving link. (b)
Slight alteration to routing path.

4.3 Misbehaving Node Identification

Once the source has converged to a misbehaving link (ni, ni+1), it can no longer
proceed to identify the misbehaving node. The two conflicting audit responses
from ni, ni+1 indicate that either ni or ni+1 is lying. From the routing point of
view, identifying the misbehaving link is sufficient for restoring the performance
in PSD since the source can now avoid this link. However, we would like to
identify and isolate the misbehaving node to prevent it from further affecting
other paths. This is accomplished through the idea of path division. The path
PSD is divided in such a way that new independent observations can be made
with respect to ni and ni+1. We first illustrate the idea of path division for a
single misbehaving nodes and then generalize to many.

Single Misbehaving Node. Without loss of generality assume that the audit
process converged to (nM , nM+1), where nM is the misbehaving node. The source
divides PSD into two paths such that packets are routed through either nM or
nM+1, and attempts to re-identify the misbehaving link. This can be achieved by
bypassing each node in PSD via an alternative path. Instead of performing the
entire audit process, the source concentrates on the nodes around nM , nM+1, For
example, in Figure 4(a), the source has identified link (n3, n4) as the misbehaving
one. In Figure 4(b), the source splits the traffic between two paths that bypass
n3, n4 in turn via nodes nα, nβ. Path segment {n2, n3, n4, n5} is replaced by the
segments {n2, nβ, n4, n5} and {n2, n3, nα, n5}, thus isolating n3, n4 from each
other. The source simultaneously audits nodes nβ, n4 and n3, nα to identify the
misbehaving link. The source identifies link (n3, nα) as misbehaving, and hence
identifies the misbehaving node n3.

Multiple Misbehaving Nodes. Assume now the existence of multiple misbe-
having nodes in PSD. If the cut auditing strategy is employed, the source will
split PSD to smaller paths in order to isolate the effect of each misbehaving node.
The source can then perform the path division in each subpath as in the case
of a single misbehaving node. Note that, as in the case of a single misbehaving
node, the newly added nodes must not be misbehaving in order to avoid framing
honest nodes. If the membership questioning strategy is employed, the source
will converge to a set Vj containing at most one honest node. To identify the
misbehaving one, all nodes in Vj must be excluded in turn from PSD according

220 W. Kozma Jr. and L. Lazos

to the path division process. That is, the source constructs |Vj | individual paths
with each node in Vj being present on only one path.

4.4 Mobility

We now relax our assumption that PSD does not change during the identification
process. Let a node ni be removed from PSD. If ni /∈ V , then its removal has
no effect on the search. The source identifies misbehaving links from the nodes
in V . Let ni ∈ V . There are two cases, either ni is a behaving node, or ni is
misbehaving. If ni is behaving, then removing it is analogous to reducing V to a
smaller set that still contains the misbehaving node. If ni is misbehaving, then
the performance in PSD is restored or one less misbehaving node is present.

Consider now adding a new node ni to PSD. If ni is added between nodes in
V , then regardless of ni’s behavior, this is equivalent to ni being in V , in the first
place and not yet been audited. Let ni be added in PSD outside V . If ni is an
honest node, there is no effect on the audit process. If ni is a misbehaving node,
then this is equivalent to the situation in which |M | ≥ 2 and one of the nM has
been removed from V . However, we have shown that both auditing strategies
can address the case of multiple misbehaving nodes. In the case of cut questions,
the source splits PSD into two paths while in the case of membership questions,
the source converges on the misbehaving node in V . Once this node is removed,
the source will continue to identify the newly added misbehaving node.

5 The Audit Mechanism

We now describe how the source can perform audits in a resource-efficient man-
ner. The audit mechanism is adopted from [18] and is based on the compact
representation of a membership set via Bloom filters [4]. The goal of auditing
a node ni ∈ PSD is to force ni to commit to the set of packets Xi that it re-
ceived and forwarded to the next hop. Contradicting commitments are used to
identify misbehaving links and eventually misbehaving nodes. To respond to an
audit, the node ni records the packets forwarded for a period of time, and re-
ports them to the source. Based on this report, the source compares the packets
in Xi with the packets in XS originally sent to the destination. Buffering the
packets themselves requires a large amount of storage and significant overhead
for transmission back to the source. On the other hand, Bloom filters provide
a storage-efficient way of performing membership testing [4]. The audit process
occurs in three steps; sending an audit request, constructing the audit reply, and
processing the audit reply. We now describe these steps in detail.

Sending an Audit Request: The source audits a node ni according to the algo-
rithms described in Section 4. The source selects the audit duration ad, measured
in number of packets, and the initial packet sequence number as from which the
audit will begin. The value of ad is a parameter that must be sufficiently large to
differentiate misbehavior from normal packet loss. The audit request is routed

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 221

to ni via PSD. Values as and ad are randomized thereby preventing any mis-
behaving nodes from conjecturing the start and duration of audits, unless they
are audited themselves. Note that an audit request may fail to reach the audited
node ni since a misbehaving node along PSni may drop it, or ni is the misbehav-
ing node and chooses not to respond. In this case, the source tries a threshold
number of times to audit ni. Failure to obtain a reply is interpreted as “Node
ni did not forward packets in XS to the next hop.” This is true since either ni

is the misbehaving node or a misbehaving node is upstream of ni.

Constructing an Audit Reply: When a node ni is audited, it constructs a Bloom
filter of the set of packets it receives and forwards, from as to as + ad, denoted
by Xi = {xas , xas+1, . . . , xad

}. By using a Bloom filter, packets in Xi can be
compactly represented in an m-bit vector vi with m � |Xi| [4]. After ad packets
have been added to vi, node ni signs vi, and sends it to S via the reverse path
PniS . The signed Bloom filter binds the audited node to the set of packets Xi

that it claims to have forwarded to the next hop, in a publicly verifiable manner.
Based on ni’s signature, any node can verify the authenticity and integrity of vi.
To assess the behavior of audited nodes, the source constructs its own Bloom
filter vS in the same manner as ni. When S receives ni’s Bloom filter, it compares
it against vS and compute what fraction of packets in XS was forwarded by ni.

Processing the Audit Reply: When S receives vi, it verifies its authenticity and
discards vi if the signature check fails. Otherwise, given the vector length m, the
cardinalities of Xi, XS , filters vi, vS , and the number z of hash functions used to
generate the Bloom filters, S computes the metric [5],

|XS

⋂
Xi| ≈ |XS| + |Xi| −

log2

(
<vS ,vi>

m +
(
1 − 1

m

)z|XS | +
(
1 − 1

m

)z|Xi|)

z log2

(
1 − 1

m

) (1)

6 Performance Evaluation

6.1 Simulation Setup

We randomly deployed 100 nodes within an 80×80 square and selected 10
source/destination pairs. For each pair, we constructed the shortest path and
randomly selected the set of misbehaving nodes. We generated traffic from S
to D according to the constant bit-rate (CBR) model. Each misbehaving node
randomly selected a behavioral state of either behave or misbehave, with equal
probability. It then randomly selected the duration of the state from the interval
[1, 400] packets. We focus on two metrics of interest: (a) the communication over-
head defined as the number of messages transmitted/received by nodes in PSD,
weighed by 1/0.5, respectively [12], and (b) the identification delay defined as
the time elapsed from the occurrence of misbehavior until the misbehaving nodes
are identified, normalized over the audit duration. Simulations were performed
in a packet-level C simulator.

222 W. Kozma Jr. and L. Lazos

6.2 Auditing Strategy Comparison

We first compared the performance of the two auditing strategies; the strat-
egy based on cut questions as described by Algorithm 1, which we will refer
to as CUT, and the strategy based on membership questions as described by
Algorithm 2, which we will refer to as MEM.

Communication Overhead. In Figure 5(a), we show the communication over-
head required to identify one misbehaving node as a function of the path length.
We observe that CUT requires less communication overhead than MEM. This
is expected, as the realization of cut questions requires only one audit, whereas
membership questions require two audits. Both auditing strategies audit in a bi-
nary fashion, thus resulting in logarithmic increase in communication overhead
as a function of the path length. In Figure 5(b), we show the communication
overhead required to identify two misbehaving nodes as a function of path length.

Identification Delay. In Figure 5(c), we show the delay required to identify
one misbehaving node as a function of the path length. Both CUT and MEM
incur approximately the same delay due to their binary search approach. In
Figure 5(d), we show the delay required to identify two misbehaving nodes as a

5 6 7 8 9 10 11 12 13 14 15
10

1

10
2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of |P
SD

|

CUT
MEM

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
10

2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of |P
SD

|

CUT (Parrallel)
CUT (Series)
MEM

|M| = 2

(a) (b)

5 6 7 8 9 10 11 12 13 14 15
2

4

6

8

10

12

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

CUT
MEM

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
5

10

15

20

25

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

CUT (Parallel)
CUT (Series)
MEM

|M| = 2

(c) (d)

Fig. 5. Communication overhead for (a) one misbehaving node, (b) two misbehaving
nodes. Identification delay for (c) one misbehaving node, (d) two misbehaving nodes.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 223

function of the path length. In CUT, after the path is partitioned, the auditing
of the two partitions is dependent on the misbehavior strategies of nodes in
M . Assume that only one misbehaving node drops packets at a time. Thus the
search will only audit the path partition which is reporting misbehavior. This
causes the source to search the partitions in series, i.e., one at a time. If both
misbehaving nodes drop packets, the source can audit the two path partitions
in parallel, since each path partition contains a source (or pseudo-source) and a
destination (or pseudo-destination). This parallel auditing decreases the delay.

For CUT, we plot both the case of search in series and parallel, giving an
expected range for the delay. Note that the delay of MEM falls within this
range; closer to the parallel CUT for smaller path sizes and closer to the series
CUT as the path length increases. This is due to the nature of the auditing
strategies employed. In CUT, the source cannot determine if a lie occurred until
performing the simultaneous audit at the end of the auditing strategy. In MEM,
the source determines if a lie occurred by looking for contradictions at every
stage. Therefore, if a lie is found, the penalty is only the waste of two audits.
This results in a tradeoff in which MEM incurs an additional overhead per stage
compared to CUT by checking for contradictions at the expense of delay.

6.3 Comparison with Other Schemes

We now compare the performance of our algorithms to CONFIDANT [6], 2ACK
[20], and AWERBUCH [1]. For CONFIDANT, every one-hop neighbor of a trans-
mitting node was assumed to operate in promiscuous mode, thus overhearing
transmitted messages. For 2ACK, a fraction p of the messages transmitted by
each node was acknowledged two hops upstream of the receiving node. We set
p = {1, 0.5, 0.1} [20]. AWERBUCH identifies misbehaving links by requesting
selected nodes in PSD to acknowledge each packet back to the source. For com-
parison, we select the adaptive auditing strategy utilizing cut questions. The
plots of Figure 5(a)-(d) can be used for comparisons with MEM. We first con-
sidered the overhead during a fixed duration of time, i.e., the time required to
identify the misbehaving node using CUT.

Fixed Time Communication Overhead. In Figure 6(a), we show the com-
munication overhead as a function of the path length. The Y axis is shown in
logarithmic scale. The communication overhead for CUT is between 1-2 orders
of magnitude less compared to other schemes. This gain is due to the fact that
CUT does not expend energy on a per-packet basis to monitor the behavior
of each node. The 2ACK scheme presents the highest communication overhead
since every packet requires a 2-hop acknowledgment upstream per link traversed.

In Figure 6(b), we show the communication overhead as a function of the
audit duration ad for a path of eight nodes. Schemes 2ACK, CONFIDANT, and
AWERBUCH all incur a linear increase in communication overhead, due to the
per-packet behavior evaluation. On the other hand, the communication overhead
for CUT and MEM is incurred on a per-audit basis, and is independent of audit
duration. While our algorithms provide significant savings in communication

224 W. Kozma Jr. and L. Lazos

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Communication Overhead as a Function of |P

SD
|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of a
d

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

(a) (b)

5 7 9 11 13 15
0

5

10

15

20

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

(c)

Fig. 6. (a) Communication overhead as a function of |PSD| for an audit size of 200
packets. The overhead is computed over time required by the CUT scheme to converge
to the misbehaving node. (b) Communication overhead as a function of audit size for
|PSD| = 8. (c) Delay as a function of |PSD| in units of number of audits.

overhead, they require a longer time to identify the misbehaving nodes. On the
other hand, the proactive schemes require only the duration of one audit to
identify misbehavior. This is due to the fact that proactive protocols monitor
all nodes in the path PSD in parallel. Fortunately, for schemes CUT and MEM,
the delay grows logarithmically with |PSD|. Hence, the increase in identification
delay is small compared to the savings in communication overhead.

In Figure 7(c), we show the identification delay as a function of path length.
CONFIDANT requires a single audit duration to identify the misbehaving node
since all nodes in PSD are monitored in parallel. AWERBUCH performs a binary
search, incurring a logarithmic increase in delay. The 2ACK scheme also requires
a single audit duration for identification when all packets are acknowledged.
However, the identification delay increases when only a fraction of the packets
are acknowledged. For example, when only 10% of the packets are acknowledged,
2ACK and CUT incurr similar delay. However, as shown in Figure 6(b), CUT
incurs an order of magnitude less in communication overhead.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 225

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
CUT

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
CUT

(a) (b)

Fig. 7. (a) Communication overhead for an audit size of 200 packets. For each scheme,
the overhead is computed for the time required to identify misbehavior, (b) communi-
cation overhead as a function of audit size for |PSD| = 8.

Comparison Based on Identification Delay. We now evaluate the com-
munication overhead incurred by each scheme until the misbehaving node is
identified. In Figure 7(a), we show the communication overhead as a function
of the path length, for an audit size of 200 packets. In Figure 7(b), we show
the communication overhead as a function of the audit size, for a path of eight
nodes. We observe that even in the case where the communication overhead is
measured only during the identification delay, CUT significantly outperforms
the other schemes. The CONFIDANT, 2ACK and AWERBUCH schemes are
sensitive to path length and audit size. On the other hand, CUT illustrates a
graceful tradeoff between communication overhead and delay.

7 Conclusion

We addressed the problem of identifying misbehaving nodes that refuse to for-
ward packets to the destination in a wireless multi-hop network. We mapped this
problem to the classic Rényi-Ulam game of 20 questions. From this mapping we
employed communication efficient questioning strategies which allow the source
to locate the set of misbehaving nodes. We showed that our scheme significantly
reduces the communication overhead associated with misbehavior identification
compared to previously proposed schemes. This reduction in resource expendi-
ture comes at the expense of a logarithmic increase in the identification delay.

References

1. Awerbuch, B., Holmer, D., Rotaru, C.-N., Rubens, H.: An on-demand secure rout-
ing protocol resilient to byzantine failures. In: WiSe 2002 (2002)

2. Balakrishnan, K., Deng, J., Varshney, P.K.: Twoack: Preventing selfishness in mo-
bile ad hoc networks. In: WCNC 2005 (2005)

226 W. Kozma Jr. and L. Lazos

3. Berlekamp, E.: Error Correcting Codes. Wiley, NY (1968)
4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
5. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.

Internet Mathematics 1(4), 485–509 (2004)
6. Buchegger, S., Boudec, J.-Y.L.: Performance analysis of the confidant protocol

(cooperation of nodes: Fairness in dynamic ad-hoc networks). In: MobiHOC 2002
(2002)

7. Buchegger, S., Boudec, J.-Y.L.: Self-policing mobile ad-hoc networks by reputation
systems. IEEE Communications Magazine, 101–107 (2005)

8. Buttyan, L., Hubaux, J.-P.: Enforcing service availability in mobile ad-hoc wans.
In: MobiHOC 2000, pp. 87–96 (2000)

9. Buttyan, L., Hubaux, J.-P.: Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM/Kluwer Mobile Networks and Applications 8(5) (2003)

10. Dhagat, A., Gács, P., Winkler, P.: On playing “twenty questions” with a liar. In:
SODA 1992, pp. 16–22. Society for Industrial and Applied Mathematics (1992)

11. Dong, Y., Go, H., Sui, A., Li, V., Hui, L., Yiu, S.: Providing Distributed Certificate
Authority Service in Mobile Ad Hoc Networks. In: SecureComm 2005 (2005)

12. Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless net-
work interface in an ad hoc networking environment. In: INFOCOM 2001 (2001)

13. Ganeriwal, S., Srivastava, M.: Reputation-based framework for high integrity sensor
networks. In: SASN 2004, pp. 66–77 (2004)

14. He, Q., Wu, D., Khosla, P.: Sori: A secure and objective reputation-based incentive
scheme for ad hoc networks. In: WCNC 2004 (2004)

15. Hu, Y., Johnson, D., Perrig, A.: SEAD: secure efficient distance vector routing for
mobile wireless ad hoc networks. Ad Hoc Networks 1(1), 175–192 (2003)

16. Jakobsson, M., Hubaux, J.-P., Buttyan, L.: A micropayment scheme encouraging
collaboration in multi-hop cellular networks. In: Proc. of Financial Crypto (2003)

17. Johnson, D., Maltz, D., Hu, Y.-C.: The dynamic source routing protocol for mobile
ad hoc networks (dsr). draft-ietf-manet-dsr-09.txt (2003)

18. Kozma Jr., W., Lazos, L.: REAct: Resource-Efficient Accountability for Node Mis-
behavior in Ad Hoc Networks based on Random Audits. In: WiSec 2009 (2009)

19. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN 2008 (2008)

20. Liu, K., Deng, J., Varshney, P., Balakrishnan, K.: An acknowledgment-based ap-
proach for the detection of routing misbehavior in manets. IEEE Transactions on
Mobile Computing 6(5), 536–550 (2006)

21. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: MobiCom 2000, pp. 255–265 (2000)

22. Michiardi, P., Molva, R.: Core: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In: CMS 2002 (2002)

23. Padmanabhan, V.-N., Simon, D.-R.: Secure traceroute to detect faulty or malicious
routing. SIGCOMM Computer Communication Review 33(1) (2003)

24. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: SCS
Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2002), pp. 1–27 (2002)

25. Pelc, A.: Detecting errors in searching games. Journal of Combinatorial Theory
Series A 51(1), 43–54 (1989)

26. Perkins, C., Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing (2003)

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 227

27. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.: SPINS: Security Protocols
for Sensor Networks. Wireless Networks 8(5), 521–534 (2002)

28. Raghani, S., Toshniwal, D., Joshi, R.: Dynamic Support for Distributed Certifica-
tion Authority in Mobile Ad Hoc Networks. In: Proceedings of the 2006 Interna-
tional Conference on Hybrid Information Technology, vol. 1, pp. 424–432. IEEE
Computer Society, Washington (2006)

29. Rényi, A.: A Diary on Information Theory. Wiley, New York (1984)
30. Rivest, R., Meyer, A., Kleitman, D., Winklmann, K., Spencer, J.: Coping with

errors in binary search procedures. J. Comput. System Sci. 20, 396–404 (1980)
31. Spencer, J., Winkler, P.: Three thresholds for a liar. Combinatorics, Probability

and Computing 1, 81–93 (1992)
32. Ulam, S.: Adventures of a Mathematician. Scribner, New York (1976)
33. Yi, S., Kravets, R.: MOCA: Mobile Certificate Authority for Wireless Ad Hoc

Networks. In: 2nd Annual PKI Research Workshop Pre-Proceedings, vol. 51
34. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple cheat-proof, credit-based system

for mobile ad-hoc networks. In: INFOCOM 2003 (2003)

	Dealing with Liars: Misbehavior Identificationvia R\'{e}nyi-Ulam Games
	Introduction
	Related Work
	Network and Adversarial Models
	Misbehavior Identification
	Motivation and Problem Mapping
	Rényi-Ulam Inspired Auditing Strategies
	Misbehaving Node Identification
	Mobility

	The Audit Mechanism
	Performance Evaluation
	Simulation Setup
	Auditing Strategy Comparison
	Comparison with Other Schemes

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

